

ttH production in the Higgs characterisation model at NLO in QCD with full off-shell effects

Based on <u>arXiv:2205.09983</u>

Jonathan Hermann, RWTH Aachen University In collaboration with Daniel Stremmer, RWTH Aachen University and Małgorzata Worek, RWTH Aachen University

> Federal Ministry of Education and Research

SPONSORED BY THE

Young Scientists Meeting of the CRC TRR 257 • 10.06.2022

ttH production:

- Observed for the first time in 2018, <u>ATLAS</u>
 <u>'18, CMS'18</u>
- Allows for direct probe of Yukawa interaction
- Top is heaviest SM particle
 - \rightarrow strongest Yukawa coupling
- Measurement of CP-odd component would indicate new physics

SM-like interpretation:

- Still freedom in the CP-state of the Higgs boson
- SM prediction: Higgs is CP-even
- CP-odd state excluded with 3.9 σ
- $\alpha_{CP} > 43^{\circ}$ excluded at 95% CL if CP-even and CP-odd couplings are equal

<u>ATLAS '20</u>

BSM interpretations:

- Extended Higgs sector
- 2HDM

...

Introduction

Main Goal:
$$pp \to e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b\bar{b} \, H$$
 at $\mathcal{O}(\alpha_S^3 \alpha^5)$

Provide state-of-the-art predictions for ttH production with possible mixing between CP-even (SM) and CP-odd Higgs states at NLO in QCD including full off-shell effects using HELAC-NLO

Questions:

- Which observables are sensitive to the CP-state?
- How are the different CP-states affected by NLO QCD corrections?
- How are the different CP-states affected by off-shell effects?

Institute for Theoretical and Cosmology

Theory status

SM Higgs boson (stable tops):

• ttH @ NLO in QCD+EW with NNLL soft gluon resummation Broggio et al. '19, Kulesza, et al. '20

SM Higgs boson (with top quark decays):

- ttH @ NLO in QCD with full off-shell effects Denner, Feger '15
- ttH @ NLO in QCD+EW with full off-shell effects Denner, Lang, Pellen, Uccirati '17
- ttH @ NLO in QCD with full off-shell effects + Higgs decays in NWA Stremmer, Worek '22

Higgs boson with CP-odd admixture:

- ttX @ NLO in QCD with LO decays Artoisenet et al. '13, Demartin et al. '14
 - HC_NLO_X0 model <u>Artoisenet et al. '13</u>, <u>Maltoni et al. '14</u>, <u>Demartin et al. '14</u>

Off-shell effects

Process:
$$pp \to e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b\bar{b} \, H$$
 at $\mathcal{O}(\alpha_S^2 \alpha^5)$

Full off-shell = DR + SR + NR + interference + Breit-Wigner

NWA = DR with on-shell masses
$$\frac{\Gamma}{m} \rightarrow 0$$

 $\mathcal{O}(\Gamma_t/m_t) \sim 0.8\%$

The Higgs characterisation framework (HCF)

Artoisenet et al. '13 Maltoni et al. '14 Demartin et al. '14

The Higgs characterisation framework (HCF)

Three reference points:

• **CP-even:**
$$\alpha_{\rm CP} = 0 \longrightarrow \cos(\alpha_{\rm CP}) = 1, \ \sin(\alpha_{\rm CP}) = 0$$

• CP-odd:
$$\alpha_{CP} = \frac{\pi}{2} \longrightarrow \cos(\alpha_{CP}) = 0, \ \sin(\alpha_{CP}) = 1$$

• CP-mixed: $\alpha_{CP} = \frac{\pi}{4} \longrightarrow \cos(\alpha_{CP}) = \sin(\alpha_{CP}) = \frac{1}{\sqrt{2}}$

Institute for Theoretical and Cosmology

Parameter choices

$\underline{\kappa_{Ht\bar{t}}}$

• Choose $\kappa_{Ht\bar{t}} = 1$ to recover SM results for $\alpha_{CP} = 0$

$\underline{\kappa_{At\bar{t}}}$

- Choose $\kappa_{At\bar{t}} = 1$ to have the same coupling as for CP-even part
- Choose $\kappa_{At\bar{t}} = 2/3$ to be consistent with gluon-gluon fusion (ggF) measurements (ATLAS '21)

