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DM Production here?
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Generally occurs for self-interacting sterile neutrinos! 
Simplest allowed model for sterile neutrino DM production!

DM Production here?
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Outline

• General mechanism 

• Higgs portal model 

• Sterile neutrino model

3
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Many variants of freeze-out: 
• Semi-annihilations 
• Hidden sector 
• Cannibal DM 
• Forbidden DM 
• …

SM SM ↔ χχ SM SM → χχ

Less variants for freeze-in
Dark Matter from Exponential Growth 
Bringmann, PFD et al. 2103.16572 
Hryczuk and Laletin 2104.05684 

Very interesting application to sterile 
neutrinos 
Bringmann, PFD et al. 2206.10630
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Production by transformation
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Production by transformation
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•  

•  

• : # of transformations of DM 
particle per Hubble time 

•  Phase of exponential production 

• Shutoff by kinematical or Boltzmann suppression 

• Constant matrix element for simplicity 

·nχ + 3Hnχ = Cψχ→χχ ∼ ⟨σv⟩tr neq
ψ nχ

Yχ(xψ) ≡ nχ /s ≃ Y0
χ exp(3 ∫ xψ

x0
ψ

dx
x R(x))

R(x) =
neq

ψ ⟨σv⟩tr

3H

→
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Fixed initial abundance
Evolution of DM abundance

7

10°18

10°15

10°12

10°9

Y
¬

=
n

¬
/s

≠¬h2 = 0.12

m¬ = 1 GeV
m√/m¬ = 2

∏tr = 4.5 £ 10°7

∏tr = 5.0 £ 10°7

∏tr = 5.5 £ 10°7

10°3 10°2 10°1 100 101 102

x√ = m√/T

0

1

2

3

R

B
rin

gm
an

n,
 P

FD
 e

t a
l. 

21
03

.1
65

72

∝ 1/T ∝ e−mψ /T
 Boltzmann suppressedψ

✗tr

·nχ + 3Hnχ = ⟨σv⟩tr neq
ψ nχ
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·nχ + 3Hnχ = ⟨σv⟩tr neq
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Necessary conditions
Towards concrete models

• Generate abundance of   

• Generate initial abundance of  
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 Higgs portal → λhψ |H |2 ψ2/2

 freeze-in → λfiψ2 χ2
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Interlude: Discrete symmetries

• Problem: DM may not be stable 

• Possible fix: 

• Assume  to be complex scalar charged under  symmetry, other particles (in particular scalar ) not 
charged 

• Still allows for terms , ,  in Lagrangian 

• DM decays forbidden

χ ℤ3 ψ

ψχ3 ψ(χ*)3 ψ2 χ*χ

12
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Interlude: Discrete symmetries

• Problem: DM may not be stable 

• Possible fix: 

• Assume  to be complex scalar charged under  symmetry, other particles (in particular scalar ) not 
charged 

• Still allows for terms , ,  in Lagrangian 

• DM decays forbidden 

• Concrete model realization in Hryczuk and Laletin 2104.05684 

• Assume  to couple to SM Higgs 

• Consider small coupling to Higgs (Higgs-to-invisibles searches),  is only produced by freeze-in 

• Possible indirect detection signatures as  is larger than for freeze-in,  decays to SM

χ ℤ3 ψ

ψχ3 ψ(χ*)3 ψ2 χ*χ

ψ

ψ

⟨σv⟩tr ψ

12
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Necessary conditions
Towards concrete models

• Generate abundance of   

• Generate initial abundance of  

• Realize hierarchy of (effective) couplings  

• Two fermions with small mass mixing angle , only one (mostly ) interacts with mediator  via 
Yukawa coupling: 

•  vertices  

•  vertices  

•  vertices  

• Transformation ( ) amplitude  

• Freeze-in ( ) amplitude

ψ

χ

λfi ≪ λtr ≪ 1

θ χ ϕ

χ̄χ ∝ cos2 θ ∼ 1

ψ̄χ ∝ cos θ sin θ ∼ θ

ψ̄ψ ∝ sin2 θ ∼ θ2

ψ̄χ → χ̄χ ∝ θ

ψ̄ψ → χ̄χ ∝ θ2

13
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What if  is in the SM?ψ
Model setup for sterile neutrinos
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• Sterile neutrino ( ), mass-mixing with active neutrino 
( ) 

• Yukawa coupling between mediator  and  in flavor-
space generates hierarchy of (eff.) couplings: 

•  

   

• Initial abundance of sterile neutrinos from oscillations 
between active and sterile neutrinos (Dodelson-Widrow 
mechanism)

χ = νs
ψ = να

ϕ νs

ℒint ⊃ y
2 ϕνc

s νs + h.c.

