

DISCRETE 2022 Kongresshaus Baden-Baden

Study of New Physics in $B_q^0 - \bar{B}_q^0$ Mixing **Challenges, Prospects and Implications for Leptonic Decays**

[arXiv:2208.14910](https://arxiv.org/abs/2208.14910)

Kristof De Bruyn, Robert Fleischer, E.M., Philine van Vliet

Eleftheria Malami

Theoretical Particle Physics Group

Nikhef WUNIVERSITÄT

Wednesday November 9th 2022

Introduction

Neutral Meson Mixing

 $\overline{\phi_d}$ and $\overline{\phi_s}$ mixing phases

 $|B_q(t)\rangle = a(t)|B^0_q\rangle + b(t)|\overline{B^0_q}\rangle.$

Schrödinger equation \rightarrow **Mass eigenstates**

Time-dependent decay rates: characterised by $\overline{\textbf{mass}}$ difference $\overline{\Delta M}_q$

Following PDG parametrisation, the UT coordinates are given by:

 $\boxed{R_b\ e^{i\gamma}=\bar{\rho}+i\bar{\eta}}\hspace{1cm} \begin{array}{c} R_b \ \gamma \end{array}$

^γ} **determined from decays that proceed only via tree topologies**

 \triangleright **Utilising** γ and R_b

Unitarity Triangle Apex Determination \triangleright Utilising γ and R_b *** Decay-time-independent** $B \rightarrow DK$ sensitivity to γ \rightarrow from direct CP violation $\left[\gamma_{B\rightarrow DK}=(64.9^{+3.9}_{-4.5})^\circ\right]$ assume ${\rm free}$ from ${\rm NP}$ **[LHCb Collaboration(2021)]** Decay-time-dependent $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ Through interference effects with the $B_s^0 - \bar{B}_s^0$ mixing **the CP asymmetry parameters allow determination of** *ϕ^s* + *γ* **Theoretically clean**sensitivity to γ from mixing-induced CP violation

Unitarity Triangle Apex Determination \triangleright Utilising γ and R_b *** Decay-time-independent** $B \rightarrow DK$ sensitivity to $\gamma \rightarrow$ from direct CP violation $\left[\gamma_{B\to DK}=(64.9^{+3.9}_{-4.5})^\circ\right]$ assume ${\rm free}$ from ${\rm NP}$ **[LHCb Collaboration(2021)]** Decay-time-dependent $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ Through interference effects with the $B_s^0 - \bar{B}_s^0$ mixing **the CP asymmetry parameters allow determination of [M.Z. Barel,** $\left[\begin{array}{c} \phi_s + \gamma \end{array}\right]$ Theoretically $\left| \frac{(-4.2 \pm 1.4)^{\circ}}{2} \right|$ **K. De Bruyn, R. Fleischer, clean & E.M. (2020)]** *determined with* $B_s^0 \rightarrow J/\psi \phi$ sensitivity to γ **•** penguin effects included from mixing-induced CP violation **[R. Fleischer and E.M. (2021)]**

Unitarity Triangle Apex Determination $▶$ **Utilising** γ **and** R_b *** Decay-time-independent** $B \rightarrow DK$ sensitivity to $\gamma \rightarrow$ from direct CP violation $\gamma_{B\to DK} = (64.9^{+3.9}_{-4.5})^\circ$ assume ${\rm free}$ from ${\rm NP}$ **[LHCb Collaboration(2021)]** Decay-time-dependent $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ Through interference effects with the $B_s^0 - \bar{B}_s^0$ mixing **the CP asymmetry parameters allow determination of [M.Z. Barel,** $\left[\begin{array}{c} \phi_s + \gamma \end{array} \right]$ Theoretically $\left| \frac{\left(-4.2 \pm 1.4 \right)^{\circ}}{\left(-4.2 \pm 1.4 \right)^{\circ}} \right|$ **K. De Bruyn, R. Fleischer, clean & E.M. (2020)]** $\frac{1}{2}$ determined with $B_s^0 \rightarrow J/\psi \phi$ sensitivity to γ **•** penguin effects included from mixing-induced CP violation **[R. Fleischer and E.M. (2021)]** $\gamma_{B_s \to D_s K} = (131^{+17}_{-22})^{\circ}$