$\underline{\kappa_{HVV}}$

$$\mathcal{L}_{HVV} = \kappa_{HVV} \left(\frac{g_{HZZ}}{2} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right) H$$

Parameter choices

$\underline{\kappa_{Ht\bar{t}}}$

• Choose $\kappa_{Ht\bar{t}} = 1$ o recover SM results for $\alpha_{CP} = 0$

$\underline{\kappa_{At\bar{t}}}$

- Choose $\kappa_{At\bar{t}} = 1$ to have the same coupling as for CP-even part
- Choose $\kappa_{At\bar{t}} = 2/3$ to be consistent with gluon-gluon fusion (ggF) measurements (ATLAS '21)

κ_{HVV}

- Choose $\kappa_{HVV} = 1$ to be consistent with vector-boson fusion (VBF) measurements (CMS '19)
- Choose $\kappa_{HVV} = \cos(\alpha_{CP})$ to avoid coupling of pseudoscalar particle to vector bosons (e.g. 2HDM)

Integrated fiducial cross-sections (NLO)

α_{CP}		Off-shell	NWA	Off-shell effects
0 (SM)	$\sigma_{ m LO}$ [fb] $\sigma_{ m NLO}$ [fb] $\sigma_{ m NLO_{ m LOdec}}$ [fb]	$\begin{array}{c} 2.0313(2)^{+0.6275(31\%)}_{-0.4471(22\%)}\\ 2.466(2)^{+0.027(1.1\%)}_{-0.112(4.5\%)}\\ -\end{array}$	$\begin{array}{c} 2.0388(2)^{+0.6290(31\%)}_{-0.4483(22\%)}\\ 2.475(1)^{+0.027(1.1\%)}_{-0.113(4.6\%)}\\ 2.592(1)^{+0.161(6.2\%)}_{-0.242(9.3\%)}\end{array}$	-0.37% -0.36%
	$\mathcal{K} = \sigma_{\rm NLO} / \sigma_{\rm LO}$	1.21	1.21 (LOdec: 1.27)	
π/4	$\sigma_{\rm LO}$ [fb] $\sigma_{\rm NLO}$ [fb] $\sigma_{\rm NLO_{LOdec}}$ [fb] $\mathcal{K} = \sigma_{\rm NLO} / \sigma_{\rm LO}$	$\begin{array}{c} 1.1930(2)^{+0.3742(31\%)}_{-0.2656(22\%)}\\ 1.465(2)^{+0.016(1.1\%)}_{-0.071(4.8\%)}\\ -\\ 1.23\end{array}$	$\begin{array}{c} 1.1851(1) \substack{+0.3707(31\%)\\-0.2633(22\%)}\\ 1.452(1) \substack{+0.015(1.0\%)\\-0.069(4.8\%)}\\ 1.517(1) \substack{+0.097(6.4\%)\\-0.144(9.5\%)}\\ 1.23(\text{LOdec: } 1.28) \end{array}$	0.66% 0.89%
π/2	$\sigma_{\rm LO}$ [fb] $\sigma_{\rm NLO}$ [fb] $\sigma_{\rm NLO_{\rm LOdec}}$ [fb]	$\begin{array}{c} 0.38277(6)^{+0.13123(34\%)}_{-0.09121(24\%)} \\ 0.5018(3)^{+0.0083(1.2\%)}_{-0.0337(6.7\%)} \\ -\end{array}$	$\begin{array}{c} 0.33148(3) {}^{+0.11240(34\%)}_{-0.07835(24\%)} \\ 0.4301(2) {}^{+0.0035(0.8\%)}_{-0.0264(6.1\%)} \\ 0.4433(2) {}^{+0.0323(7.3\%)}_{-0.0470(11\%)} \end{array}$	13.4% 14.3%
	$\mathcal{K} = \sigma_{ m NLO} / \sigma_{ m LO}$	1.31	1.30 (LOdec: 1.34)	

