

DISCRETE 2022 Kongresshaus Baden-Baden

Study of New Physics in $B_q^0 - \bar{B}_q^0$ Mixing: Challenges, Prospects and Implications for Leptonic Decays

arXiv:2208.14910

Kristof De Bruyn, Robert Fleischer, E.M., Philine van Vliet

Eleftheria Malami

Theoretical Particle Physics Group

Nikhef UNIVERSITÄT SIEGEN

Wednesday November 9th 2022

Introduction

Neutral Meson Mixing

 ϕ_d and ϕ_s mixing phases

 $|B_q(t)
angle = a(t)|B_q^0
angle + b(t)|\overline{B_q^0}
angle$

Schrödinger equation -> Mass eigenstates

Time-dependent decay rates: characterised by mass difference ΔM_q

Following PDG parametrisation, the UT coordinates are given by:

 $\begin{array}{cc} R_b \ e^{i\gamma} = \bar{\rho} + i\bar{\eta} & \begin{array}{c} R_b \\ \gamma \end{array}$

determined from decays that proceed only via tree topologies

b Utilising γ and R_b

Unitarity Triangle Apex Determination R_{h} **Utilising** and ***** Decay-time-independent $B \rightarrow DK$ sensitivity to $\gamma \rightarrow$ from direct CP violation $\gamma_{B \to DK} = (64.9^{+3.9}_{-4.5})^{\circ}$ assume free from NP ILHCb Collaboration(202 ***** Decay-time-dependent $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ sensitivity to γ from mixing-induced CP violation

b Utilising γ and R_b

	Inclusive	Exclusive	Hybrid
α			
ϕ_d			
$\gamma_{B \to DK}$	$(64.9^{+3.9}_{-4.5})^{\circ}$		
$\gamma_{ m iso}$	$(72.6^{+4.3}_{-4.9})^{\circ}$		
$\gamma_{ m avg}$	$(68.4 \pm 3.3)^{\circ}$		
$ V_{us} $	0	6	
$ V_{ub} \times 10^3$	4.19 ± 0.17	3.51 ± 0.12	3.51 ± 0.12
$ V_{cb} \times 10^3$	42.16 ± 0.50	39.10 ± 0.50	42.16 ± 0.50
R_b	0.434 ± 0.018	0.392 ± 0.014	0.364 ± 0.013
$\bar{ ho}$	0.160 ± 0.025	0.144 ± 0.022	0.134 ± 0.021
$ $ $ar\eta$	0.404 ± 0.022	0.365 ± 0.018	0.338 ± 0.017
			Nexton Control of Cont

Utilising γ and R_b

	Inclusive	Exclusive	Hybrid
α			
ϕ_d	$(44.4^{+1.6}_{-1.5})^{\circ}$		
$\gamma_{B \to DK}$	$(64.9^{+3.9}_{-4.5})^{\circ}$		
$\gamma_{ m iso}$	$(72.6^{+4.3}_{-4.9})^{\circ}$		
$\gamma_{ m avg}$	$(68.4 \pm 3.3)^{\circ}$		
$ V_{us} $	0.22309 ± 0.00056		
$ V_{ub} \times 10^3$	4.19 ± 0.17	3.51 ± 0.12	3.51 ± 0.12
$ V_{cb} \times 10^3$	42.16 ± 0.50	39.10 ± 0.50	42.16 ± 0.50
$\ $ R_b	0.434 ± 0.018	0.392 ± 0.014	0.364 ± 0.013
$\bar{ ho}$	0.160 ± 0.025	0.144 ± 0.022	0.134 ± 0.021
$\bar{\eta}$	0.404 ± 0.022	0.365 ± 0.018	0.338 ± 0.017

arXiv:1911.06822

$$|\varepsilon_K| = \frac{G_F^2 m_W^2 m_K f_K^2}{6\sqrt{2}\pi^2 \Delta m_K} \kappa_{\varepsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt}^{\text{EW}} \eta_{tt} \mathcal{S}(x_t) - \eta_{ut} \mathcal{S}(x_c, x_t) \right]$$

