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Introduction 3

ä B-meson lifetimes and mixing are measured experimentally to high precision:

τ(Bs)

τ(Bd)
= 0.998± 0.005,

τ(B+)

τ(Bd)
= 1.076± 0.004,

∆Ms = 17.741± 0.050 ps−1, ∆Md = 0.5065± 0.0019 ps−1,

∆Γs = 0.082± 0.005 ps−1, ∆Γd = not yet measured

å Key observables for probing New Physics á high precision in theory needed!

ä For lifetimes and decay rates, we use the Heavy Quark Expansion

ä Factorise observables into á perturbative QCD contributions [Project C1b, talk by A. Rusov]
á Non-Perturbative Matrix Elements

ä We will consider four-quark ∆B = 0 and ∆B = 2 matrix elements of dimensions 6 and 7

ä Two approaches: QCD/HQET Sum Rules and Lattice QCD (as part of RBC-UKQCD)

ä Gradient Flow: A new method to match lattice calculations to the MS scheme using ‘flowed’ matrix
elements and a perturbative matching matrix along an auxiliary dimension ‘flow time’

[HFLAV ’19]

https://arxiv.org/abs/1909.12524
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∆B = 2 Operators 4

ä Mass difference of neutral mesons ∆Mq (q = d, s) governed by ∆B = 2 four-quark operators
ä In the SM, only dimension-6 Oq

1 contributes

Oq
1 = b̄αγµ(1− γ5)qα b̄βγµ(1− γ5)qβ, ⟨Oq

1⟩ = ⟨B̄q|Oq
1|Bq⟩ =

8

3
f 2BqM

2
BqB

q
1,

Oq
2 = b̄α(1− γ5)qα b̄β(1− γ5)qβ, ⟨Oq

2⟩ = ⟨B̄q|Oq
2|Bq⟩ =

−5M 2
Bq

3(mb + mq)2
f 2BqM

2
BqB

q
2,

Oq
3 = b̄α(1− γ5)qβ b̄β(1− γ5)qα, ⟨Oq

3⟩ = ⟨B̄q|Oq
3|Bq⟩ =

M 2
Bq

3(mb + mq)2
f 2BqM

2
BqB

q
3,

Oq
4 = b̄α(1− γ5)qα b̄β(1 + γ5)qβ, ⟨Oq

4⟩ = ⟨B̄q|Oq
4|Bq⟩ =

[
2M 2

Bq

(mb + mq)2
+

1

3

]
f 2BqM

2
BqB

q
4,

Oq
5 = b̄α(1− γ5)qβ b̄β(1 + γ5)qα, ⟨Oq

5⟩ = ⟨B̄q|Oq
5|Bq⟩ =

[
2M 2

Bq

3(mb + mq)2
+ 1

]
f 2BqM

2
BqB

q
5.

ä Matrix elements parameterised in terms of decay constant fBq and bag parameters Bq
i

ä Five dimension-7 operators contributing to ∆Γq: R0,
(∼)

R 2,
(∼)

R 3 [Beneke, Buchalla, Dunietz ’96]

https://arxiv.org/abs/hep-ph/9605259
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Current Status: ∆B = 2 Matrix Elements (Lattice) 5

ä Matrix elements are calculated directly from lattice simulations

⟨Oq
i ⟩ á fBq

√
Bq

i á Bq
i

ä Higher precision in SU(3)-breaking ratios where some uncertainties cancel:

fBs

fBd

,
Bs

1

Bd
1

, ξ =
fBs

√
Bs

1

fBd

√
Bd

1

ä [FLAG ’21] reports on ⟨Oq
1⟩ á tension between most recent 2 + 1 and 2 + 1 + 1 calculations:

Nf = 2 + 1 : fBs

√
B̂s

1 = 274(8)MeV,

Nf = 2 + 1 + 1 : fBs

√
B̂s

1 = 256.1(5.7)MeV

ä ⟨Od,s
2−5⟩ determined for Nf = 2 [ETM ’13] and Nf = 2 + 1 [FNAL/MILC ’11], [FNAL/MILC ’16]

å WIP by RBC-UKQCD + JLQCD at Nf = 2 + 1 [Boyle et al. ’21]

ä First lattice calculations for ⟨Rq
2,3⟩ and ⟨

∼
R2,3⟩ from [HPQCD ’19B]

å Suffers from large uncertainties e.g. from matching to continuum regularisation scheme