→ y
2 ϕ(cos2 θ νc

s νs − sin(2θ) νανs + sin2 θ νc
ανα) + h.c.
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• Sterile neutrino ( ), mass-mixing with active neutrino 
( ) 

• Yukawa coupling between mediator  and  in flavor-
space generates hierarchy of (eff.) couplings: 

•  

   

• Initial abundance of sterile neutrinos from oscillations 
between active and sterile neutrinos (Dodelson-Widrow 
mechanism) 

• Generally occurs for self-interacting sterile neutrinos 

• Simplest allowed model for sterile neutrino DM production

χ = νs
ψ = να

ϕ νs

ℒint ⊃ y
2 ϕνc

s νs + h.c.

→ y
2 ϕ(cos2 θ νc

s νs − sin(2θ) νανs + sin2 θ νc
ανα) + h.c.
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FIG. 1. Relevant diagrams for (a) dark sector thermaliza-
tion, ⌫s⌫s!�

⇤!⌫s⌫s, (b) increasing the dark sector number
density after initial DW production, ⌫s⌫s ! ��, and (c) ex-
ponential growth of DM, ⌫s⌫↵!�

⇤!⌫s⌫s. Since � is (almost)
on-shell for (a) and (c), it is sufficient to include only the rates
for ⌫s⌫s $ � and ⌫s⌫↵ ! �. See text for further details.

given by

L � �
1

2
⌫c

sms⌫s � ⌫↵m↵s⌫s �
1

2
⌫↵m↵⌫

c
↵ +

y

2
⌫c

s�⌫s + h.c.,

where repeated indices ↵ are summed over and ⌫↵ (⌫s)
are left- (right-) handed spinors. We will concentrate on
the case of heavy mediators, m� > 2 ms, for most of
this letter, but later also briefly discuss phenomenological
consequences of lighter mediators. We do not include any
mediator self-interactions; concretely, we will assume a
scalar potential where number changing interactions like
3� $ 2� and 4� $ 2� can be neglected compared to the
Hubble expansion.

We further assume, for simplicity and concreteness,
that ⌫s dominantly mixes only with the active neutrino
species ⌫e, and that ms � m↵. Expressed in terms of
mass eigenstates, which for ease of notation we denote by
the same symbols as flavor eigenstates, the interactions
of the mediator then take the form

L
I
� =

y

2
�
�
cos2✓ ⌫c

s⌫s � sin(2✓) ⌫↵⌫s + sin2
✓ ⌫↵⌫

c
↵

�
+ h.c.

(1)
with sin ✓ ' m↵s/ms ⌧ 1. The unsuppressed couplings
among � and ⌫s turn out to be sufficiently strong to
equilibrate the dark sector during the new exponential
production phase that we consider below. On the other
hand, mass-mixing-induced interactions between ⌫s and
electroweak gauge bosons are suppressed by the Fermi
constant, GF , and will only be relevant in setting the
initial sterile neutrino abundance.

Evolution of ⌫s number density.— For an initially
vanishing abundance, in particular, the interactions in
Eq. (1) only allow freeze-in production of ⌫s. While
the corresponding rate scales as / sin4

✓, active-sterile
neutrino oscillations at temperatures above and around
⇤QCD ⇠ 150 MeV, in combination with neutral and
charged current interactions with the SM plasma, lead
to a production rate scaling as / sin2(2✓) [12]. Adopting
results from Ref. [58], we use the ⌫s number density, ns,
and energy density, ⇢s ⇠ hpins, that result from this DW
mechanism. Once DW production is completed, and in
the absence of dark sector interactions, the expansion of
the Universe will decrease these quantities as ns / a

�3

and ⇢s / a
�4, respectively, where a is the scale factor.

ms m� sin2(2✓) y

BP1 12 keV 36 keV 2.5 ⇥ 10�13 1.905 ⇥ 10�4

BP2 20 keV 60 keV 3.0 ⇥ 10�15 1.602 ⇥ 10�3

TABLE I. Parameter values for the two benchmark points
considered in Fig. 2.

