

(Anti-)hydrogen spectroscopy for tests of CPT and Lorentz invariance

E. Widmann ASACUSA collaboration Stefan Meyer Institute for subatomic Physics, Vienna

> DISCRETE 2022 Baden-Baden, 11 November 2022

- (Anti)hydrogen spectroscopy and CPT / Lorentz invariance
- Status of antihydrogen hyperfine measurement in a beam: CPT
- Hydrogen and deuterium in-beam hyperfine measurements: SME coefficients

Antihydrogen experiments

- Matter-Antimatter Symmetry
 - Charge conjugation-Parity-Time reversal: CPT
 - CPTV points to BSM physics

Matter/antimatter symmetry

• Macroscopic: antimatter in the universe

$$\eta = \frac{n_b - n_{\bar{b}}}{n_{\gamma}} \sim 6.1 \ x \ 10^{-10}$$
 WMAP

SMI - STEFAN MEYER INSTITUTE

• Microscopic: particle – antiparticle

EW, Phys. Part. Nuclei 53, 790–794 (2022). arXiv:2111.04056 [hep-ex]

Comparison of CPT tests

• Mass & frequency

• Synopsis: CPT violating interaction appears at the level of Lagrangian

• Relevant scale: absolute energy

• Plot

- Right edge: value
- Bar length: relative precision
- Left edge: absolute sensitivity
- Source: PDG

EW, Phys. Part. Nuclei **53**, 790–794 (2022). arXiv:2111.04056 [hep-ex]

Hydrogen spectroscopy

6

Antihydrogen results

• $v_{1S-2S}^{H}(B = 1.033 \text{ T}) =$ 2,466,061,103,079.4(5.4)kHz⁻¹ • B-field induced shift 310 MHz • $\Delta v_{1S-2S}^{\overline{H}-H^{\text{th,shifted}}} / v_{1S-2S}^{\overline{H}} = 2 \times 10^{-12}$

• $v_{2S-2P}^{\text{H}}(B \rightarrow 0) = 0.99(11) \text{ GHz}^{2}$ • $\Delta v_{2S-2P}^{\overline{H}-H} / v_{2S-2P}^{\overline{H}} = 11\%$

- $v_{HFS}^{H}(B = 0) = 1,420.4(5)$ MHz³ • $\Delta v_{\text{HFS}}^{\overline{\text{H}}-\text{H}} / v_{\text{HFS}}^{\overline{\text{H}}} = 4 \text{ x } 10^{-4}$
 - ¹Ahmadi, M. et al., *Nature* 557 (2018): 71–75. ²Ahmadi, M., B et al. *Nature* 578, (2020): 375–80. from $v_{1S-2S}^{\overline{H}}$ and $v_{1S-2P}^{\overline{H}}$, extrapolated to B=0 ³Ahmadi, M et al. *Nature* 548 (2017): 66–69.

Ground-State Hyperfine Splitting of H/H

- spin-spin interaction positron antiproton
- Leading: Fermi contact term

Hydrogen HFS and QED: finite size effects

Finite size effect of proton/antiproton important below ~ 10 ppm

$$\frac{M_p}{M_p + m_e})^3 \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 c R y$$

TRANSITION FREQUENCY (Hz)

Comparison of CPT tests: SME

Standard Model Extension SME

$$\begin{split} &(i\gamma^{\mu}D_{\mu}-m_{e}-a^{e}_{\mu}\gamma^{\mu}-b^{e}_{\mu}\gamma_{5}\gamma^{\mu}\\ &-\frac{1}{2}H^{e}_{\mu\nu}\sigma^{\mu\nu}+ic^{e}_{\mu\nu}\gamma^{\mu}D^{\nu}+id^{e}_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi=0\,. \end{split}$$

CPT & LORENT7

D. Colladay and V.A. Kostelecky, PRD 55, 6760 (1997)

• Minimal SME: only HFS

Bluhm, R., Kostelecky, V., & Russell, N., PRL 82, 2254–2257 (1999).

• Non-minimal SME: 1S-2S shows higher-order CPTV

Kostelecký, V. A. & Vargas, A. J. PRD 056002 (2015).

E. Widmann DISCRETE 11 Nov 2022

SMI - STEFAN MEYER INSTITUTE

Source: PDG, Kostelecky & Bluhm arXiv:0801.0287 (updated annually) EW, Phys. Part. Nuclei **53**, 790–794 (2022). arXiv:2111.04056 [hep-ex]

AUSTRIAN

CADEMY OF **SCIENCES**

ASACUSA collaboration

Co-spokespersons M. Hori MPQ E.W.

