Automating the calculation of jet functions

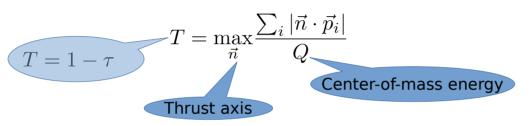
Kevin Brune

with Guido Bell, Goutam Das, and Marcel Wald

Young Scientists Meeting, KIT 8.06.2022

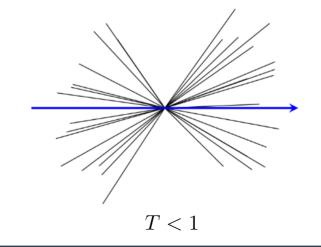
Motivation

• Definition:



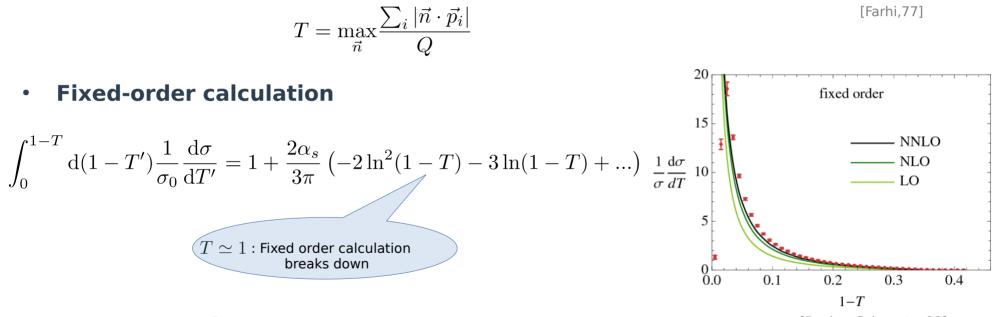
[Farhi,77]

• Describe how pencil-like an event is.



Motivation

• Definition:

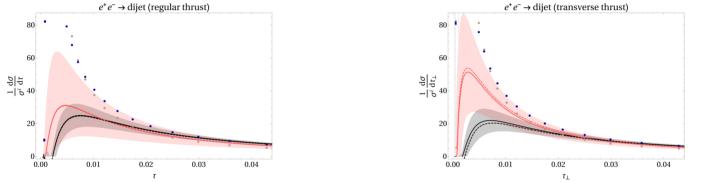


[Becher,Schwartz ,08]

• ⇒ Resummation

Motivation

Resummation is useful to correctly describe observables at colliders

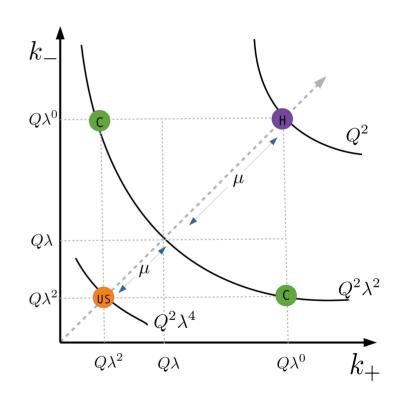


- [Becher, Tormo, Piclum, 16]
- SCET has emerged as an important tool to study IR sector of QCD and resum large logarithms in a systematic framework
- The backbone relies on the underlying factorisation theorems

Soft-Collinear Effective Theory (SCET)

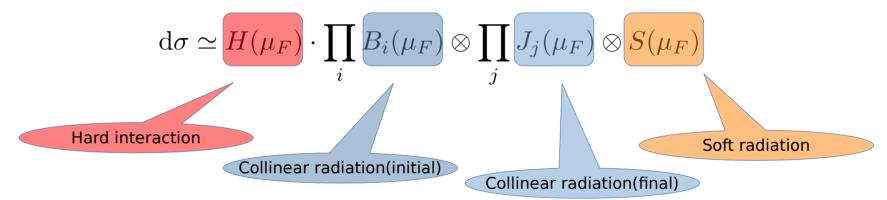
• Effective theory:

- Soft and collinear modes
- Integrating out hard modes
- At leading power soft and collinear modes decouple
- Typical scaling
 - Hard Region: $k_{H}^{\mu} \sim (1,1,1)Q$
 - Collinear Region: $k_c^{\mu} \sim (1, \lambda^2, \lambda) Q$
 - Ultra-soft Region: $k^{\mu}_{us} \sim (\lambda^2, \lambda^2, \lambda^2) Q$
- ⇒ Complete Factorisation



Factorisation

• Generic factorisation theorem in SCET



- Each function can be computed perturbatively
- Resummation is performed by calculating them at their characteristic scales and evolving them to a common scale.

