B-meson lifetimes within the HQE

Maria Laura Piscopo

CPPS, Theoretische Physik 1, Universität Siegen

DISCRETE 2022 Baden-Baden, 9 November 2022

Based on ArXiv:2208.02643 and ArXiv:2211.02724 In collaboration with A. Lenz, J. Müller and A. Rusov

Motivation

- $\diamond~$ Lifetime τ = Γ^{-1} is one of the fundamental properties of particles
- $\diamond~$ For heavy hadrons: systematic framework to compute $\Gamma(H_Q)$ $m_Q \gg \Lambda_{QCD}$
- $\diamond~$ Focus on the $B\text{-system}~~m_b\sim 4.5\,{\rm GeV}\gg 0.5\,{\rm GeV}\sim \Lambda_{QCD}$
 - * Experimental precision very high $\mathcal{O}(\%_0)$ [HFLAV '21]
 - * Aim at competitive theoretical precision to
 - $\star\,$ Test the framework used $\,\,\,\star\,$ Perform indirect NP searches

$$\frac{\tau(B_1)}{\tau(B_2)}_{\text{exp.}} = 1 + \underbrace{\left[\Gamma^{\text{SM}}(B_2) - \Gamma^{\text{SM}}(B_1)\right]\tau^{\text{exp.}}(B_1)}_{\text{theory}} + \underbrace{\left[\Gamma^{\text{BSM}}(B_2) - \Gamma^{\text{BSM}}(B_1)\right]\tau^{\text{exp.}}(B_1)}_{\text{indirectly constrained}}$$

The total decay width of a B-meson

♦ Start from the definition

$$\Gamma(B) = \frac{1}{2m_B} \sum_n \int_{\mathrm{PS}} (2\pi)^4 \delta^{(4)}(p_n - p_B) |\langle n|\mathcal{H}_{eff}|B\rangle|^2$$

- $\diamond~\mathcal{H}_{eff}$ weak effective Hamiltonian describing b-quark decays
- ♦ Use optical theorem to rewrite [Shifman, Voloshin '85]

$$\Gamma(B) = \frac{1}{2m_B} \operatorname{Im} \langle B | i \int d^4 x \operatorname{T} \left\{ \mathcal{H}_{eff}(x) , \mathcal{H}_{eff}(0) \right\} | B \rangle$$

Maria Laura Piscopo

The heavy quark expansion (HQE)

- ♦ Heavy *b*-quark carries most of the hadron momentum $p_B^{\mu} = m_B v^{\mu}$
- $\diamond~$ Introduce parametrisation

$$p_b^{\mu} = m_b v^{\mu} + k^{\mu} \qquad k \sim \Lambda_{QCD} \ll m_b$$

◊ Rescale heavy quark field

$$b(x) = e^{-im_b v \cdot x} b_v(x)$$

◊ Action of the covariant derivative

$$iD_{\mu}b(x) = e^{-im_b v \cdot x} (m_b v_{\mu} + iD_{\mu}) b_v(x)$$

 $D_{\mu} = \partial_{\mu} - iA^a_{\mu}(x)t^a$

Maria Laura Piscopo

The HQE

◊ Obtain systematic expansion

$$\Gamma(B) = \underbrace{\prod_{i}}_{\Gamma(b)} + \underbrace{\prod_{i}}_{D_{b}} \underbrace{\frac{\langle \mathcal{O}_{5} \rangle}{m_{b}^{2}} + \Gamma_{6} \frac{\langle \mathcal{O}_{6} \rangle}{m_{b}^{3}} + \dots + 16\pi^{2} \left[\widetilde{\Gamma}_{6} \frac{\langle \widetilde{\mathcal{O}}_{6} \rangle}{m_{b}^{3}} + \widetilde{\Gamma}_{7} \frac{\langle \widetilde{\mathcal{O}}_{7} \rangle}{m_{b}^{4}} + \dots \right]}_{\delta \Gamma(B)}$$