b Utilising γ and R_b

	Inclusive	Exclusive	Hybrid
α			
ϕ_d			
$\gamma_{B \to DK}$	$ \begin{array}{c} (64.9^{+3.9}_{-4.5})^{\circ} \\ (72.6^{+4.3}_{-4.9})^{\circ} \\ (68.4 \pm 3.3)^{\circ} \\ 0.22309 \pm 0.00056 \end{array} $		
$\gamma_{ m iso}$			
$\gamma_{ m avg}$			
$ V_{us} $			
$ V_{ub} \times 10^3$	4.19 ± 0.17	3.51 ± 0.12	3.51 ± 0.12
$ V_{cb} \times 10^3$	42.16 ± 0.50	39.10 ± 0.50	42.16 ± 0.50
R_b	0.434 ± 0.018	0.392 ± 0.014	0.364 ± 0.013
$\bar{ ho}$	0.160 ± 0.025	0.144 ± 0.022	0.134 ± 0.021
$\ $ $ar{\eta}$	0.404 ± 0.022	0.365 ± 0.018	0.338 ± 0.017

Strong dependence of value of |V_{cb}|

 $|\varepsilon_K| =$

 $\eta_{ut} \mathcal{S}(x_c, x_t)]$

In the future: it could help to understand the inclusive-exclusive puzzle, if NP in kaon can be controlled/ignored

SM expressions for the Mixing Parameters

The SM expression of φ _s			
$\phi^{ m SM}_s = -2\delta\gamma$ =	$= -2\lambda^2 \bar{\eta} + \mathcal{O}(\lambda^4)$	Dependence on UT apex: doubly Cabibbo- suppressed	
Incl, $K\ell 3$	$\phi_s^{ m SM} = (-2.30 \pm 0.1)$	13)°	
Excl, $K\ell 3$	$\phi_s^{ m SM} = (-2.08 \pm 0.1)$	10)°	

 $\phi_s^{
m SM} = (-1.93 \pm 0.10)^{\circ}$

The SM prediction of ϕ	The SM	ction of φ
-----------------------------	---------------	-------------------

$$\phi_d^{\text{SM}} = 2\beta = 2\arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) = 2\tan^{-1}\left(\frac{\bar{\eta}}{1-\bar{\rho}}\right)$$

Incl, $K\ell 3$	$\phi_d^{\rm SM} = (51.4 \pm 2.8)^{\circ}$
Excl, $K\ell 3$	$\phi_d^{ m SM} = (46.2 \pm 2.3)^{\circ}$
Hybrid, $K\ell 3$	$\phi_d^{\rm SM} = (42.6 \pm 2.2)^{\circ}$

Global fit of UT $\phi_s^{\text{SM}} = (-2.110^{+0.049}_{-0.034})^{\circ}$ rely on info from neutral B mixing without accounting for possible NP contributions