Resummation

- Resummation through RGE
- Hard function RGE:

$$\frac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\ln\mu} = \gamma_{\mathrm{Hard}}(Q,\mu)H(Q,\mu)$$

[Becher,Neubert,10]

- Hard anomalous dimension

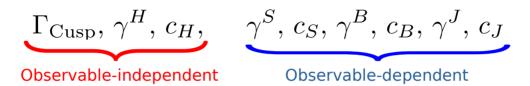
Hard

 $\mu_{B} \longrightarrow \begin{array}{c} Jet \\ Beam \\ \mu - RGE \\ \mu_{S} \longrightarrow \begin{array}{c} Soft \end{array}$

 μ_H -

Ingredients for Resummation

We need to have all anomalous dimensions and matching coefficients

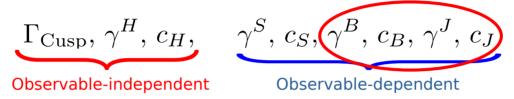


- Observable-independent quantities are known
- Soft, Beam and Jet quantities are computed on a case-by-case basis
- Need two-loop matching coefficients to achieve NNLL' accuracy

	$\Gamma_{\mathrm{Cusp}},eta$	$\gamma^{H,S,B,J}$	$c_{H,S,B,J}$
NLL	2-loop	1-loop	1
NLL'	2-loop	1-loop	α_s
NNLL	3-loop	2-loop	α_s
NNLL'	3-loop	2-loop	α_s^2

Ingredients for Resummation

We need to have all anomalous dimensions and matching coefficients



- Observable-independent quantities are known
- Soft, Beam and Jet quantities are computed on a case-by-case basis
- Need two-loop matching coefficients to achieve NNLL' accuracy

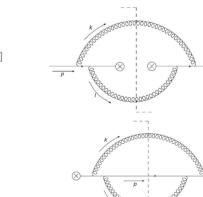
	$\Gamma_{\mathrm{Cusp}}, eta$	$\gamma^{H,S,B,J}$	$c_{H,S,B,J}$
NLL	2-loop	1-loop	1
NLL'	2-loop	1-loop	α_s
NNLL	3-loop	2-loop	$lpha_s$
NNLL'	3-loop 🔇	2-loop	α_s^2

Automation of Soft/Jet/Beam functions

- Set up a general framework to automatically calculate Jet, Beam, and Soft functions for ٠ a general class of observables
- Soft functions ٠

2-particle final state

[Bell.Rahn.Talbert.18.20]



- Complicated measurement function
- **Beam functions** ٠

- 2-particle final state [Bell,KB,Das,Wald (in progress)]
- Non-trivial matching onto PDFs
- Jet functions **3-particle final state** ٠
 - Complicated divergence structures

Automation of Soft/Jet/Beam functions

 Set up a general framework to automatically calculate Jet, Beam, and Soft functions for a general class of observables

Jet functions

• Definitions:

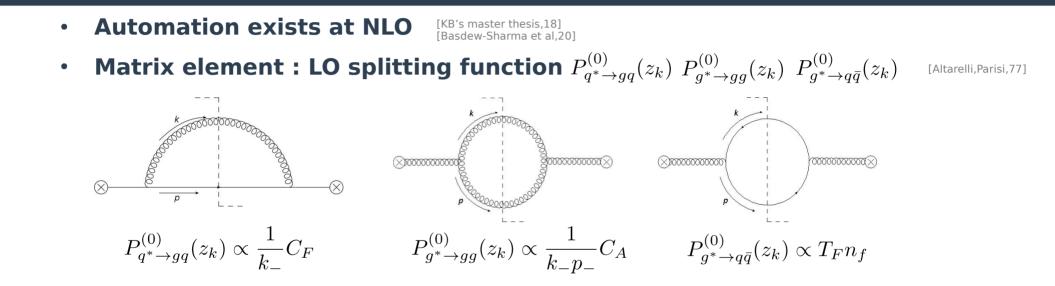
– Quark jet function $\,J_q(au,\mu)\,$

$$\left[\frac{\cancel{m}}{2}\right] J_q(\tau,\mu) = \frac{1}{\pi} \sum_{i \in X} (2\pi)^d \delta\left(Q - \sum_i k_i^-\right) \delta^{d-2} \left(\sum_i k_i^\perp\right) \mathcal{M}(\tau,\{k_i\}) \left\langle 0 \mid \chi \mid X \right\rangle \left\langle X \mid \bar{\chi} \mid 0 \right\rangle$$