Unitarity Triangle Apex Determination $▶$ **Utilising** γ **and** R_b **Decay-time-independent** *B* → *DK* sensitivity to $\gamma \rightarrow$ from direct CP violation $\left[\gamma_{B\to DK}=(64.9^{+3.9}_{-4.5})^\circ\right]$ assume ${\rm free}~{\rm from}~{\rm NP}$ **[LHCb Collaboration(2021)]** Decay-time-dependent $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ Through interference effects with the $B_s^0 - \bar{B}_s^0$ mixing **the CP asymmetry parameters allow determination of [M.Z. Barel,** $\left[\begin{array}{c} \phi_s + \gamma \end{array}\right]$ Theoretically $\left| \frac{1}{(-4.2 \pm 1.4)^{\circ}} \right|$ **K. De Bruyn, R. Fleischer, clean & E.M. (2020)]** *b* **determined with** $B_s^0 \rightarrow J/\psi \phi$ sensitivity to γ **•** penguin effects included from mixing-induced CP violation **[R. Fleischer and E.M. (2021)]** $\gamma_{B_s \to D_s K} = (131^{+17}_{-22})^{\circ}$ ***** Isospin analysis of $B \to \pi \pi$, $\rho \pi$, $\rho \rho$

Unitarity Triangle Apex Determination $▶$ **Utilising** γ **and** R_b *** Decay-time-independent** $B \rightarrow DK$ sensitivity to $\gamma \rightarrow$ from direct CP violation $\left[\gamma_{B\to DK}=(64.9^{+3.9}_{-4.5})^\circ\right]$ assume ${\rm free}$ from ${\rm NP}$ **[LHCb Collaboration(2021)]** Decay-time-dependent $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ Through interference effects with the $B_s^0 - \bar{B}_s^0$ mixing **the CP asymmetry parameters allow determination of [M.Z. Barel,** $\left[\phi_s + \gamma\right]$ Theoretically $\left| \frac{\text{minmax}}{\left(-4.2 \pm 1.4\right)^{\circ}} \right|$ **K. De Bruyn, R. Fleischer, clean & E.M. (2020)]** *determined with* $B_s^0 \rightarrow J/\psi \phi$ sensitivity to γ **•** penguin effects included from mixing-induced CP violation **[R. Fleischer and E.M. (2021)]** $\gamma_{B_s \to D_s K} = (131^{+17}_{-22})^{\circ}$ ***** Isospin analysis of $B \to \pi \pi$, $\rho \pi$, $\rho \rho$ **irel, K. De Bruyn R. Fleischer, & E.M. (2020)]** $\phi_d = \left(44.4^{+1.6}_{-1.5}\right)$ **penguin e ects**

included

Unitarity Triangle Apex Determination \triangleright Utilising γ and R_h *** Decay-time-independent** $B \rightarrow DK$ sensitivity to $\gamma \rightarrow$ from direct CP violation $\left[\gamma_{B\to DK}=(64.9^{+3.9}_{-4.5})^\circ\right]$ assume $% \left\vert \left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{1}\right) \right\rangle$ free from NP **[LHCb Collaboration(2021)]** Decay-time-dependent $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ Through interference effects with the $B_s^0 - \bar{B}_s^0$ mixing **the CP asymmetry parameters allow determination of [M.Z. Barel,** $\oint_{\mathbb{R}^{(n-4.2\pm 1.4)^{\circ}}} \left\{ \phi_s + \gamma \right\}$ Theoretically clean **K. De Bruyn, R. Fleischer, clean & E.M. (2020)]** *determined with* $B_s^0 \rightarrow J/\psi \phi$ sensitivity to γ **•** penguin effects included from mixing-induced CP violation **[R. Fleischer and E.M. (2021)]** $\gamma_{B_s \to D_s K} = (131^{+17}_{-22})^{\circ}$ ***** Isospin analysis of $B \to \pi \pi$, $\rho \pi$, $\rho \rho$ **[M.Z. Barel, K. De Bruyn, R. Fleischer, & E.M. (2020)] possible NP at the amplitudes through penguin and penguin and penguin pengu**