Decay constants
well-known independently

Use to determine
∣∣∣∣Vts

Vtd

∣∣∣∣

[FNAL/MILC ’16]

[HPQCD ’19A]

https://arxiv.org/abs/2111.09849
https://arxiv.org/abs/1308.1851
https://arxiv.org/abs/1112.5642
https://arxiv.org/abs/1602.03560
https://arxiv.org/abs/2111.11287
https://arxiv.org/abs/1910.00970
https://arxiv.org/abs/1602.03560
https://arxiv.org/abs/1907.01025
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Current Status: ∆B = 2 Matrix Elements (Sum Rules) 6

ä In Vacuum Insertion Approximation (VIA), Bq
i = 1 á write sum rules for Bq

i − 1

ä ⟨Oq
1⟩ calculated with HQET sum rules á for ∆Md [Grozin, Klein, Mannel, Pivovarov ’16]

[Kirk, Lenz, Rauh ’17]
á for ∆Ms [King, Lenz, Rauh ’19]

ä Averages for ⟨Od,s
1−5⟩ combining lattice and sum rules found in [Luzio, Kirk, Lenz, Rauh ’19]

ä For ⟨Rq
2,3⟩ and ⟨

∼
R2,3⟩, [Mannel, Pecjak, Pivovarov ’07] calculated condensate contributions

å Very small deviations from VIA
å Dominant 3-loop perturbative contributions missing

ä Use HQET Sum Rules to determine perturbative part of dimension-7 matrix elements

https://arxiv.org/abs/1606.06054
https://arxiv.org/abs/1711.02100
https://arxiv.org/abs/1904.00940
https://arxiv.org/abs/1909.11087
https://arxiv.org/abs/hep-ph/0703244
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∆B = 0 Operators 7

ä For lifetimes, we consider the dimension-6 ∆B = 0 operators:

Qq
1 = b̄αγµ(1− γ5)qα q̄βγµ(1− γ5)bβ, ⟨Qq

1⟩ = ⟨Bq|Qq
1|Bq⟩ = f 2BqM

2
BqB

q
1,

Qq
2 = b̄α(1− γ5)qα q̄β(1− γ5)bβ, ⟨Qq

2⟩ = ⟨Bq|Qq
2|Bq⟩ =

M 2
Bq

(mb + mq)2
f 2BqM

2
BqB

q
2,

T q
1 = b̄αγµ(1− γ5)(T a)αβqβ q̄γγµ(1− γ5)(T a)γδbδ, ⟨T q

1 ⟩ = ⟨Bq|T q
1 |Bq⟩ = f 2BqM

2
Bqϵ

q
1,

T q
2 = b̄α(1− γ5)(T a)αβqβ q̄γ(1− γ5)(T a)γδbδ, ⟨T q

2 ⟩ = ⟨Bq|T q
2 |Bq⟩ =

M 2
Bq

(mb + mq)2
f 2BqM

2
Bqϵ

q
2.

ä In VIA, Bq
i = 1 and ϵq

i = 0

ä Further dimension-7 four-quark operators, e.g. [King et al. ’21]

Pq
1 = mq(b̄α(1− γ5)qα)(q̄β(1− γ5)bβ), Sq

1 = mq(b̄α(1− γ5)(Ta)αβqβ)(q̄γ(1− γ5)(Ta)γδbδ),

Pq
2 =

1

mb
(b̄α←−D νγµ(1− γ5)Dνqα)(q̄βγµ(1− γ5)bβ), Sq

2 =
1

mb
(b̄α←−D νγµ(1− γ5)(Ta)αβDνqβ)(q̄γγµ(1− γ5)(Ta)γδbδ),

Pq
3 =

1

mb
(b̄α←−D ν(1− γ5)Dνqα)(q̄β(1 + γ5)bβ), Sq

3 =
1

mb
(b̄α←−D ν(1− γ5)(Ta)αβDνqβ)(q̄γ(1 + γ5)(Ta)γδbδ)

https://arxiv.org/abs/2109.13219
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Current Status: ∆B = 0 Matrix Elements 8

ä Sum Rules:

å Subleading condensate contributions calculated [Baek, Lee, Liu, Song ’97], [Cheng, Yang ’98]

å Matrix elements calculated recently á for Bs mesons [King, Lenz, Rauh ’21]

á for Bd, B+ mesons [Kirk, Lenz, Rauh ’17]

å ‘Eye’ contractions also determined for the first time in [King, Lenz, Rauh ’21]

å Dimension-7 matrix elements to be calculated

ä Lattice:

å Early lattice studies 20 years ago [Pierro, Sachrajda ’98]
[Becirevic ’01]

å We aim to provide first ∆B = 0 matrix element determinations on the lattice

å Renormalisation of lattice matrix elements is non-trivial

å Need a novel scheme to renormalise matrix elements...