– Gluon jet function $~J_g(au,\mu)~$

$$-g_{\perp}^{\mu\nu}\frac{\pi}{Q}\delta^{AB}g_{s}^{2}J_{g}(\tau,\mu) = \sum_{i\in X}(2\pi)^{d}\delta\left(Q - \sum_{i}k_{i}^{-}\right)\delta^{d-2}\left(\sum_{i}k_{i}^{\perp}\right)\mathcal{M}(\tau,\{k_{i}\})\left\langle 0|\mathcal{A}_{\perp}^{\mu,A}|X\rangle\left\langle X|\mathcal{A}_{\perp}^{\nu,B}|0\rangle\right\rangle$$
Phase space constraints
Collinear ME
Generic measurement function
$$\mathcal{M}(\tau,\{k_{i}\})$$

NLO



Phase space parametrisation

$$z_k = \frac{k_-}{Q}, \ k_T = \sqrt{k_+k_-}, \ t_k = \frac{1 - \cos(\theta_k)}{2}$$

Measurement

Generic parametrisation of the measurement function • in Laplace space

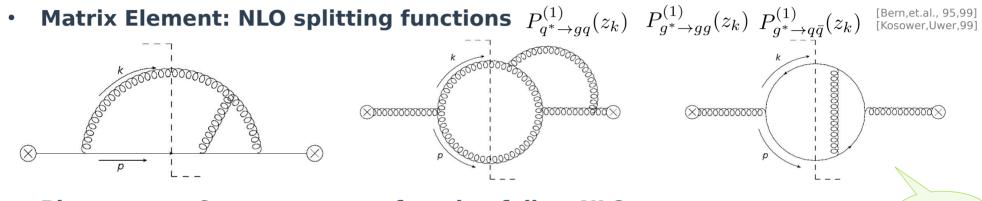
$$\mathcal{M}_1(\tau, z_k, k_T, t_k) = \exp\left(-\tau k_T \left(\frac{k_T}{z_k \bar{z}_k Q}\right)^n f(z_k, t_k)\right)$$
Non-zero in the singular limits of ME

- **Example :**
 - n = 1Thrust : $f(z_k, t_k) = 1$

 - Transverse Thrust : n = 1Angularities : n = 1 A $f(z_k, t_k) = 16 \frac{t_k \bar{t}_k}{\sin \theta_B}$ $f(z_k, t_k) = (1 z)^{1 A} + z^{1 A}$
- **Master Formula**

 $J^{(1)}(\tau,\mu) \sim \Gamma\left(\frac{-2\epsilon}{1+n}\right) \int_{0}^{1} \mathrm{d}z_{k} \mathrm{d}t_{k} \ z_{k}^{-1-2\frac{n}{1+n}\epsilon} \bar{z}_{k}^{-1-2\frac{n}{1+n}\epsilon} \left(z_{k}\bar{z}_{k} \left(P_{q^{*}}^{(0)}(z_{k}), P_{g^{*} \to gg}^{(0)}(z_{k}), P_{g^{*} \to q\bar{q}}^{(0)}(z_{k})\right)\right) (4t_{k}\bar{t}_{k})^{-\frac{1}{2}-\epsilon} f(z_{k}, t_{k})^{\frac{2}{1+n}\epsilon}$ All singularities are factorised !

NNLO real-virtual contribution



- Phase space & measurement function follow NLO
- Master formula

J

$$\mathcal{O}(\epsilon^{-2})^{\mathrm{RV}}(\tau,\mu) \sim V(\epsilon) \Gamma\left(\frac{-4\epsilon}{1+n}\right) \int_{0}^{1} \mathrm{d}z_{k} \mathrm{d}t_{k} \ z_{k}^{-1-4\frac{n}{1+n}\epsilon} \bar{z}_{k}^{-1-4\frac{n}{1+n}\epsilon} \left(z_{k} \bar{z}_{k} \left(\tilde{P}_{q^{*} \rightarrow qg}^{(1)}(z_{k}), \tilde{P}_{g^{*} \rightarrow qg}^{(1)}(z_{k}), \tilde{P}_{g^{*} \rightarrow q\bar{q}}^{(1)}(z_{k})\right)\right) (4t_{k} \bar{t}_{k})^{-\frac{1}{2}-\epsilon} f(z_{k}, t_{k})^{\frac{4}{1+n}\epsilon} \mathcal{O}(\epsilon^{-2})$$