Hybrid, $K\ell 3$

SM expressions for the Mixing Parameters

The SM prediction of ϕ_d	The SM expression of φ _s	
$\phi_d^{\rm SM} = 2\beta = 2\arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) = 2\tan^{-1}\left(\frac{\bar{\eta}}{1-\bar{\rho}}\right)$	$\phi^{ m SM}_s=-2\delta\gamma=-2\lambda^2ar\eta+\mathcal{O}(\lambda^4)$	
Incl, $K\ell 3$ $\phi_d^{\text{SM}} = (51.4 \pm 2.8)^{\circ}$ Excl, $K\ell 3$ $\phi_d^{\text{SM}} = (46.2 \pm 2.3)^{\circ}$ Hybrid, $K\ell 3$ $\phi_d^{\text{SM}} = (42.6 \pm 2.2)^{\circ}$	Incl, $K\ell 3$ $\phi_s^{\text{SM}} = (-2.30 \pm 0.13)^\circ$ Excl, $K\ell 3$ $\phi_s^{\text{SM}} = (-2.08 \pm 0.10)^\circ$ Hybrid, $K\ell 3$ $\phi_s^{\text{SM}} = (-1.93 \pm 0.10)^\circ$	
	Global fit of UT $\phi_s^{\text{SM}} = (-2.110^{+0.049}_{-0.034})^\circ$ rely on info from neutral B mixing without accounting for possible NP contributions	
We introduce the mass difference $\Delta m_q = 2$	$M_{12}^{q} + \mathcal{O}\left(\left \frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right ^{2}\right) \text{ and in SM } \left[M_{12}^{q} _{\mathrm{SM}} - \frac{G_{\mathrm{F}}^{2}m_{W}^{2}}{12\pi^{2}}m_{B_{q}} V_{tq}V_{tb} ^{2} S_{0}(x_{t}) \eta_{2B}\hat{B}_{B_{q}}f_{B_{q}}^{2}\right]$	
We obtain the predictionsIncl, Kl3Excl, Kl3Hybrid, Kl3	$\begin{split} \Delta m_d^{\rm SM} &= (0.513 \pm 0.040) \ {\rm ps}^{-1} , \Delta m_s^{\rm SM} = (17.23 \pm 0.87) \ {\rm ps}^{-1} \\ \Delta m_d^{\rm SM} &= (0.439 \pm 0.033) \ {\rm ps}^{-1} , \Delta m_s^{\rm SM} = (14.80 \pm 0.76) \ {\rm ps}^{-1} \\ \Delta m_d^{\rm SM} &= (0.510 \pm 0.037) \ {\rm ps}^{-1} , \Delta m_s^{\rm SM} = (17.19 \pm 0.87) \ {\rm ps}^{-1} \end{split}$	

We compare with experimental values $\Delta m_d = (0.5065 \pm 0.0019) \text{ ps}^{-1}$

one to two orders of magnitude more precise

 $\Delta m_s = (17.7656 \pm 0.0057) \text{ ps}^{-1}$

Unitarity Triangle Apex Determination
▶ Utilising Mixing and R_b - without γ

New Physics in $B_q^0 - \bar{B}_q^0$ Mixing

$$\Delta m_q = \Delta m_q^{\rm SM} \left(1 + \kappa_q e^{i\sigma_q} \right)$$

$$\phi_q = \phi_q^{\mathrm{SM}} + \phi_q^{\mathrm{NP}} = \phi_q^{\mathrm{SM}} + \mathrm{arg}\left(1 + \kappa_q e^{i\sigma_q}\right)$$

Model independent parametrization

$$\Delta m_q = \Delta m_q^{\rm SM} \left(1 + \kappa_q e^{i\sigma_q} \right)$$

$$\phi_{q} = \phi_{q}^{\mathrm{SM}} + \phi_{q}^{\mathrm{NP}} = \phi_{q}^{\mathrm{SM}} + \arg\left(1 + \kappa_{q}e^{i\sigma_{q}}\right)$$

Model independent parametrization

size of the NP effects is described by κ_q

 σ_q is a complex phase for additional CP-violating effects

We explore 3 different NP scenarios

$$\Delta m_q = \Delta m_q^{\rm SM} (1 + \kappa_q e^{i\sigma_q})$$

$$\phi_q = \phi_q^{\rm SM} + \phi_q^{\rm NP} = \phi_q^{\rm SM} + \arg (1 + \kappa_q e^{i\sigma_q})$$
Model independent parametrization
$$We explore 3 different NP scenarios$$
Scenario I most general case
$$utilise UT apex determination for the SM predictions of \Delta m_q and \phi_q$$

$$\downarrow$$
NP parameters (κ_d, σ_d) and (κ_s, σ_s) independently from each other