Some time later, various decay and scattering processes
(cf. Fig. 1) become relevant due to the new interactions
appearing in Eq. (1) and, for the parameter space we are
interested in here, eventually thermalize the dark sec-
tor via the (inverse) decays ⌫s⌫s $ �. From that point
on, the phase-space densities of ⌫s and � follow Fermi-
Dirac and Bose-Einstein distributions, respectively, that
are described by a common dark-sector temperature Td

as well as chemical potentials µs and µ�. Similar to the
situation of freeze-out in a dark sector [59], the evolution
of these quantities is determined by a set of Boltzmann
equations for the number densities ns,� and total dark
sector energy density ⇢ = ⇢� + ⇢s:

ṅs + 3Hns = Cns , (2)
ṅ� + 3Hn� = Cn� , (3)

⇢̇ + 3H(⇢ + P ) = C⇢ , (4)

where H ⌘ ȧ/a is the Hubble rate, P = Ps + P� is
the total dark sector pressure, and Ci are the various
collision operators (see Appendix for details). With � $

⌫s⌫s in equilibrium, the chemical potentials are related
by 2µs = µ�, allowing us to replace the first two of the
above equations with a single differential equation for
ñ ⌘ ns + 2n�. Noting that ⇢ / a

�4 and ñ / a
�3,

both right before and after � $ ⌫s⌫s starts to dominate
over the Hubble rate, the initial conditions to the coupled
differential equations for ñ and ⇢ can then be determined
at the end of DW production.

In order to illustrate the subsequent evolution of the
system, let us consider two concrete benchmark points,
cf. Tab. I, for which the sterile neutrinos obtain a relic
density that matches the observed DM abundance of
⌦DMh

2
' 0.12 [60], with a mixing angle too small to

achieve this with standard DW production. As demon-
strated in Fig. 2, with solid (dashed) lines for BP1

(BP2 ), this leads to qualitatively different behaviors:

BP1 Here the only additional process (beyond � $

⌫s⌫s) where the rate becomes comparable to H,
at ms/T⌫ ⇠ 0.2 with T⌫ the active neutrino tem-
perature, is ⌫s⌫↵ ! � (left panel, blue). This trig-
gers exponential growth in the abundance for both
⌫s and � (right panel, green and orange) through
⌫s⌫↵ ! �

⇤
! ⌫s⌫s, with � being (almost) on shell,

cf. Fig. 1 (c). Once T⌫ ⌧ m� the transmission
process becomes inefficient and the final ⌫s abun-
dance is obtained. Afterwards, since both � and
⌫s are non-relativistic, the dark sector temperature
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FIG. 1. Relevant diagrams for (a) dark sector thermaliza-
tion, ⌫s⌫s!�

⇤!⌫s⌫s, (b) increasing the dark sector number
density after initial DW production, ⌫s⌫s ! ��, and (c) ex-
ponential growth of DM, ⌫s⌫↵!�

⇤!⌫s⌫s. Since � is (almost)
on-shell for (a) and (c), it is sufficient to include only the rates
for ⌫s⌫s $ � and ⌫s⌫↵ ! �. See text for further details.

given by
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2
⌫↵m↵⌫

c
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s�⌫s + h.c.,

where repeated indices ↵ are summed over and ⌫↵ (⌫s)
are left- (right-) handed spinors. We will concentrate on
the case of heavy mediators, m� > 2 ms, for most of
this letter, but later also briefly discuss phenomenological
consequences of lighter mediators. We do not include any
mediator self-interactions; concretely, we will assume a
scalar potential where number changing interactions like
3� $ 2� and 4� $ 2� can be neglected compared to the
Hubble expansion.

We further assume, for simplicity and concreteness,
that ⌫s dominantly mixes only with the active neutrino
species ⌫e, and that ms � m↵. Expressed in terms of
mass eigenstates, which for ease of notation we denote by
the same symbols as flavor eigenstates, the interactions
of the mediator then take the form
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(1)
with sin ✓ ' m↵s/ms ⌧ 1. The unsuppressed couplings
among � and ⌫s turn out to be sufficiently strong to
equilibrate the dark sector during the new exponential
production phase that we consider below. On the other
hand, mass-mixing-induced interactions between ⌫s and
electroweak gauge bosons are suppressed by the Fermi
constant, GF , and will only be relevant in setting the
initial sterile neutrino abundance.

Evolution of ⌫s number density.— For an initially
vanishing abundance, in particular, the interactions in
Eq. (1) only allow freeze-in production of ⌫s. While
the corresponding rate scales as / sin4

✓, active-sterile
neutrino oscillations at temperatures above and around
⇤QCD ⇠ 150 MeV, in combination with neutral and
charged current interactions with the SM plasma, lead
to a production rate scaling as / sin2(2✓) [12]. Adopting
results from Ref. [58], we use the ⌫s number density, ns,
and energy density, ⇢s ⇠ hpins, that result from this DW
mechanism. Once DW production is completed, and in
the absence of dark sector interactions, the expansion of
the Universe will decrease these quantities as ns / a

�3

and ⇢s / a
�4, respectively, where a is the scale factor.

ms m� sin2(2✓) y

BP1 12 keV 36 keV 2.5 ⇥ 10�13 1.905 ⇥ 10�4

BP2 20 keV 60 keV 3.0 ⇥ 10�15 1.602 ⇥ 10�3

TABLE I. Parameter values for the two benchmark points
considered in Fig. 2.