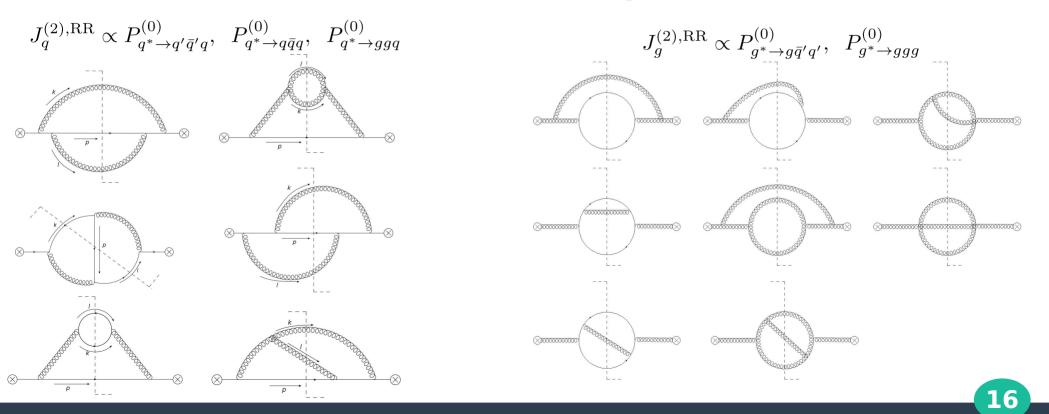
$$All \ \text{singularities are factorised } !$$

 $\sim \mathcal{O}(20)$

NNLO real-real contribution

Matrix element: LO triple collinear splitting function

[Catani,Grazzini,99]



NNLO real-real contribution: CF TF nf

• Sample divergence structure:

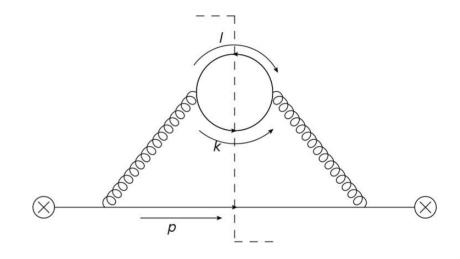
$$P_{q^* \to q'\bar{q}'q}^{(0)} \in \frac{1}{s_{123}^2 s_{12}^2 (z_1 + z_2)^2}$$

Phase space parametrisation

$$z_{12} = \frac{k_{-} + l_{-}}{Q}, \quad b = \frac{k_{T}}{l_{T}}$$
$$a = \frac{k_{-} l_{T}}{k_{T} l_{-}}, \quad t_{kl} = \frac{1 - \cos(\theta_{kl})}{2}$$
$$q_{T} = \sqrt{(k_{-} + l_{-})(k_{+} + l_{+})}$$

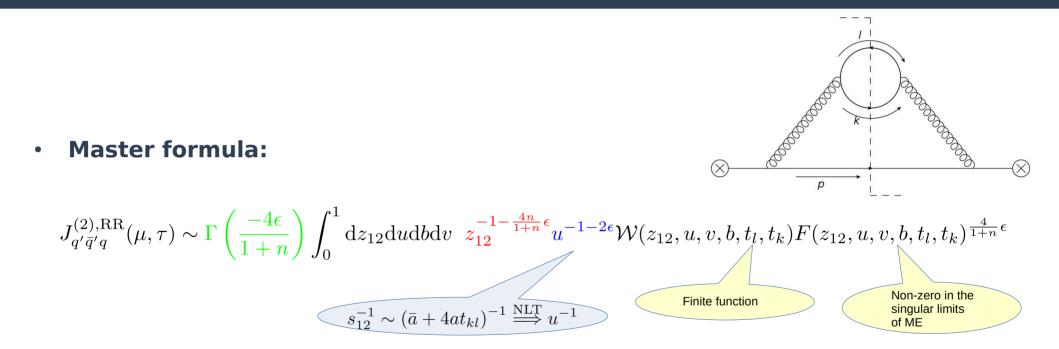
 Generic parametrisation of the measurement function in Laplace space