- A tomic
- S pectroscopy
- A nd
- **C** ollisions
- U sing
- S low

Stefan Meyer Institute for Subatomic Physics: C. Amsler, S. Chesnevskaya, A. Gligorova, E. Hunter, C. Killian, V. Kletzl, V Kraxberger, A. Lanz, V. Mäckel, D. Murtagh, A. Nanda, M.C. Simon, A. Weiser, E. Widmann, J. Zmeskal

Univesrita di Brescia & INFN Brescia: G. Constantini, G. Gosta, M. Leali, V. Mascagna, S. Migliorati, L. Venturelli

Politecnico di Milano: R. Ferragut, V. Toso; Università degli Studi di Milano: M. Romé, G. Maero; Infn Milano: M. Giammarchi

CERN: L. Nowak, C. Malbrunot, T. Wolz

University of Tokyo, Komaba: N. Kuroda, Y. Matsuda

RIKEN: H. Breuker, Y. Kanai, M. Tajima, S. Ulmer, Y. Yamazaki

Hiroshima University: H. Higaki

Tokyo University of Science: Y. Nagata

Aarhus University: U. Uggerhøj

E. Widmann DISCRETE 11 Nov 2022

SMI - STEFAN MEYER INSTITUTE

ASACUSA Scientific projects

(1) Spectroscopy of \overline{p} He

(2) \overline{p} annihilation cross-section

(3) \overline{H} production and spectroscopy

The Antihydrogen team

AARHUS UNIVERSIT

AUSTRIAN CADEMY OF **SCIENCES**

ASACUSA collaboration

- A tomic
- S pectroscopy
- A nd
- **C** ollisions

U sing

- S low
- A ntiproto

Co-spokespersons M. Hori MPQ E.W.

ASACUSA Scientific projects

(1) Spectroscopy of \overline{p} He

(2) \overline{p} annihilation cross-section

Stefan Meyer Institute for Subatomic Physics: C. Amsler, S. Chesnevskaya, A. Gligorova, E. Hunter, C. Killian, V. Kletzl, V Kraxberger, A. Lanz, V. Mäckel, D. Murtagh, A. Nanda, M.C. Simon, A. Weiser, E. Widmann, J. Zmeskal

Univesrita di Brescia & INFN Brescia: G. Constantini, G. Gosta, M. Leali, V. Mascagna, S. Migliorati, L. Venturelli

Politecnico di Milano: R. Ferragut, V. Toso; Università degli Studi di Milano: M. Romé, G. Maero; Infn Milano: M. Giammarchi

CERN: L. Nowak, C. Malbrunot, T. Wolz

University of Tokyo, Komaba: N. Kuroda, Y. Matsuda

RIKEN: H. Breuker, Y. Kanai, M. Tajima, S. Ulmer, Y. Yamazaki

Hiroshima University: H. Higaki

Tokyo University of Science: Y. Nagata

Aarhus University: U. Uggerhøj

ASACUSA

E. Widmann DISCRETE 11 Nov 2022

SMI - STEFAN MEYER INSTITUTE

(3) \overline{H} production and spectroscopy

The Antihydrogen team

AARHUS UNIVERSIT

10

ELENA @ CERN

Energy range, MeV	5.3 - 0.1
Intensity of ejected beam	1.8×10^{7}
ε _{x,y} of extracted beam, π·mm·mrad, [95%], standard	4 / 4
Δp/p of extracted beam, [95%], standard	8·10 ⁻³

ELENA operation started Aug. 2021

AUSTRIAN CADEMY OF

In-beam HFS spectroscopy

- Goals
 - In-beam measurement of ground-state hyperfine structure of antihydrogen to ppm-level and below
 - Produce polarized slow (<100 K) H beam

- Resolution: line width $\Delta v \sim 1/T_{TOF}$ • 1000 m/s, 10 cm:

 - $\Delta v = 7 \times 10^{-6}$ for T = 50 K

2.0

1.5

1.0

0.5

-1.0

-1.5

(ZHZ) 0. > -0.5

- > 100 \overline{H} /s in 1S state into 4π needed
- event rate 1 / minute: background from cosmics, annihilations upstreams

