

* talk based on: Two Higgs doublets, Effective Interactions and a Strong First-Order Electroweak Phase Transition

by Anisha, LB, Christoph Englert and Margarete Mühlleitner [2204.06966]

Interplay between an SFOEWPT and Higgs pair production in a 2HDM-EFT *

Lisa Biermann¹

¹Institute for Theoretical Physics (ITP) Karlsruhe Institute of Technology (KIT) lisa.biermann@kit.edu

Young Scientist Meeting CRC 2022

initial: *Big Bang* (symmetric universe) \Leftrightarrow today: **BAU** (asymmetric universe)

$$\eta \equiv rac{n_b - ar{n}_b}{n_\gamma} \simeq rac{n_b}{n_\gamma} \simeq 6.1 imes 10^{-10}$$
 [Planck, 2018]

initial: *Big Bang* (symmetric universe) \Leftrightarrow today: **BAU** (asymmetric universe)

$$\eta \equiv rac{n_b - ar{n}_b}{n_\gamma} \simeq rac{n_b}{n_\gamma} \simeq 6.1 imes 10^{-10}$$
 [Planck, 2018]

How can we generate a non-zero baryon asymmetry of the universe?

initial: *Big Bang* (symmetric universe) \Leftrightarrow today: **BAU** (asymmetric universe)

$$\eta \equiv rac{n_b - ar{n}_b}{n_\gamma} \simeq rac{n_b}{n_\gamma} \simeq 6.1 imes 10^{-10}$$
 [Planck, 2018]

How can we generate a non-zero baryon asymmetry of the universe?

condition	
existence of <i>B</i> violating processes	\Rightarrow
\mathcal{C} and \mathcal{CP} violation (CPV)	\Rightarrow
departure from thermal equilibrium	⇒

initial: *Big Bang* (symmetric universe) \Leftrightarrow today: **BAU** (asymmetric universe)

$$\eta \equiv rac{n_b - ar{n}_b}{n_\gamma} \simeq rac{n_b}{n_\gamma} \simeq 6.1 imes 10^{-10}$$
 [Planck, 2018]

How can we generate a non-zero baryon asymmetry of the universe?

condition		
existence of <i>B</i> violating processes	\Rightarrow	sphaleron-mediated @ $T > T_{EW} = 100 \text{ GeV}$ [N. Manton, 1983], [F. Klinkhammer, N. Manton, 1984]
$\mathcal C$ and $\mathcal {CP}$ violation (CPV)	\Rightarrow	
departure from thermal equilibrium	⇒	

initial: *Big Bang* (symmetric universe) \Leftrightarrow today: **BAU** (asymmetric universe)

$$\eta \equiv rac{n_b - ar{n}_b}{n_\gamma} \simeq rac{n_b}{n_\gamma} \simeq 6.1 imes 10^{-10}$$
 [Planck, 2018]

How can we generate a non-zero baryon asymmetry of the universe?

condition		
existence of <i>B</i> violating processes	⇒	sphaleron-mediated @ $T > T_{EW} = 100 \text{ GeV}$ [N. Manton, 1983], [F. Klinkhammer, N. Manton, 1984]
${\cal C} \mbox{ and } {\cal CP} \mbox{ violation (CPV)}$	\Rightarrow	<i>Cabibbo-Kobayashi-Maskawa</i> mechanism [N. Cabibbo, 1963], [M. Kobayashi, T. Maskawa, 1973]
departure from thermal equilibrium	\Rightarrow	

initial: *Big Bang* (symmetric universe) \Leftrightarrow today: **BAU** (asymmetric universe)

$$\eta \equiv rac{n_b - ar{n}_b}{n_\gamma} \simeq rac{n_b}{n_\gamma} \simeq 6.1 imes 10^{-10}$$
 [Planck, 2018]

How can we generate a non-zero baryon asymmetry of the universe?