NLO corrections:

- 21% 31%
- Increase with the mixing angle
- NLO with LO decays overestimates
 NLO results by a few percent

Off-shell effects:

- Small for CP-even and CP-mixed Higgs boson
- Large effects for CP-odd Higgs boson

Integrated fiducial cross-sections (LO)

General behaviour:

- Larger corrections in distribution tails
- Corrections largest for CP-odd case
- Shape of K-factor similar between different CP-states
- Harder Higgs radiation in CP-odd case

Observables with top-quark decay products:

- Corrections largest for CP-odd case only for small transverse momenta
- For large momenta, CP-odd case receives smallest corrections -> smaller shape distortions
- Harder Higgs radiation in CP-odd case suppresses K-factor
- CP-even and CP-mixed very similar

Observables with top-quark decay products:

- Corrections largest for CP-odd case only for large opening angles
- For small opening angles, CP-odd case receives smallest corrections -> smaller shape distortions
- Harder Higgs radiation in CP-odd case suppresses K-factor
- CP-even and CP-mixed very similar

NLO corrections to top-quark decays:

- Almost no difference between the CP-states
- Significant shape distortions

Differential distributions

A Shape comparison:

- CP-even and CP-mixed similar, small difference in tails
- Tails much more pronounced in CP-odd case

Off-shell effects:

• Large effects on size and shape for

CP-odd Higgs boson

- Only small effects for CP-even and
 - **CP-mixed**

Differential distributions

A Shape comparison:

- CP-even and CP-mixed similar, large difference in tails
- In the tails, the CP-odd cross-section is actually the largest

Off-shell effects:

• Large effects for all CP-states above kinematic edge, largest for CP-odd

Differential distributions

Shape comparison:

- CP-even and CP-mixed similar, small differences around 1 and -1
- Significant differences for CP-odd case

• Off-shell effects:

Significant effects on size and shape for

CP-odd Higgs boson

- Only small effects for CP-even and
 - **CP-mixed**

Conclusions

- Which observables are sensitive to the CP-state?
 - Integrated fiducial cross-section (total rate)
 - Observables with kinematic edges ($M_{T2,t}, M_{e^+b}$)
 - Observables involving decay products of both top quarks ($p_{T,miss}, p_{T,b\bar{b}}, \cos \theta_{ll}^*, ...$)
- How are the different CP-states affected by NLO QCD corrections?
 - Larger overall corrections for CP-odd Higgs boson but smaller shape distortions
 - CP-mixed very similar to CP-even (SM) case
- How are the different CP-states affected by off-shell effects?
 - Large corrections in CP-odd case even for integrated cross-section
 - Off-shell effects break symmetry of integrated cross-section
 - Particularly large effects in distribution tails and above kinematic edges

Thank you for your attention!

Backup

Outline

- Introduction
- The Higgs characterisation framework
- Off-shell effects
- Integrated fiducial cross-sections
- Differential fiducial cross-section distributions
- Conclusions

Inputs

PDF: NNPDF31-nlo-as-0118

Parameters:

Inputs

 Cuts:
 $p_{T,\ell} > 25 \text{ GeV}$,
 $p_{T,b} > 25 \text{ GeV}$,

 $|y_\ell| < 2.5$,
 $|y_b| < 2.5$,

Jet-clustering: $anti-k_T$ jet algorithm R = 0.4

Scale choice: $\mu_0=\mu_R=\mu_F=H_T/2$

$$H_T = p_{T,b_1} + p_{T,b_2} + p_{T,e^+} + p_{T,\mu^-} + p_{T,miss} + p_{T,H}$$

Scale variation

ation:
$$\left(\frac{\mu_R}{\mu_0}, \frac{\mu_F}{\mu_0}\right) = \left\{ (2,1), (0.5,1), (1,2), (1,1), (1,0.5), (2,2), (0.5,0.5) \right\}$$

Integrated fiducial cross-sections (NLO)