included

Unitarity Triangle Apex Determination \triangleright Utilising γ and R_h *** Decay-time-independent** $B \rightarrow DK$ sensitivity to $\gamma \rightarrow$ from direct CP violation $\left[\gamma_{B\to DK}=(64.9^{+3.9}_{-4.5})^\circ\right]$ assume $% \left\vert \left\langle \left\langle \cdot ,\cdot \right\rangle \right\rangle \left\langle \left\langle \cdot ,\cdot \right\rangle \left\langle \cdot \$ **[LHCb Collaboration(2021)]** Decay-time-dependent $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ Through interference effects with the $B_s^0 - \bar{B}_s^0$ mixing **the CP asymmetry parameters allow determination of [M.Z. Barel,** $\oint_{\mathbb{R}^{(1,2,3)} \times \mathbb{R}^{(2)}} \frac{\phi_s + \gamma}{\text{clean}}$ Theoretically **K. De Bruyn, R. Fleischer, clean & E.M. (2020)]** *determined with* $B_s^0 \rightarrow J/\psi \phi$ sensitivity to γ **•** penguin effects included from mixing-induced CP violation **[R. Fleischer and E.M. (2021)]** $\gamma_{B_s \to D_s K} = (131^{+17}_{-22})^{\circ}$ ***** Isospin analysis of $B \to \pi \pi$, $\rho \pi$, $\rho \rho$ rel, K. De Bruyn **R. Fleischer, & E.M. (2020)] possible NP at possible NP at the amplitudes through penguin and penguin and penguin pengu included** $\gamma_{\mathrm{avg}} = (68.4 \pm 3.4)^{\circ}$

Average

 \triangleright Utilising γ and R_b

 \triangleright **Utilising** γ and R_b

arXiv:1911.06822

$$
|\varepsilon_K| = \frac{G_{\rm F}^2 m_W^2 m_K f_K^2}{6\sqrt{2}\pi^2 \Delta m_K} \kappa_{\varepsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta^{\rm EW}_{tt} \eta_{tt} \mathcal{S}(x_t) - \eta_{ut} \mathcal{S}(x_c, x_t) \right]
$$

 \triangleright **Utilising** γ and R_b

Strong dependence of value of $|V_{cb}|$

 $|\varepsilon_K| =$

 $\eta_{ut} \mathcal{S}(x_c, x_t)$

arXiv:1911.06822

In the future: it could help to understand the inclusive-exclusive puzzle, if NP in kaon can be controlled/ignored

SM expressions for the Mixing Parameters

The SM prediction of ϕ_d

$$
\phi_d^{\text{SM}} = 2\beta = 2\text{arg}\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) = 2\tan^{-1}\left(\frac{\bar{\eta}}{1-\bar{\rho}}\right)
$$

Global fit of UT $\left[\phi_s^{\text{SM}}\right] = \left(-2.110^{+0.049}_{-0.034}\right)^\circ$ rely on info from neutral **B mixing without accounting for possible NP contributions**

Hybrid, $K\ell 3$

SM expressions for the Mixing Parameters

We compare with experimental values $\boxed{\Delta m_d = (0.5065 \pm 0.0019) \text{ ps}^{-1}}$ $\Delta m_s = (17.7656 \pm 0.0057) \text{ ps}^{-1}$ one to two orders of **magnitude more precise** **Unitarity Triangle Apex Determination** \triangleright **Utilising Mixing and** R_b **- without** γ

New Physics in *B*⁰_{*q*} $-\bar{B}$ ⁰_{*q*} Mixing

$$
\Delta m_{q}=\Delta m_{q}^{\rm SM}\left(1+\kappa_{q}e^{i\sigma_{q}}\right)
$$

$$
\boxed {\phi_q = \phi_q^{\rm SM} + \phi_q^{\rm NP} = \phi_q^{\rm SM} + \arg \left(1 + \kappa_q e^{i \sigma_q} \right)}
$$