. . .+

b

b

q q

qs qs

+ · · · = C̃6



. . . +

b b

q q

qs qs

+ . . .



https://arxiv.org/abs/hep-ph/9709386
https://arxiv.org/abs/hep-ph/9805222
https://arxiv.org/abs/2112.03691
https://arxiv.org/abs/1711.02100
https://arxiv.org/abs/2112.03691
https://arxiv.org/abs/hep-lat/9805028
https://arxiv.org/abs/hep-ph/0110124
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Gradient Flow 9

ä Formulated by [Lüscher ’10], [Lüscher ’13] á scale setting, RG β-function, renormalisation...

ä Introduce auxiliary dimension, flow time t as a way to regularise the UV

ä Extend gauge and fermion fields in flow time and express dependence with first-order differential
equations:

∂tBµ(t, x) = Dν(t)Gνµ(t, x), Bµ(0, x) = Aµ(x),
∂tχ(t, x) = D2(t)χ(t, x), χ(0, x) = q(x).

ä Re-express effective Hamiltonian in terms of ‘flowed’ operators:

Heff =
∑

n
CnOn =

∑
n

∼
Cn(t)

∼
On(t).

ä Relate to regular operators in ‘small-flow-time expansion’:
∼
On(t) =

∑
m

ζnm(t)Om + O(t)

‘flowed’ MEs calculated on lattice
replacing Aµ, q→ Bµ, χ

matching matrix
calculated perturbatively

 R. Harlander, The perturbative Gradient Flow and its applications, Siegen 2022

Vertices

regular 3-gluon vertex

new Feynman
diagrams

[R. Harlander]

https://arxiv.org/abs/1006.4518
https://arxiv.org/abs/1302.5246
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Gradient Flow 10

ä RG β function:

β(g2GF) = µ2dg2GF
dµ2

= −tdg2GF
dt

ä Define the gradient flow renormalised
coupling gGF

ä Coloured data shows lattice predictions
at bare couplings

ä Grey band shows continuum limit

transformation that is appropriate to define real-space RG
blocked quantities, but it is not an RG transformation as it
lacks the crucial step of coarse graining. However, coarse
graining can be incorporated when calculating expectation
values. In particular, expectation values of local operators,
like the energy density that enters the definition of the GF
coupling, are identical with or without coarse graining.
When the dimensionless GF time t=a2 is related to the
RG scale change as b ∝

ffiffiffiffiffiffiffiffiffi
t=a2

p
, the GF transformation

describes a continuous real-space RG transformation.
The topology of RG flow on the chiral m ¼ 0 critical

surface in an asymptotically free gauge-fermion system
is sketched in Fig. 2. g1 represents the relevant gauge
coupling at the Gaussian fixed point (GFP), while g2 refers
to all other irrelevant couplings. The GFP is on the g1 ¼ 0
(lattice spacing a ¼ 0) surface and the renormalized
trajectory (RT) emerging from the GFP describes the cutoff
independent continuum limit at finite renormalized cou-
pling. Numerical simulations are performed with an action

characterized by a set of bare couplings. If this action is in
the vicinity of the GFP or its RT, the typical RG flow
approaches the RT and follows it as the energy scale is
decreased from the cutoff toward the infrared as indicated
by the blue lines. RG flows starting at different bare
couplings approach the RT differently, but once the
irrelevant couplings have died out, they all follow the
same 1-dimensional renormalized trajectory and describe
the same continuum physics. The RT of chirally broken
systems continues to g1 → ∞, while conformal systems
have an IRFP on the RT that stops the flows from either
direction. While the topology of the RG space is universal,
the location of the fixed points and their corresponding RTs
depend on the RG transformation.
The RT is a 1-dimensional line, therefore, a dimension-

less (zero canonical and zero anomalous dimension) local
operator with nonvanishing expectation value can be used
to define a running coupling along the RT. The simplest
such quantity in gauge-fermion systems is the energy
density multiplied by b4 (or t2) to compensate for its
canonical dimension. This is indeed the quantity defined
in Ref. [14] as the gradient flow coupling g2GFðt; g20Þ ∝
ht2EðtÞi. EðtÞ, the energy density at flow time t, can be
estimated through various local lattice operators like the
plaquette or clover operators. At large flow time irrelevant
terms in the lattice definition of EðtÞ die out. In that limit
g2GF approaches a continuum renormalized running cou-
pling and its derivative is the RG β function