condition		
existence of <i>B</i> violating processes	⇒	sphaleron-mediated @ $T > T_{\rm EW} = 100 {\rm GeV}$ [N. Manton, 1983], [F. Klinkhammer, N. Manton, 1984]
$\mathcal C$ and $\mathcal {CP}$ violation (CPV)	\Rightarrow	<i>Cabibbo-Kobayashi-Maskawa</i> mechanism [N. Cabibbo, 1963], [M. Kobayashi, T. Maskawa, 1973]
departure from thermal equilibriu	$\underline{\mathbf{m}} \Rightarrow$	electroweak phase transition (EWPT) [D. Kirznits, 1972], [L. Dolan, R. Jackiw, 1974]
Lisa Biermann (ITP, KIT) SF0	DEWPT and HPP	in a 2HDM-EFT 08.06.2022 2 /

- EWBG takes place around T ~ T_{EW}
- EWPT happens and bubbles with non-zero vacuum expectation value (VEV) are created and expand
- necessary departure from thermal equilibrium achieved through *strong first-order* EWPT (SFOEWPT)

- EWBG takes place around T ~ T_{EW}
- EWPT happens and bubbles with non-zero vacuum expectation value (VEV) are created and expand
- necessary departure from thermal equilibrium achieved through *strong first-order* EWPT (SFOEWPT)
- \rightarrow '*first-order*': discontinuity in VEV v at T_c :

 $V(v=0,T_c)=V(v\neq 0,T_c)$

- EWBG takes place around T ~ T_{EW}
- EWPT happens and bubbles with non-zero vacuum expectation value (VEV) are created and expand
- necessary departure from thermal equilibrium achieved through *strong first-order* EWPT (SFOEWPT)
- \rightarrow *'first-order'*: discontinuity in VEV *v* at *T_c*:

$$V(v=0,T_c)=V(v\neq 0,T_c)$$

• How do we see this in the potential? \rightarrow global minimum jumps from symmetric to broken minimum @ T_c

- EWBG takes place around T ~ T_{EW}
- EWPT happens and bubbles with non-zero vacuum expectation value (VEV) are created and expand
- necessary departure from thermal equilibrium achieved through *strong first-order* EWPT (SFOEWPT)
- \rightarrow *'first-order'*: discontinuity in VEV *v* at *T_c*:

$$V(v = 0, T_c) = V(v \neq 0, T_c)$$

- How do we see this in the potential? \rightarrow global minimum jumps from symmetric to broken minimum @ T_c
- \rightarrow 'strong': conservation of BAU through sufficient suppression of the sphaleron rate inside the bubbles

$$\Gamma_{\not B+\not L}^{\rm sph} \propto \exp{-\frac{E_{\rm sph}(T)}{T}} \quad \Rightarrow \quad \xi_c \equiv \frac{v_c}{T_c} \gtrsim 1 \qquad \text{bar}$$

baryon-wash-out condition* M. Quiros, 1994]

- EWBG takes place around T ~ T_{EW}
- EWPT happens and bubbles with non-zero vacuum expectation value (VEV) are created and expand
- necessary departure from thermal equilibrium achieved through *strong first-order* EWPT (SFOEWPT)
- \rightarrow '*first-order*': discontinuity in VEV v at T_c :

$$V(v = 0, T_c) = V(v \neq 0, T_c)$$

- How do we see this in the potential? \rightarrow global minimum jumps from symmetric to broken minimum @ T_c
- \rightarrow 'strong': conservation of BAU through sufficient suppression of the sphaleron rate inside the bubbles

$$\Gamma^{\rm sph}_{\not B+\not L} \propto \exp{-\frac{E_{\rm sph}(T)}{T}} \quad \Rightarrow \quad \xi_c \equiv \frac{v_c}{T_c} \gtrsim 1 \quad b_c$$

baryon-wash-out condition* M. Quiros, 1994]

⇒ EWPT in SM only smooth cross-over [K. Kajantie et al., 1996]

- EWBG takes place around T ~ T_{EW}
- EWPT happens and bubbles with non-zero vacuum expectation value (VEV) are created and expand
- necessary departure from thermal equilibrium achieved through *strong first-order* EWPT (SFOEWPT)
- \rightarrow '*first-order*': discontinuity in VEV v at T_c :

$$V(v = 0, T_c) = V(v \neq 0, T_c)$$

- How do we see this in the potential? \rightarrow global minimum jumps from symmetric to broken minimum @ T_c
- \rightarrow 'strong': conservation of BAU through sufficient suppression of the sphaleron rate inside the bubbles

$$\Gamma^{\rm sph}_{\not{B}+\not{L}} \propto \exp{-\frac{E_{\rm sph}(T)}{T}} \quad \Rightarrow \quad \xi_c \equiv \frac{v_c}{T_c} \gtrsim 1 \quad b$$

paryon-wash-out condition* M. Quiros, 1994]