Model independent parametrization

$$
\Delta m_{q}=\Delta m_{q}^{\rm SM}\left(1+\kappa_{q}e^{i\sigma_{q}}\right)
$$

$$
\boxed {\phi_q = \phi_q^{\rm SM} + \phi_q^{\rm NP} = \phi_q^{\rm SM} + \arg \left(1 + \kappa_q e^{i \sigma_q} \right)}
$$

Model independent parametrization

size of the NP effects is described by κ_q

 σ_q is a complex phase for additional CP-violating effects

We explore 3 different NP scenarios

$\Delta m_q = \Delta m_q^{\text{SM}} \left(1 + \kappa_q e^{i\sigma_q}\right)$	size of the NP effects is described by κ_q	
$\phi_q = \phi_q^{\text{SM}} + \phi_q^{\text{NP}} = \phi_q^{\text{SM}} + \arg \left(1 + \kappa_q e^{i\sigma_q}\right)$	σ_q is a complex phase for additional CP-violating effects	
Model independent parametrization		
We explore 3 different NP scenarios		
Scenario I	most general case	utilise UT apex determination for the SM predictions of Δm_q and ϕ_q
NP parameters (κ_d, σ_d) and (κ_s, σ_s) independently from each other		

 \mathcal{S}

less strong assumption than full FUNP

Applications fo Leptonic Rare Decays

NP can modify its branching ratio

(Pseudo-)Scalar

$$
B_s^0 - \bar{B}_s^0
$$
 mixing

The measured branching ratio:

$$
\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = \bar{\mathcal{B}}(B_s \to \mu^+ \mu^-)^{\text{SM}} \times \frac{1 + \mathcal{A}_{\Delta \Gamma_s}^{\mu \mu} y_s}{1 + y_s} \left(|P_{\mu \mu}^s|^2 + |S_{\mu \mu}^s|^2 \right)
$$

$$
\mathcal{A}^{\mu\mu}_{\Delta\Gamma_s} \text{ depends on } P^s_{\mu\mu} \equiv |P^s_{\mu\mu}|e^{i\varphi_P}, S^s_{\mu\mu} \equiv |S^s_{\mu\mu}|e^{i\varphi_S} \text{ and } \phi^{\text{NP}}_s
$$
\n
$$
\mathcal{A}^{\mu\mu}_{\Delta\Gamma} = \frac{|P^s_{\mu\mu}|^2 \cos(2\varphi_P - \phi^{\text{NP}}_s) - |S^s_{\mu\mu}|^2 \cos(2\varphi_S - \phi^{\text{NP}}_s)}{|P^s_{\mu\mu}|^2 + |S^s_{\mu\mu}|^2}
$$
\n
$$
P^{s,\text{SM}}_{\mu\mu} = 1
$$
\n
$$
S^{s,\text{SM}}_{\mu\mu} = 0
$$

The measured branching ratio:

$$
\bar{\mathcal{B}}(B_s\to\mu^+\mu^-)=\bar{\mathcal{B}}(B_s\to\mu^+\mu^-)^{\rm SM}\times\frac{1+\mathcal{A}^{\mu\mu}_{\Delta\Gamma_s}y_s}{1+y_s}\left(|P^s_{\mu\mu}|^2+|S^s_{\mu\mu}|^2\right)
$$

NP can modify its branching ratio

(Pseudo-)Scalar

 $\bar{B}^0_s - \bar{B}^0_s$ mixing

$$
\mathcal{A}^{\mu\mu}_{\Delta\Gamma_s} \text{ depends on } P^s_{\mu\mu} \equiv |P^s_{\mu\mu}|e^{i\varphi_P}, S^s_{\mu\mu} \equiv |S^s_{\mu\mu}|e^{i\varphi_S} \text{ and } \phi^{\text{NP}}_s
$$
\n
$$
\mathcal{A}^{\mu\mu}_{\Delta\Gamma} = \frac{|P^s_{\mu\mu}|^2 \cos(2\varphi_P - \phi^{\text{NP}}_s) - |S^s_{\mu\mu}|^2 \cos(2\varphi_S - \phi^{\text{NP}}_s)}{|P^s_{\mu\mu}|^2 + |S^s_{\mu\mu}|^2}
$$
\n
$$
P^s_{\mu\mu} = 1
$$
\n
$$
S^{s,\text{SM}}_{\mu\mu} = 0
$$

Comparing $\frac{\text{Ind, } K\ell 3}{\text{Exd, } K\ell 3}$ $\frac{\tilde{B}(B_s \to \mu^+\mu^-) = (3.81 \pm 0.11) \times 10^{-9}}{\tilde{B}(B_s \to \mu^+\mu^-) = (3.80 \pm 0.10) \times 10^{-9}}$.