 σ_{NLO}

$$_{,expanded} = \left(\frac{\Gamma_{NLO}}{\Gamma_{LO}}\right)^2 \cdot \sigma_{NLO} - 2\frac{\Gamma_{NLO} - \Gamma_{LO}}{\Gamma_{LO}} \cdot \sigma_{LO}$$

α_{CP}		Off-shell	NWA	Off-shell effects
0 (SM)	$ \begin{aligned} \sigma_{\rm LO} ~ [\rm fb] \\ \sigma_{\rm NLO} ~ [\rm fb] \\ \sigma_{\rm NLO_{\rm LOdec}} ~ [\rm fb] \\ \\ \mathcal{K} = \sigma_{\rm NLO}/\sigma_{\rm LO} \end{aligned} $	$\begin{array}{c} 2.0313(2)^{+0.6275(31\%)}_{-0.4471(22\%)}\\ 2.466(2)^{+0.027(1.1\%)}_{-0.112(4.5\%)}\\ -\\ 1.21\end{array}$	$2.0388(2)^{+0.6290}_{-0.4483}(22\%)$ $2.475(1)^{+0.027}_{-0.113}(4.6\%)$ $2.592(1)^{+0.161}_{-0.242}(9.3\%)$ 1.21 (LOdec: 1.27)	-0.37% -0.36%
π/4	$\sigma_{ m LO}$ [fb] $\sigma_{ m NLO}$ [fb] $\sigma_{ m NLO_{ m LOdec}}$ [fb]	$\begin{array}{c} 1.1930(2)^{+0.3742(31\%)}_{-0.2656(22\%)}\\ 1.465(2)^{+0.016(1.1\%)}_{-0.071(4.8\%)}\\ -\end{array}$	$\begin{array}{c} 1.1851(1)^{+0.3707(31\%)}_{-0.2633(22\%)}\\ 1.452(1)^{+0.015(1.0\%)}_{-0.069(4.8\%)}\\ 1.517(1)^{+0.097(6.4\%)}_{-0.144(9.5\%)}\end{array}$	0.66% 0.89%
π/2	$\begin{split} \mathcal{K} &= \sigma_{\rm NLO}/\sigma_{\rm LO} \\ \\ \sigma_{\rm LO} ~ [\rm fb] \\ \\ \sigma_{\rm NLO} ~ [\rm fb] \\ \\ \\ \sigma_{\rm NLO_{\rm LOdec}} ~ [\rm fb] \end{split}$	$\begin{array}{c} 1.23\\ 0.38277(6)^{+0.13123(34\%)}_{-0.09121(24\%)}\\ 0.5018(3)^{+0.0083(1.2\%)}_{-0.0337(6.7\%)}\\ -\end{array}$	$\begin{array}{c} 1.23 \text{ (LOdec: } 1.28 \text{)} \\ \\ 0.33148(3) {}^{+0.11240(34\%)}_{-0.07835(24\%)} \\ 0.4301(2) {}^{+0.0035(0.8\%)}_{-0.0264(6.1\%)} \\ 0.4433(2) {}^{+0.0323(7.3\%)}_{-0.0470(11\%)} \end{array}$	13.4% 14.3%
,	$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.31	1.30 (LOdec: 1.34)	

Expanded NWA:

- CP-even: 2.418 fb (-2.3 %)
- CP-mixed: 1.417 fb (-2.4%)
- CP-odd: 0.416 fb (-3.2 %)

Integrated fiducial cross-sections (LO)

Interpolation formula:

 $\sigma\left(\alpha_{CP}\right) = \cos^{2}\left(\alpha_{CP}\right) \kappa_{Ht\bar{t}}^{2} \sigma_{1} + \sin^{2}\left(\alpha_{CP}\right) \kappa_{At\bar{t}}^{2} \sigma_{2} + \cos\left(\alpha_{CP}\right) \sin\left(\alpha_{CP}\right) \kappa_{Ht\bar{t}} \kappa_{At\bar{t}} \sigma_{3} - +\cos\left(\alpha_{CP}\right) \kappa_{Ht\bar{t}} \kappa_{HVV} \left(\alpha_{CP}\right) \sigma_{4} + \sin\left(\alpha_{CP}\right) \kappa_{At\bar{t}} \kappa_{HVV} \left(\alpha_{CP}\right) \sigma_{5} + \kappa_{HVV}^{2} \left(\alpha_{CP}\right) \sigma_{6}.$