ASACUSA Antihydrogen beam for HF

S	
le	detector

AUSTRIAN CADEMY OF SCIENCES

ASACUSA Antihydrogen beam for HFS

- H production 1st time in 2010 in nested Penning trap
 - Three body recombination (→Rydberg states)

AUSTRIAN CADEMY OF CIENCES

ASACUSA Antihydrogen beam for HFS

- H production 1st time in **2010** in nested Penning trap
 - Three body recombination $(\rightarrow Rydberg states)$
- 1st observation of beam in field free region **2014**
 - n≤43: 6 *H*/15 min
 - n≤29: 4 $\overline{H}/15$ min

AUSTRIAN ACADEMY OF SCIENCES

ASACUSA Antihydrogen beam for HFS

- H
 production 1st time in 2010 in nested Penning trap
 - Three body recombination (→Rydberg states)
- 1st observation of beam in field free region **2014**
 - n≤43: 6 *H*/15 min
 - n≤29: 4 *H*/15 min

Recent milestones

- Quantum number distribution of \overline{H} beam in field-free region
- - Meshes to block RF interference, better cooling

distribution in a beam of antihydrogen atoms" Eur. Phys. J. D 75, 91 (2021)

$1^{st} \overline{H}$ interaction with microwaves expected 2023

• 100 K colder electron plasmas compared to before

E. Hunter et al. EPJ Web Conf. 262 01007 (2022). C. Amsler et al. Physics of Plasmas 29, 083303 (2022). arXiv:2203.14890 [physics.plasm-ph]

Hydrogen beam measurements

- Polarized source of cold hydrogen
- Primary goal: verify spectroscopy method:
 - reproduce expected antihydrogen beam parameters
 - Use same spectroscopy apparatus

Malbrunot, C., et al., NIMA 935, 110-120 (2019)

AUSTRIAN ACADEMY OF SCIENCES

σ -transition in H using \overline{H} setup

Line width ~ 6 kHz: 4 ppm (v~900 m/s)

Error **2.7 ppb**: 18x improvement over *Kush, Phys. Rev. 100, 1188 (1955)* Deviation from maser ($\Delta f/f^{-10^{-12}}$) : **3.4 Hz** < 1 σ error

Extrapolation to \overline{H} : **8000** atoms needed to achieve **1 ppm**

Non-minimal

- Extension to coefficients **p**: m
- Hydrogen HFS

AUSTRIAN ACADEMY OF

SCIENCES

$$\mathbf{AE \& HFS} \qquad \mathcal{H}_{wr} = -\sum_{kjm} |\mathbf{p}|^{k} {}_{0}Y_{jm}(\hat{\mathbf{p}}) \mathcal{T}_{wjkm}^{NR(0B)},$$
arbitrary mass order
$$\mathcal{H}_{w\pm} = -\sum_{kjm} |\mathbf{p}|^{k} {}_{\pm 1}Y_{jm}(\hat{\mathbf{p}}) (i\mathcal{T}_{wjkm}^{NR(1E)} \pm \mathcal{T}_{wjkm}^{NR(1B)}),$$

$$m, k=2q, Y: spin-weighted spherical harmonics, w=e,p$$

$$2\pi\delta\nu_{\pi} = -\frac{1}{2\sqrt{3\pi}} \sum_{q=0}^{2} (\alpha m_{r})^{2q} (1+4\delta_{q2}) \sum_{w} \left[g_{w(2q)10}^{NR(0B)} - H_{w(2q)10}^{NR(0B)} + 2g_{w(2q)10}^{NR(1B)} - 2H_{w(2q)10}^{NR(1B)}\right],$$

$$w=e,p, m_{r}: \text{ reduced mass}$$
and
$$\mathbf{Fred frame}$$

$$K_{wk10}^{NR,Sun} \cos\vartheta - \sqrt{2} \operatorname{Re} \mathcal{K}_{wk11}^{NR,Sun} \sin\vartheta \cos\omega_{\oplus} T_{\oplus} + \sqrt{2} \operatorname{Im} \mathcal{K}_{wk11}^{NR,Sun} \sin\vartheta \sin\omega_{\oplus} T_{\oplus}$$