We constrain the parameters |Ps | and |Ss | arXiv:1204.1737

Here we assume NP phases for the with $\bar{B}(B_s \to \mu^+ \mu^-) = (2.85^{+0.34}_{-0.31}) \times 10^{-9}$ and scalar contributions are zero

Here we assume NP phases for the pseudo-scalar

NP can modify its branching ratio

(Pseudo-)Scalar *B*⁰

$$
^{\blacklozenge}B_{s}^{0}-\bar{B}_{s}^{0}\text{ mixing}
$$

The measured branching ratio:

$$
\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-) = \bar{\mathcal{B}}(B_s \to \mu^+ \mu^-)^{\rm SM} \times \frac{1 + \mathcal{A}_{\Delta \Gamma_s}^{\mu \mu} y_s}{1 + y_s} \left(|P_{\mu \mu}^s|^2 + |S_{\mu \mu}^s|^2\right) \Bigg|
$$

$$
\mathcal{A}^{\mu\mu}_{\Delta\Gamma_s} \text{ depends on } P^s_{\mu\mu} \equiv |P^s_{\mu\mu}|e^{i\varphi_P}, S^s_{\mu\mu} \equiv |S^s_{\mu\mu}|e^{i\varphi_S} \text{ and } \phi^{\text{NP}}_s
$$
\n
$$
\mathcal{A}^{\mu\mu}_{\Delta\Gamma} = \frac{|P^s_{\mu\mu}|^2 \cos(2\varphi_P - \phi^{\text{NP}}_s) - |S^s_{\mu\mu}|^2 \cos(2\varphi_S - \phi^{\text{NP}}_s)}{|P^s_{\mu\mu}|^2 + |S^s_{\mu\mu}|^2}
$$
\n
$$
P^{s,\text{SM}}_{\mu\mu} = 1
$$
\n
$$
S^{s,\text{SM}}_{\mu\mu} = 0
$$

Comparing $\frac{\text{Ind, } K\ell 3}{\text{Exd, } K\ell 3}$ $\frac{\tilde{B}(B_s \to \mu^+\mu^-) = (3.81 \pm 0.11) \times 10^{-9}}{\tilde{B}(B_s \to \mu^+\mu^-) = (3.80 \pm 0.10) \times 10^{-9}}$.

We constrain the parameters |Ps | and |Ss | arXiv:1204.1737

Here we assume NP phases for the **Here we assume NP phases for the pseudo-scalar and scalar contributions are zero**

Comparing blue contours:

with

dependence of the NP searches with B(B_s → μ+μ−) on the CKM matrix element $|V_{cb}|$ **and the UT apex**

NP can modify its branching ratio

(Pseudo-)Scalar

arXiv:hep-ph/0303060 arXiv:2104.09521 arXiv:2109.11032

$$
\mathcal{R}_{s\mu} \equiv \left| \frac{\bar{\mathcal{B}}(B_s \to \mu^+ \mu^-)}{\Delta m_s} \right| \blacktriangleleft
$$

NP can modify its branching ratio

(Pseudo-)Scalar

 $\bar{B}^0_s - \bar{B}^0_s$ mixing

CKM elements drop out in the SM ratio

Including NP effects in both B(Bs → μ+μ−) and ∆ms we get the generalised expression

$$
\mathcal{R}_{s\mu} = \mathcal{R}_{s\mu}^{\rm SM} \times \frac{1 + \mathcal{A}_{\Delta \Gamma_s}^{\mu\mu}y_s}{1 + y_s} \frac{|P_{\mu\mu}^s|^2 + |S_{\mu\mu}^s|^2}{\sqrt{1 + 2\kappa_s \cos\sigma_s + \kappa_s^2}} \ .
$$

$$
\mathcal{R}^{\rm SM}_{s\mu} = \frac{\tau_{B_s}}{1-y_s} \frac{3 G_{\rm F}^2 m_W^2 \sin^4\theta_W}{4\pi^3} \frac{|C_{10}^{\rm SM}|^2}{S_0(x_t)\eta_{2B}\hat{B}_{B_s}} m_\mu^2 \sqrt{1-4\frac{m_\mu^2}{m_{B_s}^2}}.
$$

introduces a dependence on the CKM matrix elements through the NP parameters $(\mathbf{x}_s, \mathbf{\sigma}_s)$