βðg2GFÞ ¼ μ2
dg2GF
dμ2

¼ −t
dg2GF
dt

: ð1Þ

The above definition is valid in infinite volume only. In
a box of finite length L the RG equation contains the
term Lðdg2GF=dLÞ, a difficult to estimate quantity. In our
approach we extrapolate L=a → ∞ at fixed t=a2 which also
sets the renormalization scheme c ¼ 0. The continuum
limit of the β function is obtained at fixed g2GF while taking
t=a2 → ∞. In QCD-like systems this automatically forces
the bare gauge coupling toward zero, the critical surface of
the GFP.
The Wilsonian RG description suggests that lattice

simulations at a single bare coupling can predict, up to
controllable cutoff corrections, a finite part of the RG β
function. In practice the finite lattice volume limits the
range where the infinite volume β function is well approxi-
mated. Chaining together several bare coupling values, we
can cover the entire RT while the overlap and deviation
between different volume and bare coupling predictions
characterizes the finite volume and finite cutoff effects as
illustrated in Fig. 1.
Once the GF coupling is determined and its derivative is

calculated as the function of the GF time, the continuous β
function calculation requires two steps:
(A) Infinite volume extrapolation at every GF time.

action parameter space

RT trajectory 

g1

g2

bare action

GFP

continuum physics

FIG. 2. Sketch of RG flow in the multidimensional action
parameter space.
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FIG. 1. Continuous RG β function of 2-flavor QCD in the GF
scheme. The grey band is the result of our full analysis with
statistical uncertainties only. The colored data points show the
lattice predictions for 323 × 64 (“þ”) and 243 × 64 (“×”)
ensembles in a wide range of bare couplings without any
extrapolation or interpolation. Only flow times t=a2 ∈
ð2.0; 3.64Þ are shown. The dashed and dash-dotted lines are
the perturbative 1- and 2-loop βðg2Þ functions.
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transformation that is appropriate to define real-space RG
blocked quantities, but it is not an RG transformation as it
lacks the crucial step of coarse graining. However, coarse
graining can be incorporated when calculating expectation
values. In particular, expectation values of local operators,
like the energy density that enters the definition of the GF
coupling, are identical with or without coarse graining.
When the dimensionless GF time t=a2 is related to the
RG scale change as b ∝

ffiffiffiffiffiffiffiffiffi
t=a2

p
, the GF transformation

describes a continuous real-space RG transformation.
The topology of RG flow on the chiral m ¼ 0 critical

surface in an asymptotically free gauge-fermion system
is sketched in Fig. 2. g1 represents the relevant gauge
coupling at the Gaussian fixed point (GFP), while g2 refers
to all other irrelevant couplings. The GFP is on the g1 ¼ 0
(lattice spacing a ¼ 0) surface and the renormalized
trajectory (RT) emerging from the GFP describes the cutoff
independent continuum limit at finite renormalized cou-
pling. Numerical simulations are performed with an action

characterized by a set of bare couplings. If this action is in
the vicinity of the GFP or its RT, the typical RG flow
approaches the RT and follows it as the energy scale is
decreased from the cutoff toward the infrared as indicated
by the blue lines. RG flows starting at different bare
couplings approach the RT differently, but once the
irrelevant couplings have died out, they all follow the
same 1-dimensional renormalized trajectory and describe
the same continuum physics. The RT of chirally broken
systems continues to g1 → ∞, while conformal systems
have an IRFP on the RT that stops the flows from either
direction. While the topology of the RG space is universal,
the location of the fixed points and their corresponding RTs
depend on the RG transformation.
The RT is a 1-dimensional line, therefore, a dimension-

less (zero canonical and zero anomalous dimension) local
operator with nonvanishing expectation value can be used
to define a running coupling along the RT. The simplest
such quantity in gauge-fermion systems is the energy
density multiplied by b4 (or t2) to compensate for its
canonical dimension. This is indeed the quantity defined
in Ref. [14] as the gradient flow coupling g2GFðt; g20Þ ∝
ht2EðtÞi. EðtÞ, the energy density at flow time t, can be
estimated through various local lattice operators like the
plaquette or clover operators. At large flow time irrelevant
terms in the lattice definition of EðtÞ die out. In that limit
g2GF approaches a continuum renormalized running cou-
pling and its derivative is the RG β function