• Transformation to sun-c

$$SME \& HFS \qquad \mathcal{H}_{wr} = -\sum_{kjm} |p|^{k} {}_{0}Y_{jm}(\hat{p}) \mathcal{T}_{wjkm}^{NR(0B)},$$

ts of arbitrary mass order
$$\mathcal{H}_{w\pm} = -\sum_{kjm} |p|^{k} {}_{\pm 1}Y_{jm}(\hat{p}) (i\mathcal{T}_{wjkm}^{NR(1E)} \pm \mathcal{T}_{wjkm}^{NR(1B)}),$$

nomentum, k=2q, Y: spin-weighted spherical harmonics, w=e,p

$$2\pi\delta\nu_{\pi} = -\frac{1}{2\sqrt{3\pi}} \sum_{q=0}^{2} (\alpha m_{r})^{2q} (1 + 4\delta_{q2}) \sum_{w} \left[\begin{matrix} \mathsf{CPT odd} \\ g_{w(2q)10} \end{matrix} - \begin{matrix} \mathsf{CPT even} \\ - \begin{matrix} \mathsf{H}_{w(2q)10} \\ w^{(2q)10} \end{matrix} + 2 g_{w(2q)10} \end{matrix} - 2 \begin{matrix} \mathsf{H}_{w(2q)10} \\ \mathsf{H}_{w(2q)10} \\ w^{(2q)10} \end{matrix} - 2 \begin{matrix} \mathsf{H}_{w(2q)10} \\ \mathsf{H}_{w$$

Orientation dependence: unconstrained

$$\begin{split} \Delta(2\pi\nu_{\pi}) &\equiv 2\pi\nu_{\pi}(B) - 2\pi\nu_{\pi}(-B) \\ &= -\frac{\cos\vartheta}{\sqrt{3\pi}} \sum_{q=0}^{2} (\alpha m_{\rm r})^{2q} (1+4\delta_{q2}) \sum_{w} \left[g_{w}^{\rm NR,Sun(0B)} - H_{w}^{\rm NR,Sun(0B)} + 2g_{w}^{\rm NR,Sun(1B)} - 2H_{w}^{\rm NR,Sun(1B)} \right] \end{split}$$

• e.g. inversion of direction of *B* field

E. Widmann DISCRETE 11 Nov 2022

H-beam and non-minimal SME

• π_1 transition

- Better field homogeneity needed
 - Inproved coils, shielding
- SME: effect only in π_1
- Non-minimal SME: direction dependent coefficients accessible by beam experiments
- Conditions
 - Invert direction of B-field data taken
 - Rotate B-field not yet
 - Measure σ_1 (no CPTV) as reference

ASACUSA hydrogen beam line @ CERN

Schematic sketch of the hydrogen beamline:

20K hydrogen beam

Current status of *B***-direction dependence**

- Extensive series of measurements in Jan – Mar 2022
 - Sequence v_{σ} (+**B**), v_{π} (+**B**), v_{σ} (-**B**), v_{π} (-**B**)
- Data still blinded
 - Systematics investigation ongoing
- Current status
 - First estimation Error Δv_{π} (+*B*) – Δv_{π} (–*B*) ~ 210 Hz (1 σ)
 - Current status of analysis Error Δv_{π} (+B) – Δv_{π} (-B) ~ 71 Hz (1 σ) *close to final*

• SME coefficients

$$\Delta(2\pi\nu_{\pi}) \equiv 2\pi\nu_{\pi}(\boldsymbol{B}) - \frac{1}{\sqrt{3\pi}} \sum_{q=0}^{2}$$

 $-2\pi\nu_{\pi}(-\boldsymbol{B})$ $\int_{\Omega} (\alpha m_{\rm r})^{2q} (1+4\delta_{q2}) \sum \left[g_{w}^{\rm NR,Sun(0B)}_{(2q)10} - H_{w}^{\rm NR,Sun(0B)}_{(2q)10} \right]$

 $+2g_{w(2q)10}^{\text{NR,Sun}(1B)} - 2H_{w(2q)10}^{\text{NR,Sun}(1B)}$]

• $\cos \vartheta \sim -0.26$ (angle *B*, earth axis) • q=0, both p,e: $g_{010}^{NR,Sun(0B)} < 6.4x10^{-20} \text{ GeV}$ $< 2.1 \times 10^{-20} \text{ GeV}$ (preliminary) • dto. $g_{010}^{\text{NR,Sun(1B)}}, H_{010}^{\text{NR,Sun(0B)}}, H_{010}^{\text{NR,Sun(1B)}}$