- ⇒ EWPT in SM only smooth cross-over [K. Kajantie et al., 1996]
- \Rightarrow need BSM models that enable an SFOEWPT* + non-standard CPV

Lisa Biermann (ITP, KIT)

SFOEWPT and HPP in a 2HDM-EFT

• Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)
 - \Rightarrow BSM physics required

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

\Rightarrow BSM physics required

• *however*: shortfall of **type II-2HDMs**: struggle to reach SFOEWPT (compared to type I-2HDMs) [P. Basler et al., 2017]

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

⇒ BSM physics required

- *however*: shortfall of **type II-2HDMs**: struggle to reach SFOEWPT (compared to type I-2HDMs) [P. Basler et al., 2017]
- \rightarrow for 2HDM-type II parameter points with $\xi_c < 1$:

What extra dynamics are required to achieve an SFOEWPT?

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

⇒ BSM physics required

- *however*: shortfall of **type II-2HDMs**: struggle to reach SFOEWPT (compared to type I-2HDMs) [P. Basler et al., 2017]
- \rightarrow for 2HDM-type II parameter points with $\xi_c < 1$:

What extra dynamics are required to achieve an SFOEWPT?

⇒ bottom-up extension of the 2HDM scalar potential by purely scalar dim-6 operators in an EFT approach

Lisa Biermann (ITP, KIT)

- Electroweak baryogenesis (EWBG) can generate observed baryon asymmetry of the universe (BAU) ($\eta \simeq 6.1 \times 10^{-10}$ [Planck, 2018]) if [A. D. Sakharov, 1967], [D. Morrissey, M. Ramsey-Musolf, 2012]
 - additional (non-standard) CPV (generation of LH fermion access in front of bubble wall)
 - → creation of BAU: EW sphaleron transitions (triggered by LH fermion access) [F. R. Klinkhammer, N.S. Manton, 1984]
 - sufficiently strong departure from thermal equilibrium, $\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$ (*conservation* of BAU inside bubble) [M. Quiros, 1994] \Rightarrow **SFOEWPT** (*strong first-order electroweak phase transition*)

\Rightarrow BSM physics required

- *however*: shortfall of **type II-2HDMs**: struggle to reach SFOEWPT (compared to type I-2HDMs) [P. Basler et al., 2017]
- \rightarrow for 2HDM-type II parameter points with $\xi_c < 1$:

What extra dynamics are required to achieve an SFOEWPT?

⇒ bottom-up extension of the 2HDM scalar potential by purely scalar dim-6 operators in an EFT approach

What are the phenomenological implications on **Higgs-Pair production**?

Lisa Biermann (ITP, KIT)

SFOEWPT and HPP in a 2HDM-EFT

 CP-conserving 2HDM, softly broken discrete Z₂ symmetry: Φ₁ → −Φ₁, Φ₂ → Φ₂ [T. D. Lee, 1973], [G. C. Branco et al., 2012]

$$\begin{aligned} V_{\text{tree}}(\Phi_1, \Phi_2) &= m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2] \end{aligned}$$

 CP-conserving 2HDM, softly broken discrete Z₂ symmetry: Φ₁ → −Φ₁, Φ₂ → Φ₂ [T. D. Lee, 1973], [G. C. Branco et al., 2012]

$$\begin{aligned} V_{\text{tree}}(\Phi_1, \Phi_2) &= m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2] \end{aligned}$$

• inclusion of (purely scalar) dim-6 EFT contributions to the Higgs potential [Anisha et al., 2019]

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm 2HDM} + \sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i \quad \Rightarrow \quad V_{\rm dim-6} = -\sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i$$