Some time later, various decay and scattering processes
(cf. Fig. 1) become relevant due to the new interactions
appearing in Eq. (1) and, for the parameter space we are
interested in here, eventually thermalize the dark sec-
tor via the (inverse) decays ⌫s⌫s $ �. From that point
on, the phase-space densities of ⌫s and � follow Fermi-
Dirac and Bose-Einstein distributions, respectively, that
are described by a common dark-sector temperature Td

as well as chemical potentials µs and µ�. Similar to the
situation of freeze-out in a dark sector [59], the evolution
of these quantities is determined by a set of Boltzmann
equations for the number densities ns,� and total dark
sector energy density ⇢ = ⇢� + ⇢s:

ṅs + 3Hns = Cns , (2)
ṅ� + 3Hn� = Cn� , (3)

⇢̇ + 3H(⇢ + P ) = C⇢ , (4)

where H ⌘ ȧ/a is the Hubble rate, P = Ps + P� is
the total dark sector pressure, and Ci are the various
collision operators (see Appendix for details). With � $

⌫s⌫s in equilibrium, the chemical potentials are related
by 2µs = µ�, allowing us to replace the first two of the
above equations with a single differential equation for
ñ ⌘ ns + 2n�. Noting that ⇢ / a

�4 and ñ / a
�3,

both right before and after � $ ⌫s⌫s starts to dominate
over the Hubble rate, the initial conditions to the coupled
differential equations for ñ and ⇢ can then be determined
at the end of DW production.

In order to illustrate the subsequent evolution of the
system, let us consider two concrete benchmark points,
cf. Tab. I, for which the sterile neutrinos obtain a relic
density that matches the observed DM abundance of
⌦DMh

2
' 0.12 [60], with a mixing angle too small to

achieve this with standard DW production. As demon-
strated in Fig. 2, with solid (dashed) lines for BP1

(BP2 ), this leads to qualitatively different behaviors:

BP1 Here the only additional process (beyond � $

⌫s⌫s) where the rate becomes comparable to H,
at ms/T⌫ ⇠ 0.2 with T⌫ the active neutrino tem-
perature, is ⌫s⌫↵ ! � (left panel, blue). This trig-
gers exponential growth in the abundance for both
⌫s and � (right panel, green and orange) through
⌫s⌫↵ ! �

⇤
! ⌫s⌫s, with � being (almost) on shell,

cf. Fig. 1 (c). Once T⌫ ⌧ m� the transmission
process becomes inefficient and the final ⌫s abun-
dance is obtained. Afterwards, since both � and
⌫s are non-relativistic, the dark sector temperature
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FIG. 1. Relevant diagrams for (a) dark sector thermaliza-
tion, ⌫s⌫s!�

⇤!⌫s⌫s, (b) increasing the dark sector number
density after initial DW production, ⌫s⌫s ! ��, and (c) ex-
ponential growth of DM, ⌫s⌫↵!�

⇤!⌫s⌫s. Since � is (almost)
on-shell for (a) and (c), it is sufficient to include only the rates
for ⌫s⌫s $ � and ⌫s⌫↵ ! �. See text for further details.
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appearing in Eq. (1) and, for the parameter space we are
interested in here, eventually thermalize the dark sec-
tor via the (inverse) decays ⌫s⌫s $ �. From that point
on, the phase-space densities of ⌫s and � follow Fermi-
Dirac and Bose-Einstein distributions, respectively, that
are described by a common dark-sector temperature Td

as well as chemical potentials µs and µ�. Similar to the
situation of freeze-out in a dark sector [59], the evolution
of these quantities is determined by a set of Boltzmann
equations for the number densities ns,� and total dark
sector energy density ⇢ = ⇢� + ⇢s:
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where H ⌘ ȧ/a is the Hubble rate, P = Ps + P� is
the total dark sector pressure, and Ci are the various
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above equations with a single differential equation for
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at the end of DW production.
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cf. Tab. I, for which the sterile neutrinos obtain a relic
density that matches the observed DM abundance of
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Parameter space
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Conclusions

• New non-thermal DM production mechanism involving exponential growth 

• Complements freeze-in and freeze-out scenarios 

• Interesting phenomenological consequences 

• Discrete symmetries can be interesting and useful 

• Sterile neutrino DM after the pandemic: 

• Exponential growth regime occurs naturally for self-interacting sterile neutrinos 

• Allows for mixing angle much smaller than in Dodelson-Widrow scenario 

• Simplest allowed model for sterile neutrino DM production as Dodelson-Widrow is excluded 

• Much of parameter space is testable in the foreseeable future
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Thank you!

19