Future Prospects

B_{**s**}-meson system:limited precision on $\boldsymbol{\varkappa}_{s}$ and $\boldsymbol{\sigma}_{s}$ **by lattice uncertainty**

impact from improvements on the UT apex is negligible (especially for φs)

NP in the Bs-meson system are highly dependent on the assumptions made

exclusive scenario assuming a 50% improvement from lattice appears most exciting

Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element $|V_{cb}|$ **, the lattice calculations, or the UT apex:**

Bd-meson system: improvements in UT apex & lattice: equally big impact

NP in the B_d-meson system are highly dependent on **the assumptions made**

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: less promising than **the B_s-meson due to small** \varkappa_d **we find with current data**

B_{**s**}-meson system:limited precision on $\boldsymbol{\varkappa}_{s}$ and $\boldsymbol{\sigma}_{s}$ **by lattice uncertainty**

impact from improvements on the UT apex is negligible (especially for ϕ_s **)**

NP in the Bs-meson system are highly dependent on the assumptions made

exclusive scenario assuming a 50% improvement from lattice appears most exciting

Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element |Vcb|, the lattice calculations, or the UT apex:

Bd-meson system: improvements in UT apex & lattice: equally big impact

NP in the B_d-meson system are highly dependent on **the assumptions made**

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: less promising than **the Bs-meson due to small κd we find with current data**

NP in γ Averaging over both results would then no longer be justified - UT should be revisited Improved precision on the input measurements: discrepancies between the two γ determinations

> **Independent info from additional observables: necessary to resolve the situation Exciting new opportunities to search for NP, b**oth in γ itself and in $B_q^0 - \bar{B}_q^0$ mixing:strongly correlated with the coordinates of the UT apex.

B_{**s**}-meson system:limited precision on $\boldsymbol{\varkappa}_{s}$ and $\boldsymbol{\sigma}_{s}$ **by lattice uncertainty**

impact from improvements on the UT apex is negligible (especially for ϕ_s)

NP in the Bs-meson system are highly dependent on the assumptions made

exclusive scenario assuming a 50% improvement from lattice appears most exciting

Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element |Vcb|, the lattice calculations, or the UT apex:

Bd-meson system: improvements in UT apex & lattice: equally big impact

NP in the B_d-meson system are highly dependent on **the assumptions made**

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: less promising than **the Bs-meson due to small κd we find with current data**

NP in γ Averaging over both results would then no longer be justified - UT should be revisited Improved precision on the input measurements: discrepancies between the two γ determinations

> **Independent info from additional observables: necessary to resolve the situation Exciting new opportunities to search for NP, b**oth in γ itself and in $B_q^0 - \bar{B}_q^0$ mixing:strongly correlated with the coordinates of the UT apex.

Opportunities for $B(B_q \rightarrow \mu + \mu -)$

1) Ratio of branching fractions between $B_d^0 \to \mu^+\mu^-$ and $B_s^0 \to \mu^+\mu^-$:alternative way to determine the UT side R_t

 2) Another useful application for the ratio of branching fractions between $B_d^o \to \mu^+\mu^-$ and $B_s^o \to \mu^+\mu^-$

B_{**s**}-meson system:limited precision on $\boldsymbol{\varkappa}_{s}$ and $\boldsymbol{\sigma}_{s}$ **by lattice uncertainty**

impact from improvements on the UT apex is negligible (especially for ϕ_s **)**

NP in the Bs-meson system are highly dependent on the assumptions made

exclusive scenario assuming a 50% improvement from lattice appears most exciting

Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element $|V_{cb}|$ **, the lattice calculations, or the UT apex:**

Bd-meson system: improvements in UT apex & lattice: equally big impact

NP in the B_d-meson system are highly dependent on **the assumptions made**

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: less promising than **the Bs-meson due to small κd we find with current data**

NP in γ Averaging over both results would then no longer be justified - UT should be revisited Improved precision on the input measurements: discrepancies between the two γ determinations

> **Independent info from additional observables: necessary to resolve the situation Exciting new opportunities to search for NP,**

both in γ itself and in $B_q^0 - \bar{B}_q^0$ mixing:strongly correlated with the coordinates of the UT apex.