 CP-conserving 2HDM, softly broken discrete Z₂ symmetry: Φ₁ → −Φ₁, Φ₂ → Φ₂ [T. D. Lee, 1973], [G. C. Branco et al., 2012]

$$\begin{aligned} V_{\text{tree}}(\Phi_1, \Phi_2) &= m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2] \end{aligned}$$

• inclusion of (purely scalar) dim-6 EFT contributions to the Higgs potential [Anisha et al., 2019]

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm 2HDM} + \sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i \quad \Rightarrow \quad V_{\rm dim-6} = -\sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i$$

O_6^{111111}	$(\Phi_1^\dagger \Phi_1)^3$	O ₆ ²²²²²²	$(\Phi_2^\dagger\Phi_2)^3$
O_6^{111122}	$(\Phi_1^\dagger \Phi_1)^2 (\Phi_2^\dagger \Phi_2)$	O_6^{112222}	$(\Phi_1^\dagger \Phi_1) (\Phi_2^\dagger \Phi_2)^2$
O_6^{122111}	$(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1)(\Phi_1^{\dagger}\Phi_1)$	O_6^{122122}	$(\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2)$
O_6^{121211}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_1^{\dagger}\Phi_1)$ + h.c.	<i>O</i> ₆ ¹²¹²²²	$(\Phi_1^\dagger \Phi_2)^2 (\Phi_2^\dagger \Phi_2)$ + h.c.

 CP-conserving 2HDM, softly broken discrete Z₂ symmetry: Φ₁ → −Φ₁, Φ₂ → Φ₂ [T. D. Lee, 1973], [G. C. Branco et al., 2012]

$$\begin{aligned} V_{\text{tree}}(\Phi_1, \Phi_2) &= m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2] \end{aligned}$$

• inclusion of (purely scalar) dim-6 EFT contributions to the Higgs potential [Anisha et al., 2019]

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{2\text{HDM}} + \sum_{i} \frac{C_{6}^{i}}{\Lambda^{2}} O_{6}^{i} \quad \Rightarrow \quad V_{\text{dim-6}} = -\sum_{i} \frac{C_{6}^{i}}{\Lambda^{2}} O_{6}^{i}$$

O_6^{111111}	$(\Phi_1^\dagger \Phi_1)^3$	O ₆ ²²²²²²	$(\Phi_2^\dagger\Phi_2)^3$
O_6^{111122}	$(\Phi_1^\dagger \Phi_1)^2 (\Phi_2^\dagger \Phi_2)$	O_6^{112222}	$(\Phi_1^\dagger \Phi_1) (\Phi_2^\dagger \Phi_2)^2$
O_6^{122111}	$(\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1)(\Phi_1^\dagger \Phi_1)$	O_6^{122122}	$(\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2)$
O_6^{121211}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_1^{\dagger}\Phi_1)$ + h.c.	O_6^{121222}	$(\Phi_1^\dagger\Phi_2)^2(\Phi_2^\dagger\Phi_2) + \mathrm{h.c.}$

- absorb dim-6 contributions (to scalar masses) in shifts $\lambda_i \rightarrow \lambda_i + \delta \lambda_i$, $m_{12}^2 \rightarrow m_{12}^2 + \delta m_{12}^2$
- ⇒ scalar mass spectrum same as for dim-4 @ LO ⇒ shift EFT effects into Higgs self-couplings & multi-Higgs final states

Lisa Biermann (ITP, KIT)

SFOEWPT and HPP in a 2HDM-EFT

• vacuum state including finite temperature effects: *1-loop corrected effective potential @ finite temperature*

- vacuum state including finite temperature effects: *1-loop corrected effective potential @ finite temperature*
- general form:

- vacuum state including finite temperature effects: *1-loop corrected effective potential @ finite temperature*
- general form:

- vacuum state including finite temperature effects: *1-loop corrected effective potential @ finite temperature*
- general form:

• V^{CT} absorbs NLO scalar mass and angle shift [P. Basler et al., 2017]

$$0 = \partial_{\phi_i} (V^{\text{CW}} + V^{\text{CT}}|_{\vec{\omega} = \vec{\omega}_{\text{tree}}})$$
$$0 = \partial_{\phi_i} \partial_{\phi_j} (V^{\text{CW}} + V^{\text{CT}}|_{\vec{\omega} = \vec{\omega}_{\text{tree}}})$$