$$\mathcal{M}_2(\tau, k, l, p) = \exp\left(-\tau q_T \left(\frac{q_T}{z_{12}Q}\right)^n F(z_{12}, b, a, t_{kl}, t_l, t_k)\right)$$



$$s_{123} = s_{12} + s_{13} + s_{23}, \quad s_{12} = (2k \cdot l), \quad s_{13} = (2k \cdot p), \quad s_{23} = (2l \cdot p)$$
$$z_1 = \frac{k_-}{Q}, \quad z_2 = \frac{l_-}{Q}, \quad z_3 = \frac{p_-}{Q}$$

NNLO real-real contribution



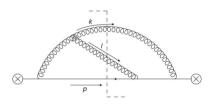
All singularities are factorised !

NNLO real-real contribution

Divergence structures

 $\frac{1}{z_1 z_2 s_{13} s_{23}}, \frac{1}{z_1 z_2 s_{13} s_{123}}, \frac{1}{z_1 (1-z_1) s_{13} s_{23}} \dots$

Parametrisation similar depending on s_{ij}

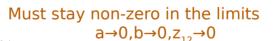


• Complications due to many overlapping singularities in ME

[Heinrich 08]

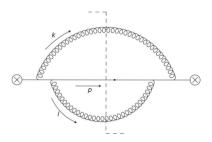
Additional complications from measurements

- Thrust :
$$F \sim b + a(1 + z_{12})$$



- Angularity : $F \sim a^{\frac{1-n}{2}} (a^n + b) + a^{\frac{1+n}{2}} z_{12}^n$
- Strategy:
 - Sector decomposition
 - Selector functions
 - Non-linear transformation

Factorised singularities in all regions



SCET renormalization

• Jet function fulfils the RG equation

$$\frac{\mathrm{d}}{\mathrm{d}\,\ln\mu} J_{q,g}(\tau,\mu) = \left[2g(n)\Gamma_{\mathrm{Cusp}}\left(\alpha_s\right)L + \gamma^J\left(\alpha_s\right) \right] J_{q,g}(\tau,\mu)$$
$$g(n) = \frac{1+n}{n}, \ L = \ln\left(\frac{\mu\bar{\tau}}{(Q\bar{\tau})^{\frac{n}{1+n}}}\right), \ \bar{\tau} = \tau e^{\gamma_E}$$

• Two loop jet function RGE solution

$$\begin{split} J_{q,g}(\tau,\mu) &= 1 + \left(\frac{\alpha_s}{4\pi}\right) \left\{ g(n) \Gamma_0 L^2 + \frac{\gamma_0'}{2} L + \frac{c_1'}{2} \right\} + \left(\frac{\alpha_s}{4\pi}\right)^2 \left\{ g(n)^2 \frac{\Gamma_0^2}{2} L^4 + g(n) \left(\gamma_0^J + \frac{2\beta_0}{3}\right) \Gamma_0 L^3 \right. \\ &+ \left(g(n) \left(\Gamma_1 + \Gamma_0 c_1^J\right) + \gamma_0^J \left(\frac{\gamma_0^J}{2} + \beta_0\right) \right) L^2 + \left(\frac{\gamma_1^J}{2} + c_1^J \left(\gamma_0^J + 2\beta_0\right)\right) L + \frac{c_2^J}{2} \right\} \end{split}$$
 Extraction

• Implementation in pySecDec [Heinrich et.al. 17,18,21]

Thrust

$$\omega_T = k_+ + l_+ + p_+$$

Analytical[1]	This work		$c_2^{J_q}$	Analytical[1]	This work
-26.699	-26.699(5)		$C_F T_F n_f$	10.787	10.787(9)
21.220	21.221(94)		$C_{\rm F}^2$	4.655	4.658(117)
-6.520	-6.522(89)		$C_{\rm F} {\rm C}_{\rm A}$	2.165	2.167(132)
		,			
Analytical[2]	This work		$c_2^{J_g}$	Analytical[2]	This work
0	$0 \pm 2 \cdot 10^{-4}$		$(T_F n_f)^2$	2.014	2.014(1)
-4	-3.999(13)		$C_F T_F n_f$	0.900	0.904(50)
-9.243	-9.242(20)		$C_A T_F n_f$	-13.725	-13.727(69)
9.297	9.297(55)		C_A^2	3.197	3.195(168)
	-26.699 21.220 -6.520 Analytical[2] 0 -4 -9.243	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} -26.699 & -26.699(5) \\ 21.220 & 21.221(94) \\ -6.520 & -6.522(89) \\ \hline \\ \text{Analytical[2]} & \text{This work} \\ \hline \\ 0 & 0 \pm 2 \cdot 10^{-4} \\ -4 & -3.999(13) \\ -9.243 & -9.242(20) \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