8

less strong assumption than full FUNP

Applications for Leptonic Rare Decays

Determining NP in $B_{s^{0}} \rightarrow \mu^{+}\mu^{-}$

NP can modify its branching ratio

(Pseudo-)Scalar

$$B_s^0 - \bar{B}_s^0$$
 mixing

The measured branching ratio:

$$\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = \bar{\mathcal{B}}(B_s \to \mu^+ \mu^-)^{\rm SM} \times \frac{1 + \mathcal{A}_{\Delta\Gamma_s}^{\mu\mu} y_s}{1 + y_s} \left(|P_{\mu\mu}^s|^2 + |S_{\mu\mu}^s|^2 \right)$$

$$\mathcal{A}_{\Delta\Gamma_{s}}^{\mu\mu} \text{ depends on } P_{\mu\mu}^{s} \equiv |P_{\mu\mu}^{s}|e^{i\varphi_{P}}, S_{\mu\mu}^{s} \equiv |S_{\mu\mu}^{s}|e^{i\varphi_{S}} \text{ and } \phi_{s}^{\text{NP}}$$

$$\mathcal{A}_{\Delta\Gamma}^{\mu\mu} = \frac{|P_{\mu\mu}^{s}|^{2}\cos(2\varphi_{P} - \phi_{s}^{\text{NP}}) - |S_{\mu\mu}^{s}|^{2}\cos(2\varphi_{S} - \phi_{s}^{\text{NP}})}{|P_{\mu\mu}^{s}|^{2} + |S_{\mu\mu}^{s}|^{2}}$$

$$In SM$$

$$P_{\mu\mu}^{s,SM} = 1$$

$$S_{\mu\mu}^{s,SM} = 0$$

Determining NP in $B_{s^{0}} \rightarrow \mu^{+}\mu^{-}$

The measured branching ratio:

$$\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = \bar{\mathcal{B}}(B_s \to \mu^+ \mu^-)^{\text{SM}} \times \frac{1 + \mathcal{A}_{\Delta\Gamma_s}^{\mu\mu} y_s}{1 + y_s} \left(|P_{\mu\mu}^s|^2 + |S_{\mu\mu}^s|^2 \right)$$

NP can modify its branching ratio

(Pseudo-)Scalar

$$B_s^0 - \bar{B}_s^0$$
 mixing

$$\mathcal{A}_{\Delta\Gamma_s}^{\mu\mu} \text{ depends on } P_{\mu\mu}^s \equiv |P_{\mu\mu}^s| e^{i\varphi_P}, \ S_{\mu\mu}^s \equiv |S_{\mu\mu}^s| e^{i\varphi_S} \text{ and } \phi_s^{\text{NP}}$$

$$\mathcal{A}_{\Delta\Gamma}^{\mu\mu} = \frac{|P_{\mu\mu}^s|^2 \cos(2\varphi_P - \phi_s^{\text{NP}}) - |S_{\mu\mu}^s|^2 \cos(2\varphi_S - \phi_s^{\text{NP}})}{|P_{\mu\mu}^s|^2 + |S_{\mu\mu}^s|^2} \qquad \begin{array}{l} \text{In SM} \\ P_{\mu\mu}^{s,\text{SM}} = 1 \\ S_{\mu\mu}^{s,\text{SM}} = 0 \end{array}$$

ComparingIncl, $K\ell 3$ $\bar{\mathcal{B}}(B_s \to \mu^+\mu^-) = (3.81 \pm 0.11) \times 10^{-9}$,
Excl, $K\ell 3$ $\bar{\mathcal{B}}(B_s \to \mu^+\mu^-) = (3.27 \pm 0.10) \times 10^{-9}$,
Hybrid, $K\ell 3$ $\bar{\mathcal{B}}(B_s \to \mu^+\mu^-) = (3.80 \pm 0.10) \times 10^{-9}$.with $\bar{\mathcal{B}}(B_s \to \mu^+\mu^-) = (2.85^{+0.34}_{-0.31}) \times 10^{-9}$

We constrain the parameters |P^s| and |S^s| arXiv:1204.1737

Here we assume NP phases for the pseudo-scalar and scalar contributions are zero $\varphi_P = \varphi_S = 0$

Determining NP in $B_{s^{0}} \rightarrow \mu^{+}\mu^{-}$

NP can modify its branching ratio

(Pseudo-)Scalar

$$B_s^0 - \bar{B}_s^0$$
 mixing

The measured branching ratio:

Incl., $K\ell 3$

Excl, $K\ell 3$

Hybrid, $K\ell 3$

Comparing

with

$$\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = \bar{\mathcal{B}}(B_s \to \mu^+ \mu^-)^{\mathrm{SM}} \times \frac{1 + \mathcal{A}^{\mu\mu}_{\Delta\Gamma_s} y_s}{1 + y_s} \left(|P^s_{\mu\mu}|^2 + |S^s_{\mu\mu}|^2 \right)$$

 $\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = (2.85^{+0.34}_{-0.31}) \times 10^{-9}$

 $\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = (3.81 \pm 0.11) \times 10^{-9}$

 $\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = (3.27 \pm 0.10) \times 10^{-9}$

 $\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = (3.80 \pm 0.10) \times 10^{-9}$.

We constrain the parameters |P^s| and |S^s| arXiv:1204.1737

Here we assume NP phases for the pseudo-scalar and scalar contributions are zero $\varphi_P = \varphi_S = 0$

Comparing blue contours:

dependence of the NP searches with $B(B_s \rightarrow \mu \mu)$ on the CKM matrix element $|V_{cb}|$ and the UT apex

Determining NP in B_s⁰ $\rightarrow \mu^+\mu^-$

NP can modify its branching ratio

(Pseudo-)Scalar

We can minimise this dependence, creating the following ratio $R_{s\mu}$

Determining NP in B^o $\rightarrow \mu^{+}\mu^{-}$

arXiv:hep-ph/0303060 arXiv:2104.09521 arXiv:2109.11032

$$\mathcal{R}_{s\mu} \equiv \left| \frac{\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-)}{\Delta m_s} \right|$$

NP can modify its branching ratio

(Pseudo-)Scalar

 $B_s^0 - \bar{B}_s^0$ mixing

CKM elements drop out in the SM ratio

We can minimise this dependence, creating the following ratio R_{sµ}

Including NP effects in both B(B_s $\rightarrow \mu^{+}\mu^{-}$) and Δm_{s} we get the generalised expression

$$\mathcal{R}_{s\mu} = \mathcal{R}_{s\mu}^{\mathrm{SM}} \times \frac{1 + \mathcal{A}_{\Delta\Gamma_s}^{\mu\mu} y_s}{1 + y_s} \frac{|P_{\mu\mu}^s|^2 + |S_{\mu\mu}^s|^2}{\sqrt{1 + 2\kappa_s \cos \sigma_s + \kappa_s^2}} \,.$$

$$\mathcal{R}_{s\mu}^{\rm SM} = \frac{\tau_{B_s}}{1 - y_s} \frac{3G_{\rm F}^2 m_W^2 \sin^4 \theta_W}{4\pi^3} \frac{|C_{10}^{\rm SM}|^2}{S_0(x_t)\eta_{2B} \hat{B}_{B_s}} m_\mu^2 \sqrt{1 - 4\frac{m_\mu^2}{m_{B_s}^2}}$$

introduces a dependence on the CKM matrix elements through the NP parameters ($\varkappa_{S}, \sigma_{S}$)

We can minimise this dependence, creating the following ratio R_{sµ}

 $A_{A\Gamma} = +0.9$

1.2

1.4

IP^suu

0.2

0.2 0.4 0.6 0.8

Hybrid

 $A_{\Delta\Gamma} = +0.9$

1.2

1.4

 $|\mathbf{P}_{\mu\mu}^{s}|$

We can minimise this dependence, creating the following ratio R_{sµ}

0.2

0.2 0.4 0.6 0.8

Exclusive

 $A_{AF} = +0.9$

1.2

1.4

 $P^{s}_{\mu\mu}$

0.2

0.2 0.4 0.6 0.8

Inclusive

Future Prospects

*Improved Precision on \varkappa_q and σ_q

 B_s -meson system:limited precision on \varkappa_s and σ_s by lattice uncertainty

impact from improvements on the UT apex is negligible (especially for $\varphi_{S})$