Lisa Biermann (ITP, KIT)

 \rightarrow *viable* parameter points pass constraints imposed by:

ScannerS [R. Coimbra et al., 2013] [M. Mühlleitner et al., 2020] BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20]

→ viable parameter points pass constraints imposed by: ScannerS [R. Coimbra et al., 2013] [M. Mühlleitner et al., 2020] BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20]

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

• global minimization of the one-loop corrected effective potential @ $T \in \{0, 300\}$ GeV in non-zero finite-temperature VEV space

→ viable parameter points pass constraints imposed by: ScannerS [R. Coimbra et al., 2013] [M. Mühlleitner et al., 2020] BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20]

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

- global minimization of the one-loop corrected effective potential @ $T \in \{0, 300\}$ GeV in non-zero finite-temperature VEV space
- \rightarrow get minimizing finite-temperature VEV configuration $\bar{\omega}_k$

→ viable parameter points pass constraints imposed by: ScannerS [R. Coimbra et al., 2013] [M. Mühlleitner et al., 2020] BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20]

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

- global minimization of the one-loop corrected effective potential @ $T \in \{0, 300\}$ GeV in non-zero finite-temperature VEV space
- \rightarrow get minimizing finite-temperature VEV configuration $\bar{\omega}_k$
 - temperature-dependent EW VEV v(T)

$$v(T) = \sqrt{\sum_{k=1}^{n_H} \bar{\omega}_k^2}$$

→ viable parameter points pass constraints imposed by: ScannerS [R. Coimbra et al., 2013] [M. Mühlleitner et al., 2020] BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20]

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

- global minimization of the one-loop corrected effective potential @ $T \in \{0, 300\}$ GeV in non-zero finite-temperature VEV space
- \rightarrow get minimizing finite-temperature VEV configuration $\bar{\omega}_k$
 - temperature-dependent EW VEV v(T)

$$v(T) = \sqrt{\sum_{k=1}^{n_H} \bar{\omega}_k^2}$$

• critical temperature T_c : $V^{(1)}(\bar{\omega} = 0, T_c) \equiv V^{(1)}(\bar{\omega}_c \neq 0, T_c) \rightarrow bisection method$ for T_c

→ viable parameter points pass constraints imposed by: ScannerS [R. Coimbra et al., 2013] [M. Mühlleitner et al., 2020] BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20]

BSMPT [P. Basler, M. Mühlleitner, J. Müller, 2018/20] https://github.com/phbasler/BSMPT

- global minimization of the one-loop corrected effective potential @ $T \in \{0, 300\}$ GeV in non-zero finite-temperature VEV space
- \rightarrow get minimizing finite-temperature VEV configuration $\bar{\omega}_k$
 - temperature-dependent EW VEV v(T)

$$v(T) = \sqrt{\sum_{k=1}^{n_H} \bar{\omega}_k^2}$$

• critical temperature T_c : $V^{(1)}(\bar{\omega} = 0, T_c) \equiv V^{(1)}(\bar{\omega}_c \neq 0, T_c) \rightarrow bisection method$ for T_c

$$\Rightarrow \textbf{SFOEWPT}: \quad \xi_c \equiv \frac{v_c}{T_c} \gtrsim 1$$

Lisa Biermann (ITP, KIT)

SFOEWPT and HPP in a 2HDM-EFT

 \rightarrow impact of individual Wilson coefficients on ξ_c^{d6} for $\xi_c^{d4} \simeq 0.9$:

 \rightarrow impact of individual Wilson coefficients on ξ_c^{d6} for $\xi_c^{d4} \simeq 0.9$:

- linear response $\sim C_6^i \rightarrow$ perturbativity \checkmark
- SFOEWPT achievable in agreement with experimental constraints ✓

 \rightarrow impact of individual Wilson coefficients on ξ_c^{d6} for $\xi_c^{d4} \simeq 0.9$:

- linear response $\sim C_6^i \rightarrow$ perturbativity \checkmark
- SFOEWPT achievable in agreement with experimental constraints ✓

 \Rightarrow Do these additional terms lead to collider-relevant implications?