AUSTRIAN CADEMY OF

Prospects

- Current limitation:
 - Low sensitivity of ν_{σ} at low *B* (few Gauss)
 - Improvement: magnetrometry
- Improvement of precision
 - Current H beam (50 K, 1 km/s): ~ Hz
 - Angle *B*, Earth axis: / 3
 - Colder beam (6 K, 250 m/s), $L_{Rabi}=10 \rightarrow 30$ cm: / 10
 - Ramsey-method: / 10+
- Best: gravitational quantum states
 - Reflection by Casimir Polder potential
 - also applicable to \overline{H}
 - *E*~ peV

SMI - STEFAN MEYER INSTITUTE

State Analysis & Detection

 L_{Ramsey}

Fields

AUSTRIAN CADEMY OF SCIENCES

Deuterium HFS and SME

 $\delta \epsilon$

Nafe, J. E. & Nelson, E. B. The hyperfine structure of hydrogen and deuterium. Physical Review 73, 718–728 (1948).

SMI - STEFAN MEYER INSTITUTE

Kostelecký V. A., Vargas A. J. Phys. Rev. D 92, 056002 (2015)

$$(F, m_F) = \frac{1}{\sqrt{5\pi}} \frac{2F - 1}{(8m_F^2 - 10)} \sum_{q=0}^{2} \langle p_{pd}^{2q} \rangle \sum_w \mathcal{V}_{w(2q)20}^{NR}$$
$$- \frac{1}{3\sqrt{6\pi}} \frac{m_f}{2^{F-2}} \sum_{q=0}^{2} \langle p_{pd}^{2q} \rangle$$
$$\times \sum_w (\mathcal{T}_{w(2q)10}^{NR(0B)} + 2\mathcal{T}_{w(2q)10}^{NR(1B)})$$
$$- \frac{m_F}{3\sqrt{3\pi}} \sum_{q=0}^{2} \frac{(\alpha m_r)^{2q}}{2(F-1)} (1 + 4\delta_{q2})$$
$$\times (\mathcal{T}_{e(2q)10}^{NR(0B)} + 2\mathcal{T}_{e(2q)10}^{NR(1B)}), \quad (123)$$

• σ_1 and σ_2 show sidereal variations Enhanced sensitivity of $q = 1 (10^9)$ and 2 (10¹⁸) : relative momentum p,d Also oscillations at twice the sidereal frequency occur *Plan: sit in minimum of* σ_2 *and look for*

siderial variations

AUSTRIAN

SCIENCES

Double split ring resonator

$$\omega_0 = 2\pi f_0 = \left(1 + \frac{A_1}{A_2}\right)^{1/2} \left(\frac{n \cdot th}{\pi w}\right)^{1/2} \frac{c}{r_0} \left(\frac{1 + \frac{\Delta Z}{Z}}{1 + \frac{\Delta w}{w}}\right)^{1/2}$$

$$A_1 = \pi r_0^2$$
 and $A_2 = \pi [R^2 - (r_0 + w)^2]$

M. Mehdizadeh, et. al., Loop-gap resonator: A lumped mode microwaveresonant structure. IEEE Transactions on Microwave Theory and Techniques, 31(12):1059-1064, Dec 1983.

→ Z

-2

-1

SMI - STEFAN MEYER INSTITUTE

mm

Resonator, static B-field, magnetic shielding

E. Widmann DISCRETE 11 Nov 2022

Expected resolution

- H beam
 - T = 50 K, $v \sim 1$ km/s, cavity length d=10 cm:
 - $\Delta v_{\text{FWHM}} \sim 1/\text{TOF} = 10 \text{ kHz}$
- D
 - $m_{\rm D} = 2 \ m_{\rm H} : \ v/\sqrt{2}$
 - $T = 6 \text{ K}^*$ $v/\sqrt{50/6} \sim v/2.9$
 - d = 30 cm v/3
 - $\Delta v_{FWHM} \sim 0.8 \text{ kHz}$
- Start of experiment ~ fall 2022

* Cooper et al. Review of Scientific Instruments 91, 013201 (2020).