- * $\Gamma_d, \tilde{\Gamma}_d$ short distance coefficients
- * $\mathcal{O}_d, \tilde{\mathcal{O}}_d$ local operators bilinear in the heavy quark field
- * $\Gamma(b)$ total decay width of free b quark
- * $\delta\Gamma(B)$ effects due to interaction with soft gluons and quarks

The HQE

Very advanced framework thanks to huge effort of big community

Status of HQE: perturbative side

$$\Gamma_d = \Gamma_d^{(0)} + \left(\frac{\alpha_s(m_b)}{4\pi}\right)\Gamma_d^{(1)} + \left(\frac{\alpha_s(m_b)}{4\pi}\right)^2\Gamma_d^{(2)} + \dots$$

Semileptonic modes (SL)		Non-leptonic modes (NL)	
(0)	Fael Schönwald Steinhauser '20	$\Gamma_3^{(2)}$	Czarnecki, Slusarcyk, Tkachov '05 *
$\Gamma_3^{(3)}$	Czakon, Czarnecki, Dowling '21		Ho-Kim, Pham, Altarelli, Petrarca,
$\Gamma_{3}^{(2)}$	Czarnecki, Melnikov, v. Ritbergen, Pak, Dowling, Bonciani, Ferroglia, Biswas, Brucherseifer, Caola '97-'13	$\Gamma_3^{(1)}$	Voloshin, Bagan, Ball, Braun, Gosdzinsky, Fiol, Lenz, Nierste, Ostermaier, Krinner, Rauh '84-'13
$\Gamma_5^{(1)}$	Alberti, Gambino, Nandi, Mannel, Pivovarov, Rosenthal '13-'15	$\Gamma_5^{(0)}$	Bigi, Uraltsev, Vainshtein, Blok, Shifman '92
$\Gamma_6^{(1)}$	Mannel, Moreno, Pivovarov '19, '21, '22	$\Gamma_6^{(0)}$	Lenz, MLP, Rusov, Mannel, Moreno, Pivovarov '20-'21
$\Gamma_7^{(0)}$	Dassinger, Mannel, Turczyk '06		Boneko Buchalla Groub Long
$\Gamma_8^{(0)}$	Mannel, Turczyk, Uraltsev '10	$\tilde{\Gamma}_{6}^{(1)}$	Nierste, Franco, Lubicz, Mescia,
* Only partial result			Tarantino, Rauh '02-'13
		$\tilde{\Gamma}_{7}^{(0)}$	Gabbiani, Onishchenko, Petrov '03-'04

Maria Laura Piscopo

Status of HQE: non-perturbative side

 \star Fit to experimental data on semileptonic B-decays 🛛 \star HQET sum rules 🛛 \star Lattice QCD

	B_d,B^+	B_s	
$\langle \mathcal{O}_5 \rangle$	Bernlochner et al. '22, ★ Bordone, Capdevila, Gambino, Schwanda et al. '13, '14, '21 ★ Ball, Braun, Neubert '93-'95 ★ Kronfeld, Simone, Gambino,	$SU(3)_{F}$ -breaking for μ_{π}^{2} Bigi, Mannel, Uraltsev '11 Spectroscopy relation for μ_{G}^{2}	
	Melis, Simula '00 -'17 🖈		
$\langle \mathcal{O}_6 angle$	Bernlochner et al. '22, Bordone et al. '13, '14, '21 EOM relation to $(\tilde{\mathcal{O}}_6)$	EOM relation to $(\tilde{\mathcal{O}}_6)$	
$\langle \tilde{\mathcal{O}}_6 \rangle$	Kirk, Lenz, Rauh '17 ★	King, Lenz, Rauh '21 ★	
$\langle \tilde{\mathcal{O}}_7 \rangle$	Vacuum insertion approximation (VIA)		

- ♦ Some tension between different fits for ρ_D^3
- \diamond Fits to experimental semileptonic B_s -decays highly desirable

Belle II, BESIII, LHCb, super tau-charm factory?