Lisa Biermann (ITP, KIT)

- \rightarrow sample shows top-philic decay of exotic Higgs: $BR(H \rightarrow t\bar{t}) \gtrsim 0.8$
 - prime candidates of exotic Higgs discovery: look @ $gg \rightarrow H \rightarrow t\bar{t}$

- \rightarrow sample shows top-philic decay of exotic Higgs: $BR(H \rightarrow t\bar{t}) \gtrsim 0.8$
 - prime candidates of exotic Higgs discovery: look @ $gg \rightarrow H \rightarrow t\bar{t}$
 - interference cross section between resonant production and gluon fusion continuum

 $d\sigma^{inf} \sim 2\text{Re} \left\{ \mathcal{M}(gg \to H \to t\bar{t}) \mathcal{M}^*(gg \to t\bar{t}) \right\}$

- ightarrow sample shows top-philic decay of exotic Higgs: $BR(H
 ightarrow t ar{t}) \gtrsim 0.8$
 - prime candidates of exotic Higgs discovery: look @ $gg \rightarrow H \rightarrow t\bar{t}$
 - interference cross section between **resonant production** and **gluon fusion continuum**

 $\mathrm{d}\sigma^{\mathrm{inf}} \sim 2\mathrm{Re} \, \left\{ \mathcal{M}(gg \to H \to t\bar{t}) \mathcal{M}^*(gg \to t\bar{t}) \right\}$

- *individual* Wilson coefficient choices to achieve $\xi_c^{d6} \simeq 1$ for $\xi_c^{d4} > 0.3$
- highlighted: $\xi_c^{d4} > 0.8$
- $\rightarrow |1 \xi_c^{d4}| \propto \text{resonant}$ modifications
- → **no** phenomenologically observable modifications

 $\Rightarrow \ \text{fixing scalar masses} \rightarrow \text{EFT effects shifted to Higgs self-couplings}$

- \Rightarrow fixing scalar masses \rightarrow EFT effects shifted to Higgs self-couplings
- \rightarrow Do **multi SM-like Higgs final states** lead to observable signatures?

- $\Rightarrow~$ fixing scalar masses \rightarrow EFT effects shifted to Higgs self-couplings
- \rightarrow Do **multi SM-like Higgs final states** lead to observable signatures?

• *individual* Wilson coefficient choices to achieve $\xi_c^{d6} \simeq 1$ for $\xi_c^{d4} > 0.3$

- $\Rightarrow~$ fixing scalar masses \rightarrow EFT effects shifted to Higgs self-couplings
- \rightarrow Do **multi SM-like Higgs final states** lead to observable signatures?

- *individual* Wilson coefficient choices to achieve $\xi_c^{d6} \simeq 1$ for $\xi_c^{d4} > 0.3$
- enhancement of λ_{hhh} up to $\mathcal{O}(50\%)$
- $\Rightarrow \text{ decreasing continuum}$ $(gg \rightarrow hh) \text{ behaviour}$ for this $<math>\lambda_{hhh}$ -modification [J. Baglio et al., 2020]

- $\Rightarrow~$ fixing scalar masses \rightarrow EFT effects shifted to Higgs self-couplings
- \rightarrow Do **multi SM-like Higgs final states** lead to observable signatures?

- *individual* Wilson coefficient choices to achieve $\xi_c^{d6} \simeq 1$ for $\xi_c^{d4} > 0.3$
- enhancement of λ_{hhh} up to $\mathcal{O}(50\%)$
- ⇒ resonant modifications up to factor 6!
- $\rightarrow but \text{ resonance } H \rightarrow hh$ small as $H \rightarrow t\bar{t}$ preferred 08.06.2022 10/13

- second sample: generate parameter points with significant $BR(H \rightarrow hh)$
- \Rightarrow on-shell production and continuum less statistically limited \rightarrow experimental more feasible!

- second sample: generate parameter points with significant $BR(H \rightarrow hh)$
- \Rightarrow on-shell production and continuum less statistically limited \rightarrow experimental more feasible!

- second sample: generate parameter points with significant $BR(H \rightarrow hh)$
- \Rightarrow on-shell production and continuum less statistically limited \rightarrow experimental more feasible!