NP in the B_s-meson system are highly dependent on the assumptions made

exclusive scenario assuming a 50% improvement from lattice appears most exciting Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element $|V_{cb}|$, the lattice calculations, or the UT apex:

B_d-meson system: improvements in UT apex & lattice: equally big impact

NP in the B_d-meson system are highly dependent on the assumptions made

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: less promising than the B_s-meson due to small \varkappa_d we find with current data

*Improved Precision on \varkappa_{q} and σ_{q}

 B_s -meson system: limited precision on \varkappa_s and σ_s by lattice uncertainty

impact from improvements on the UT apex is negligible (especially for $\varphi_S)$

NP in the B_s-meson system are highly dependent on the assumptions made

exclusive scenario assuming a 50% improvement from lattice appears most exciting Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element $|V_{cb}|$, the lattice calculations, or the UT apex:

B_d-meson system: improvements in UT apex & lattice: equally big impact

NP in the B_d-meson system are highly dependent on the assumptions made

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: less promising than the B_s-meson due to small \varkappa_d we find with current data

*NP in γ Improved precision on the input measurements: <u>discrepancies</u> between the two γ determinations Averaging over both results would then no longer be justified - UT should be revisited

> Independent info from additional observables: necessary to resolve the situation Exciting new opportunities to search for NP, both in γ itself and in $B_a^0 - \bar{B}_a^0$ mixing:strongly correlated with the coordinates of the UT apex.

***Improved Precision on** *κ*_q **and** *σ*_q

B _s -meson system:limited	precision	on \varkappa_s	and σ_s
by lattice uncertainty			

impact from improvements on the UT apex is negligible (especially for $\varphi_S)$

NP in the B_s-meson system are highly dependent on the assumptions made

exclusive scenario assuming a 50% improvement from lattice appears most exciting Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element $|V_{cb}|$, the lattice calculations, or the UT apex:

B_d-meson system: improvements in UT apex & lattice: equally big impact

NP in the B_d-meson system are highly dependent on the assumptions made

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: less promising than the B_s-meson due to small \varkappa_d we find with current data

*NP in γ Improved precision on the input measurements: <u>discrepancies</u> between the two γ determinations Averaging over both results would then no longer be justified - UT should be revisited

> Independent info from additional observables: necessary to resolve the situation Exciting new opportunities to search for NP, both in γ itself and in $B_a^0 - \bar{B}_a^0$ mixing:strongly correlated with the coordinates of the UT apex.

***Opportunities for B**($B_q \rightarrow \mu^+\mu^-$)

1) Ratio of branching fractions between $B_d^0 \rightarrow \mu^+\mu^-$ and $B_s^0 \rightarrow \mu^+\mu^-$: alternative way to determine the UT side R_t

2) Another useful application for the ratio of branching fractions between $B_d^0 \rightarrow \mu^+\mu^-$ and $B_s^0 \rightarrow \mu^+\mu^-$

*Improved Precision on \varkappa_{q} and σ_{q}

 B_s -meson system: limited precision on \varkappa_s and σ_s by lattice uncertainty

impact from improvements on the UT apex is negligible (especially for $\varphi_S)$

NP in the B_s-meson system are highly dependent on the assumptions made

exclusive scenario assuming a 50% improvement from lattice appears most exciting

Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element $|V_{cb}|$, the lattice calculations, or the UT apex:

B_d-meson system: improvements in UT apex & lattice: equally big impact

NP in the B_d-meson system are highly dependent on the assumptions made

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: less promising than the B_s-meson due to small \varkappa_d we find with current data

*NP in γ Improved precision on the input measurements: <u>discrepancies</u> between the two γ determinations Averaging over both results would then no longer be justified - UT should be revisited

> **Independent info from additional observables: necessary to resolve the situation Exciting new opportunities to search for NP,**

both in γ itself and in $B_q^0 - \bar{B}_q^0$ mixing:strongly correlated with the coordinates of the UT apex.