βðg2GFÞ ¼ μ2
dg2GF
dμ2

¼ −t
dg2GF
dt

: ð1Þ

The above definition is valid in infinite volume only. In
a box of finite length L the RG equation contains the
term Lðdg2GF=dLÞ, a difficult to estimate quantity. In our
approach we extrapolate L=a → ∞ at fixed t=a2 which also
sets the renormalization scheme c ¼ 0. The continuum
limit of the β function is obtained at fixed g2GF while taking
t=a2 → ∞. In QCD-like systems this automatically forces
the bare gauge coupling toward zero, the critical surface of
the GFP.
The Wilsonian RG description suggests that lattice

simulations at a single bare coupling can predict, up to
controllable cutoff corrections, a finite part of the RG β
function. In practice the finite lattice volume limits the
range where the infinite volume β function is well approxi-
mated. Chaining together several bare coupling values, we
can cover the entire RT while the overlap and deviation
between different volume and bare coupling predictions
characterizes the finite volume and finite cutoff effects as
illustrated in Fig. 1.
Once the GF coupling is determined and its derivative is

calculated as the function of the GF time, the continuous β
function calculation requires two steps:
(A) Infinite volume extrapolation at every GF time.
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FIG. 2. Sketch of RG flow in the multidimensional action
parameter space.
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FIG. 1. Continuous RG β function of 2-flavor QCD in the GF
scheme. The grey band is the result of our full analysis with
statistical uncertainties only. The colored data points show the
lattice predictions for 323 × 64 (“þ”) and 243 × 64 (“×”)
ensembles in a wide range of bare couplings without any
extrapolation or interpolation. Only flow times t=a2 ∈
ð2.0; 3.64Þ are shown. The dashed and dash-dotted lines are
the perturbative 1- and 2-loop βðg2Þ functions.
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ä Need to remove UV fluctuations at small flow time
ä Maximum flow time restricted to avoid

finite volume effects
ä RG flows of different bare lattice parameters

approach ‘renormalised trajectory’ differently

[Hasenfratz, Witzel ’19]

[Hasenfratz, Witzel ’19]

https://arxiv.org/abs/1910.06408
https://arxiv.org/abs/1910.06408


CRC TRR 227 Project C1c
Matrix Elements for B-mixing and Lifetimes Matthew Black

Matrix Elements with Gradient Flow (Schematic) 11

ä Standard Lattice Calculation

For a set of lattice ensembles with
varying bare parameters

Calculate 2-point and 3-point
correlation functions

Extract bare
Matrix Elements

Lattice á MS
Operators can mix

Continuum limit

Final Result

∆B = 0???

ä With Gradient Flow Renormalisation

For a set of lattice ensembles with
varying bare parameters

Evolve gluon and propagator
fields in flow time t

Calculate 2-point and 3-point correlation
functions for each discrete t

Extract GF Matrix
Elements for each t

Continuum limit GF á MS
matching

Final Result
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Project Plan 12

1) Sum rules for dimension-7 ∆B = 2 operators for mixing (Lenz, Pivovarov)

2) Sum rules for dimension-7 ∆B = 0 operators for lifetimes (Lenz, Pivovarov)

3) Gradient flow perturbative matching matrix calculation (Harlander, Lange)

4) Flowed matrix elements from lattice QCD (Harlander, Witzel, Black)
å Use dimension-6 ∆B = 2 operators as proof of principle
å Dimension-7 ∆B = 2 operators and dimension-6,-7 ∆B = 0 operators

5) Extrapolation to zero flow time (Harlander, Witzel, Lange)

6) B-meson phenomenology in the SM and beyond (Lenz, Harlander, Nierste)
å Analysis of SM predictions and comparisons with experiment
å Determination of CKM matrix elements and unitarity triangle parameters
å BSM physics in mixing and lifetimes
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Summary 13

ä Covered the plans for Project C1c of the next funding application of the CRC

ä First time calculations using HQET sum rules of dimension-7 matrix elements

ä Pioneer a new Gradient Flow renormalisation and matching scheme between lattice and MS

ä Validate this GF scheme with well-known ∆B = 2 matrix elements

ä Provide first lattice calculations of ∆B = 0 matrix elements

ä Study implications of theoretical predictions on the SM and BSM theories

Thank you for your attention!