 No interference between diagrams with CP-even and CP-odd Yukawa interactions
 No interference between diagrams with HVV and CP-odd Yukawa interactions
 No HVV couplings in NWA

Integrated fiducial cross-sections (LO)

Interpolation formula (without vanishing terms):

$$\sigma(\alpha_{CP}) = \cos^2(\alpha_{CP}) \kappa_{Ht\bar{t}}^2 \sigma_1 + \sin^2(\alpha_{CP}) \kappa_{At\bar{t}}^2 \sigma_2 + \cos(\alpha_{CP}) \kappa_{Ht\bar{t}} \kappa_{HVV} (\alpha_{CP}) \sigma_4 + \kappa_{HVV}^2 (\alpha_{CP}) \sigma_6$$

- First two terms are symmetric in α_{CP}
- Last term is either constant ($\kappa_{HVV} = 1$) or symmetric ($\kappa_{HVV} = \cos(\alpha_{CP})$) with respect to α_{CP}

Interference between diagrams with HVV and CP-even Yukawa interactions breaks the symmetry

	Off-shell	NWA
σ_1 [fb]	2.0643(4)	2.0388(2)
σ_2 [fb]	0.7800(1)	0.74583(7)
σ_3 [fb]	-0.0002(8)	-0.0001(3)
σ_4 [fb]	-0.0693(8)) –
σ_5 [fb]	-0.0001(9)	_
σ_6 [fb]	0.0363(9)	_

Integrated fiducial cross-sections (NLO)

Interpolation formula (without vanishing terms):

$$\sigma(\alpha_{CP}) = \cos^2(\alpha_{CP}) \kappa_{Ht\bar{t}}^2 \sigma_1 + \sin^2(\alpha_{CP}) \kappa_{At\bar{t}}^2 \sigma_2 + \cos(\alpha_{CP}) \kappa_{Ht\bar{t}} \kappa_{HVV} (\alpha_{CP}) \sigma_4 + \kappa_{HVV}^2 (\alpha_{CP}) \sigma_6$$

Problem: The virtual contributions do not factorise in this manner \rightarrow Interpolation much more complicated

Example diagram?

The 'stransverse' mass - idea

30

The 'stransverse' mass - idea & definition

The 'stransverse' mass - distribution

The 'stransverse' mass - distribution

- Use b-jet + lepton instead of lepton as visible, massive 'particle'
 - Problem: which jet is associated with which lepton?
 - take minimum of invariant
 b-jet + lepton mass
 combinations
 - minimize the sum of the two invariant masses to avoid combining one lepton with both b-jets

The 'stransverse' mass - definition

$$M_{T2}^{2} = \min_{\mathbf{p}_{T}^{\nu_{1}} + \mathbf{p}_{T}^{\nu_{2}} = \mathbf{p}_{T,\text{miss}}} \left[\max\{M_{T}^{2}\left(\mathbf{p}_{T}^{(lb)_{1}}, \mathbf{p}_{T}^{\nu_{1}}\right), M_{T}^{2}\left(\mathbf{p}_{T}^{(lb)_{2}}, \mathbf{p}_{T}^{\nu_{2}}\right)\} \right]$$

where
$$M_T^2 \left(\mathbf{p}_T^{(lb)_i}, \mathbf{p}_T^{\nu_i} \right) = M_{(lb)_i}^2 + 2 \left(E_T^{(lb)_i} E_T^{\nu_i} - \mathbf{p}_T^{(lb)_i} \mathbf{p}_T^{\nu_i} \right)$$

Lepton + b-jet combinations chosen such that $\ M_{(lb)_1} + M_{(lb)_2}$ is minimal