Maria Laura Piscopo

$Our \ setup$

 $\diamond~$ The observables

$$\Gamma(B) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right]$$

$$\tau(B_{(s)}^{(+)}) / \tau(B_d) = 1 + \left[\Gamma(B_d)^{\text{HQE}} - \Gamma(B_{(s)}^{(+)})^{\text{HQE}} \right] \tau(B_{(d)}^{(+)})^{\text{exp}}$$

- ♦ No two-quark contributions in $\tau(B^+)/\tau(B_d)$ in isospin limit
 - * Theoretically more clean
- ♦ For $\tau(B_s)/\tau(B_d)$ crucial role of SU(3)_F breaking effects
 - * Two-quark dimension-six coefficient Γ_6 found to be large [Lenz, MLP, Rusov '20; Mannel, Moreno, Pivovarov '20]
 - * Poor control on size of non-pert. input and of $SU(3)_{\rm F}$ breaking

Maria Laura Piscopo

Result

[[]Lenz, MLP, Rusov '22]

BSM effects in lifetimes and mixing

- ♦ Good agreement of HQE with data for $\tau(B^+)/\tau(B_d)$
- ♦ How large is space for NP in $b \to c\bar{u}d(s)$ decays ?
- \diamond Repeat computation with 20 additional NP operators, also for a_{sl}^d

Conclusion

- $\diamond~$ Up-to-date analysis of B-meson lifetimes (ratios) within HQE
- $\diamond~$ Very good agreement with data, but larger uncertainties
- $\diamond~$ Need better control on size of two-quark non-pert. input
 - * Accuracy of prediction for $\tau(B_s)/\tau(B_d)$ largely affected!
- $\diamond~$ Possibility to constrain coefficients of some NP operators

Thanks for the attention

Backup

Status of B-mesons lifetime ratios

	HFLAV	[Lenz, MLP, Rusov '22]
$\frac{\tau(B^+)}{\tau(B_d)}$	1.076(4)	1.085(23)
$\frac{\tau(B_s^0)}{\tau(B_d)}$	0.998(5)	1.004(5) + 0.247 $\rho_D^3(B_d) \times \left[\frac{\rho_D^3(B_s)}{\rho_D^3(B_d)} - 1 \right]_{EOM}$

- ♦ Good agreement of HQE with data for $\tau(B^+)/\tau(B_d)$
- ♦ Prediction for $\tau(B_s)/\tau(B_d)$ significantly affected by Darwin term
 - * Extract ρ_D^3 from fit to SL *B*-decays

e.g. [Bernlochner et al. '22; Bordone et al. '21]

* Estimate size of $SU(3)_F$ from EOM for gluon field

e.g. [Bigi, Mannel, Uraltsev '11]

The Darwin operator

♦ The Darwin operator can be rewritten as penguin operator

$$\mathcal{O}_{\rho_{D}^{3}} = \frac{1}{4m_{B}} \bar{b}_{v} [iD_{\mu}, [iD^{\rho}, iD^{\mu}]] v_{\rho} b_{v} = -\frac{g_{s}^{2}}{4m_{B}} (\bar{b}_{v} \gamma^{\mu} t^{a} b_{v}) \sum_{q} (\bar{q} \gamma_{\mu} t^{a} q) + \mathcal{O}\left(\frac{1}{m_{b}}\right)$$

◊ Apply Fierz-transformation and use VIA

$$\frac{\rho_D^3(B_s^0)}{\rho_D^3(B_d^0)} = \frac{f_{B_s}^2 m_{B_s}}{f_B^2 m_B}$$

♦ Obtain $SU(3)_F$ breaking effects of ~ 50%!

Overestimate size of $SU(3)_F$ breaking effects?