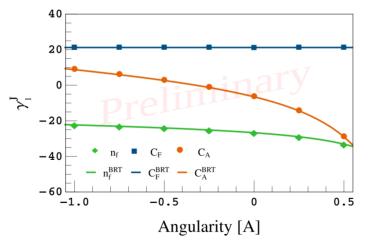
[[1]. Becher, Neubert 06,[2]. Becher, Bell 10]

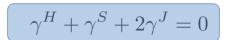
Angularities

Measurement function

$$\omega_{Ang} = k_{+}^{1-A/2} k_{-}^{A/2} + l_{+}^{1-A/2} l_{-}^{A/2} + p_{+}^{1-A/2} p_{-}^{A/2}$$

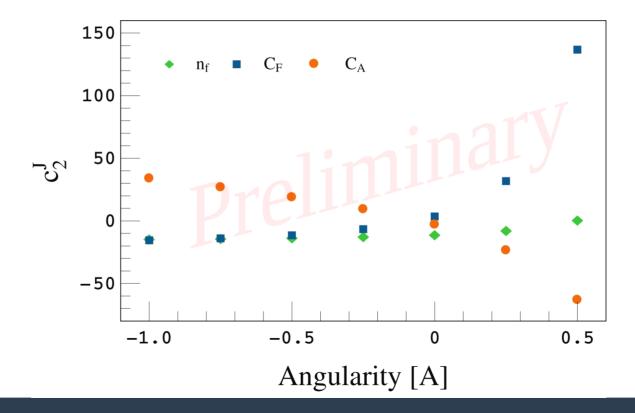
Check jet anomalous dimensions @ NNLO (against SoftSERVE)





Angularities

Matching coefficients at two loops



Transverse Thrust

$$\omega_{TT} = 4\sin\theta_B \left[(|k_{\perp}| - \left| \vec{n}_{\perp} \cdot \vec{k} \right|) + (|l_{\perp}| - \left| \vec{n}_{\perp} \cdot \vec{l} \right|) + (|p_{\perp}| - |\vec{n}_{\perp} \cdot \vec{p}|) \right]$$

$\gamma_1^{J_q}$	Numerical[1]	Numerical[2]	This work	ſ	$\mathrm{c}_2^{J_q}$	This work
C _F T _F n _f	-41^{+2}_{-3}	-42.183(5)	-42.172(18)	ſ	$C_F T_F n_f$	-5.911(34)
$C_{\rm F}^2$	21.220	21.220	21.610(338)		$\mathrm{C_F^2}$	42.548(592)
$C_{\rm F}C_{\rm A}$	157^{+20}_{-30}	167.54(6)	167.345(312)		$\bar{C_FC_A}$	116.663(607)
$\gamma_1^{J_g}$	Numerical[1]	Numerical[2]	This work		$\mathrm{c}_2^{J_g}$	This work
$(T_F n_f)^2$	0	0	0 ± 10^{-4}	[$(T_F n_f)^2$	7.862(1)
$C_F T_F n_f$	-4	-4	-3.997(25)		$C_{\rm F}T_{\rm F}n_{\rm f}$	-47.210(116)
$C_A T_F n_f$	$-16.3^{+1.5}_{-1.0}$	-16.985(2)	-16.953(43)		$C_{\rm A}T_{\rm F}n_{\rm f}$	30.691(192)
C_A^2	91^{+15}_{-10}	96.329(30)	96.329(208)		\mathcal{C}^2_A	172.918(817)

24

[[1]. Becher, Tormo, Piclum 16,[2]. Bell, Rahn, Talbert 19]

Conclusion

- Developed an automated framework to calculate Jet for a wide class of observables at NNLO.
- Using a suitable phase-space parametrisation we are able to completely disentangle IR divergences into monomial form.
- We have presented the first results for event shape observables Thrust, Angularities and Transverse Thrust.
- Future plans:
 - Extend framework to SCET II observables & jet algorithms
 - Development of a automated C++ code.