***Opportunities for B**($B_q \rightarrow \mu^+\mu^-$)

1) Ratio of branching fractions between $B_d^0 \rightarrow \mu^+\mu^-$

2) Another useful application for the ratio of bran

$$\begin{split} U_{\mu\mu}^{ds} &\equiv \sqrt{\frac{|P_{\mu\mu}^{d}|^{2} + |S_{\mu\mu}^{d}|^{2}}{|P_{\mu\mu}^{s}|^{2} + |S_{\mu\mu}^{s}|^{2}}}, \\ & \text{more powerful test of the SM, where } U_{\mu\mu}^{ds} = 1 \\ & = \left[\frac{\tau_{B_{s}}}{\tau_{B_{d}}} \frac{1 - y_{d}^{2}}{1 - y_{s}^{2}} \frac{1 + \mathcal{A}_{\Delta\Gamma}^{d} y_{d}}{1 + \mathcal{A}_{\Delta\Gamma}^{s} y_{s}} \frac{\sqrt{m_{B_{s}}^{2} - 4m_{\mu}^{2}}}{\sqrt{m_{B_{d}}^{2} - 4m_{\mu}^{2}}} \left(\frac{f_{B_{s}}}{f_{B_{d}}}\right)^{2} \left|\frac{V_{ts}}{V_{td}}\right|^{2} \frac{\bar{\mathcal{B}}(B_{d} \to \mu^{+}\mu^{-})}{\bar{\mathcal{B}}(B_{s} \to \mu^{+}\mu^{-})}\right]^{1/2}. \end{split}$$

Thank you!

Backup Slides

Improved Precision on \varkappa_{q} and \sigma_{q}

° 0.5

0.3

0.2

0.1

0₀

° 0.5 ₩

0.4

0.3

0.2

0.1

Current Precision

100

50

ت 0.5 r contours hold 39%, 87% CL Current Precision Incl. R_b & |V₁₁₅| from K13 • 50% Improvement from Lattice 0.4 • 50% Improvement from UT Apex 0.3 0.2 0.1 200 250 300 50 100 150 350 $\sigma_{d}[\circ]$ Inclusive ₽ 0.5 ∠ contours hold 39%, 87% CL Current Precision Excl. R_b & |V_{us}| from K13 • 50% Improvement from Lattice 0.4 50% Improvement from UT Apex 0.3 0.2 0.1 50 100 150 200 250 300 350 σ_{d} [°] **Exclusive** .5.0 ح contours hold 39%, 87% CL Current Precision Hybrid R. & IV₁₁₅I from K13 • 50% Improvement from Lattice 0.4 • 50% Improvement from UT Apex 0.3

0.2

0.1

0,

50

ی بع 0.5 • 50% Improvement from IV 0.4 • 50% Improvement from Lattice 0.3 0.2 0.1 0<u>`</u> 200 250 300 350 100 150 σ_{d} [°] **Hybrid**

Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element $|V_{cb}|$, the lattice calculations, or the UT apex contours hold 39%, 87% CL Current Precision Incl. R_b & |V₁₁₅| from K13 0.4 - 50% Improvement from |V, | 50% Improvement from Lattice **B**_s-meson system:limited precision on \varkappa_{s} and σ_{s} by lattice uncertainty impact from improvements on the UT apex is negligible (especially for ϕ_s) NP in the B_s-meson system are highly 150 200 250 300 350 50 100 $\sigma_{\rm s}[^{\circ}]$ Inclusive dependent on the assumptions made exclusive scenario assuming a 50% improvement from lattice appears contours hold 39%, 87% CL Current Precision Excl. R_b & |V₁₁₅| from K13 most exciting 50% Improvement from IV , I 50% Improvement from Lattice **B**_d-meson system: improvements in 100 150 200 250 300 350 50 UT apex & lattice: equally big impact $\sigma_{s}[\circ]$ **Exclusive**

contours hold 39%, 87% CL

Hybrid R. & IV_{us}I from K13

300

350

 $\sigma_{\rm s}$ [°]

250

200

150

Hybrid

NP in the B_d-meson system are highly dependent on the assumptions made

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: with significance of more than 3σ

less promising than the B_s-meson due to small zd we find with current data