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Unitarity Triangle

Following PDG parametrisation, the UT coordinates are given by:

Rb
γ } determined from decays that proceed only via tree topologies

[M.Z. Barel, K. De Bruyn, R. Fleischer, & E.M. (2020)]
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Strong dependence of value of |Vcb| 
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• We introduce the mass difference and in SM

We obtain the predictions

We compare with experimental values one to two orders of 
magnitude more precise 
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UT apex determination  
through Rb and Rt is more precise 

Rt determined assuming SM ∆md and ∆ms  

ignores possible NP in                 mixing  B0
q − B̄0

q

•NP will contaminate Rt  determination 
•Special case: FUNP 

 

 

 To determine NP in                mixing  
in a general scenario:  UT apex 
determination through Rb and γ 
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SM predictions and 
experimental inputs  

for NP fit in Bs :  
Identical for Scenario I & III  

This is not the case for Bd 

Similarly, comparing  
Scenario I & II: 

Bd and Bs statistically 
compatible but 

don’t look the same 
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Comparing blue contours:  
dependence of the NP searches with B(Bs → μ+μ−) on the CKM matrix element |Vcb| and the UT apex  

with



Determining NP in Bs
0 → μ+μ−  
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We can minimise this dependence, creating the following ratio Rsμ 

NP can modify its branching ratio

(Pseudo-)Scalar B0
s − B̄0

s mixing
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We can minimise this dependence, creating the following ratio Rsμ 

arXiv:hep-ph/0303060 
arXiv:2104.09521  
arXiv:2109.11032 

NP can modify its branching ratio

(Pseudo-)Scalar B0
s − B̄0

s mixing

CKM elements drop out in the SM ratio
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We can minimise this dependence, creating the following ratio Rsμ 

arXiv:hep-ph/0303060 
arXiv:2104.09521  
arXiv:2109.11032 

Including NP effects in both B(Bs → μ+μ−) and ∆ms   we get the generalised expression 

introduces a dependence on the CKM matrix elements through the NP parameters (κs, σs) introduces a dependence on the CKM matrix elements through the NP parameters (κs, σs) 

NP can modify its branching ratio
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s − B̄0

s mixing

CKM elements drop out in the SM ratio
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We can minimise this dependence, creating the following ratio Rsμ 

arXiv:hep-ph/0303060 
arXiv:2104.09521  
arXiv:2109.11032 

Including NP effects in both B(Bs → μ+μ−) and ∆ms   we get the generalised expression 

introduces a dependence on the CKM matrix elements through the NP parameters (κs, σs) 

Comparing with the SM, we obtain extra contours 

introduces a dependence on the CKM matrix elements through the NP parameters (κs, σs) 

NP can modify its branching ratio

(Pseudo-)Scalar B0
s − B̄0

s mixing

CKM elements drop out in the SM ratio



 
      Future Prospects



Improved Precision on κq and σq 
Assuming a hypothetical reduction of 50% in the uncertainty on the 
CKM matrix element |Vcb|, the lattice calculations, or the UT apex: 

Bs-meson system:limited precision on κs and σs 
by lattice uncertainty

impact from improvements on the UT apex is 
negligible (especially for φs) 

NP in the Bs-meson system are highly dependent 
on the assumptions made 

exclusive scenario assuming a 50% improvement 
from lattice appears most exciting

Bd-meson system: improvements in UT apex & lattice: 
equally big impact

NP in the Bd-meson system are highly dependent on 
the assumptions made

inclusive scenario assuming 50% improvement on UT 
apex stands out 

Hints of NP  in                   mixing: less promising than 
the Bs-meson due to small κd we find with current data
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NP in γ 
Averaging over both results would then no longer be justified - UT should be revisited

Independent info from additional observables: necessary to resolve the situation
Exciting new opportunities to search for NP, 
both in γ itself and in                mixing:strongly correlated with the coordinates of the UT apex. B0

q − B̄0
q

Improved precision on the input measurements: discrepancies between the two γ determinations 
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Opportunities for B(Bq → μ+μ−) 
1) Ratio of branching fractions between Bd

0 → μ+μ− and Bs
0 → μ+μ− :alternative way to determine the UT side Rt 

2) Another useful application for the ratio of branching fractions between Bd
0 → μ+μ− and Bs

0 → μ+μ− 
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          Thank you!
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FUNP might not be a correct assumption but
the solutions still overlap within the error margin 
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No tension with SM
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Partial FUNP

SM predictions and experimental inputs for 
NP fit in Bs : are identical for Scenario I & III  
This is not the case for Bd 

Similarly, comparing Scenario I & II: 
Bd and Bs statistically compatible but 
don’t look the same 
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Exclusive Exclusive

Hybrid Hybrid



Improved Precision on κq and σq 
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Assuming a hypothetical reduction of 50% in the uncertainty on the 
CKM matrix element |Vcb|, the lattice calculations, or the UT apex 

Bs-meson system:limited precision on 
κs and σs by lattice uncertainty

impact from improvements on the UT 
apex is negligible (especially for φs) 

NP in the Bs-meson system are highly 
dependent on the assumptions made 

exclusive scenario assuming a 50% 
improvement from lattice appears 
most exciting

Bd-meson system: improvements in 
UT apex & lattice: equally big impact

NP in the Bd-meson system are highly 
dependent on the assumptions made

inclusive scenario assuming 50% 
improvement on UT apex stands out 

Hints of NP in                   mixing: with 
significance of more than 3σ 

less promising than the Bs-meson due 
to small κd we find with current data

B0
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d

Inclusive Inclusive

Exclusive Exclusive

Hybrid Hybrid