Opportunities for $B(B_q \rightarrow \mu + \mu -)$

1) Ratio of branching fractions between $B_d^0 \rightarrow \mu^+\mu^0$

2) Another useful application for the ratio of branching fractions of θ

$$
\begin{split} U_{\mu\mu}^{ds} & \equiv \sqrt{\frac{|P_{\mu\mu}^{d}|^2 + |S_{\mu\mu}^{d}|^2}{|P_{\mu\mu}^{s}|^2 + |S_{\mu\mu}^{s}|^2}},\\ & = \left[\frac{\tau_{B_s}}{\tau_{B_d}}\frac{1 - y_d^2}{1 - y_s^2}\frac{1 + \mathcal{A}_{\Delta\Gamma}^d y_d}{1 + \mathcal{A}_{\Delta\Gamma}^s y_s}\frac{\sqrt{m_{B_s}^2 - 4m_{\mu}^2}}{\sqrt{m_{B_d}^2 - 4m_{\mu}^2}}\left(\frac{f_{B_s}}{f_{B_d}}\right)^2\left|\frac{V_{ts}}{V_{td}}\right|^2\frac{\mathcal{B}(B_d \to \mu^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)}\right]^{1/2}. \end{split}
$$

Thank you!

Backup Slides

Improved Precision on $\boldsymbol{\varkappa}_{q}$ **and** $\boldsymbol{\sigma}_{q}$

0 50 100 150 200 250 300 350 σ_d \overline{C} 0 0.1 0.2 0.3 0.4 $\chi^{0.5}$ Current Precision • 50% Improvement from Lattice • 50% Improvement from UT Apex contours hold 39%, 87% CL Incl. $R_b \& IV_{us}$ from K13 0 50 100 150 200 250 300 350 σ_d [\tilde{e}] 0 0.1 0.2 0.3 0.4 d 0.5 κ• Current Precision • 50% Improvement from Lattice • 50% Improvement from UT Apex contours hold 39%, 87% CL Excl. R. $&$ $|V_{\nu}|$ from Kl3 $0.4¹$ $\chi^{\texttt{\tiny U}}$ 0.5 Current Precision • 50% Improvement from Lattice • 50% Improvement from UT Apex contours hold 39%, 87% CL Hybrid R & $|V_{\text{us}}|$ from K13

0 50 100 150 200 250 300 350

 0_0

0.1

0.2

 $0.3₁$

 $\sigma_{\rm d}$ [\degree]

 $0.4 \leftarrow$ 50% Improvement from IV_{cb}

Current Precision

• 50% Improvement from Lattice

|

contours hold 39%, 87% Cl Incl. $R_h \& IV_{us}$ from K13

 $\boldsymbol{\mathsf{z}}^{0.5}$

Assuming a hypothetical reduction of 50% in the uncertainty on the CKM matrix element $|V_{cb}|$ **, the lattice calculations, or the UT apex**

> **Bs-meson system:limited precision on κs and σs by lattice uncertainty**

impact from improvements on the UT apex is negligible (especially for φs)

NP in the B_s-meson system are highly **dependent on the assumptions made**

exclusive scenario assuming a 50% improvement from lattice appears most exciting

B_d-meson system: improvements in **UT apex & lattice: equally big impact**

NP in the B_d-meson system are highly **dependent on the assumptions made**

inclusive scenario assuming 50% improvement on UT apex stands out

Hints of NP in $B_d^0 - \bar{B}_d^0$ mixing: with **significance of more than 3σ**

less promising than the B_s-meson due **to small κd we find with current data**