- Lineshape simulation
 - optical Bloch equations

ASACUSA

SMI - STEFAN MEYER INSTITUTE

State occupation of High Field Seekers vs. Frequency π 1 transition B₇=3.9 mT, T=6 K v24, o2 – FWHM <u>–</u> 573 Hz 0.308660 0.308665 0.308670 Transition frequency v [GHz]

Summary and outlook

- ELENA@CERN-AD started operation
 - new results on spectroscopy and gravity expected
- In-beam HFS measurement of H
 - H formation rate and temperature being improved
 - First microwave experiment expected in 2023
- H and D beams for testing SME
 - $v_{HFS}(H)$ for different B-field orientations: experiment finished, data analysis ongoing
 - $v_{HFS}(D)$: experiment in preparation

ÖAW

AUSTRIAN ACADEMY OF SCIENCES

The end

AUSTRIAN ACADEMY OF SCIENCES

First observation of H **beam**

- \overline{H} beam observed with 5 σ significance
 - $n \leq 43$ (field ionization)
 - 6 events / 15 min
- significant fraction in lower *n*
 - *n*≲29: 3 σ
 - 4 events / 15 min
 - $\tau \sim few ms$

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

Measuren Double co Events ab (40 MeV) Z-value (p Z-value (r

SMI - STEFAN MEYER INSTITUTE

	Scheme 1	Scheme 2	Background
ment time (s)	4,950	2,100	1,550
oincidence events, N _t	1,149	487	352
ove the threshold			
), N _{>40}	99	29	6
profile likelihood ratio) (σ)	5.0	3.2	—
ratio of Poisson means) (σ)	4.8	3.0	—

n≤43 *n*≤29

Improving the rate of ground-state H

• Increase production rate

Stimulated deexcitation

• Positron temperature, density

Radics, B., Murtagh, D. J., Yamazaki, Y. & Robicheaux, Phys. Rev. A 90, 1–6 (2014).

Wolz, T., Malbrunot, C., Vieille-Grosjean, M. & Comparat, D. Stimulated decay and formation of antihydrogen atoms. Phys. Rev. A 101, 043412 (2020).

• Being studied using excited H* beam

AUSTRIAN

ACADEMY OF SCIENCES

π_1 measurements and zero-field frequency

- Two ways:
 - Extrapolate $\nu_{\sigma,\pi}(B_i)$ for various B_i
 - Measure $\nu_{\sigma}(B_1)$ and $\nu_{\pi}(B_1)$ at same B_1 and solve Breit-Rabi equation for v_0 and B_1

$$\nu_0 = \frac{g_+ \sqrt{g_+^2 \nu_\sigma^2 - 4g_-^2 \nu_\pi^2 + 4g_-^2 \nu_\pi \nu_\sigma} + g_-^2 (2\nu_\pi - \nu_\sigma)}{g_+^2 + g_-^2}$$

$$g_{\pm} = g_I \pm g_J$$

	v ₀ [Hz]	Relative error	$v_0 - v_{\text{lit}} [\text{Hz}]$
σ_1 extrapolation	1 420 405 767(15)	1.04×10^{-8}	15
π_1 extrapolation	1 420 405 760(34)	2.38×10^{-8}	8
Mean value of the two extrapolations	1 420 405 766(14)	9.96×10^{-9}	14
v_{σ} and v_{π} determined at same static magnetic field	1 420 405 753(8)	5.60×10^{-9}	1 8 Hz

First results on B-field direction dependence

- $v_{\pi}(B) v_{\pi}(-B)$ by inverting coil current
- Ensure same B-field: v_{σ}
 - From Breit-Rabi formula

$$\nu_{\sigma} = \sqrt{\nu_0^2 + \left(\frac{\mu_- B}{h}\right)^2} \rightarrow B_{\sigma} = \sqrt{\nu_{\sigma}^2 - \nu_0^2} * \frac{h}{\mu_-}$$

$$\nu_{\pi}^{exp} = \frac{1}{2} \left(\nu_0 + \frac{\mu_+ B_{\sigma}}{h} + \sqrt{\nu_0^2 + \left(\frac{\mu_- B_{\sigma}}{h}\right)^2} \right)$$

•
$$\Delta v_{\pi} = v_{\pi}^{uuv}$$

- - Offset arbitrary
- analysis

ASACUSA

E. Widmann DISCRETE 11 Nov 2022

SMI - STEFAN MEYER INSTITUTE

$v_{\pi}^{data} - v_{\pi}^{expected}$ for B, -B

Current [A] • Test run, issues with frequency reference

• High quality & statistics data under blind

AUSTRIAN ACADEMY OF SCIENCES

Test setup DSRR