• *uniform* Wilson coefficient scan for $\xi_c^{d4} > 0.3$ and enhanced $BR(H \rightarrow hh)$ sample

• *uniform* Wilson coefficient scan for $\xi_c^{d4} > 0.3$ and enhanced $BR(H \rightarrow hh)$ sample

• again: large enhancements possible in $H \rightarrow hh$ rate \rightarrow up to ~ 2.5 for cross section values of order ([fb])

• *uniform* Wilson coefficient scan for $\xi_c^{d4} > 0.3$ and enhanced $BR(H \rightarrow hh)$ sample

• again: large enhancements possible in $H \rightarrow hh$ rate \rightarrow up to ~ 2.5 for cross section values of order ([fb]) \Rightarrow LHC sensitivity in $b\bar{b}b\bar{b}$ and $b\bar{b}\tau\tau$ channels \checkmark

• *uniform* Wilson coefficient scan for $\xi_c^{d4} > 0.3$ and enhanced $BR(H \rightarrow hh)$ sample

- again: large enhancements possible in $H \rightarrow hh$ rate
- \rightarrow up to ~ 2.5 for cross section values of order ([fb])
- \Rightarrow LHC sensitivity in $b\bar{b}b\bar{b}$ and $b\bar{b}\tau\tau$ channels \checkmark
- **Higgs-philic points**: 5-10% modification in resonance contribution, up to -50% in continuum

Lisa Biermann (ITP, KIT)

• $|1 - \xi_c^{d4}|$ minimised in a Type II CP-conserving, \mathbb{Z}_2 -symmetric 2HDM by EFT contributions to the Higgs sector

• $|1 - \xi_c^{d4}|$ minimised in a Type II CP-conserving, \mathbb{Z}_2 -symmetric 2HDM by EFT contributions to the Higgs sector

- top pair production
- Higgs pair production

• $|1 - \xi_c^{d4}|$ minimised in a Type II CP-conserving, \mathbb{Z}_2 -symmetric 2HDM by EFT contributions to the Higgs sector

- top pair production: sensitive, but effects not measurable @ LHC
- Higgs pair production

• $|1 - \xi_c^{d4}|$ minimised in a Type II CP-conserving, \mathbb{Z}_2 -symmetric 2HDM by EFT contributions to the Higgs sector

- top pair production: sensitive, but effects not measurable @ LHC
- Higgs pair production: sensitive and within LHC reach *

• $|1 - \xi_c^{d4}|$ minimised in a Type II CP-conserving, \mathbb{Z}_2 -symmetric 2HDM by EFT contributions to the Higgs sector

- top pair production: sensitive, but effects not measurable @ LHC
- Higgs pair production: sensitive and within LHC reach *
 - \rightarrow reduction of $gg \rightarrow hh$ rate (**continuum**)

• $|1 - \xi_c^{d4}|$ minimised in a Type II CP-conserving, \mathbb{Z}_2 -symmetric 2HDM by EFT contributions to the Higgs sector

- top pair production: sensitive, but effects not measurable @ LHC
- Higgs pair production: sensitive and within LHC reach *
 - \rightarrow reduction of $gg \rightarrow hh$ rate (**continuum**)
 - \rightarrow modifications of **resonant** $H \rightarrow hh^* \rightarrow$ up to ~ 2.5 @ LHC sensitivity

• $|1 - \xi_c^{d4}|$ minimised in a Type II CP-conserving, \mathbb{Z}_2 -symmetric 2HDM by EFT contributions to the Higgs sector

- top pair production: sensitive, but effects not measurable @ LHC
- Higgs pair production: sensitive and within LHC reach *
 - \rightarrow reduction of $gg \rightarrow hh$ rate (**continuum**)
 - \rightarrow modifications of **resonant** $H \rightarrow hh^* \rightarrow$ up to ~ 2.5 @ LHC sensitivity
- \Rightarrow indirect constraints on $\xi_c \sim 1$ from Higgs pair production measurements @ LHC

• $|1 - \xi_c^{d4}|$ minimised in a Type II CP-conserving, \mathbb{Z}_2 -symmetric 2HDM by EFT contributions to the Higgs sector

 $\rightarrow\,$ phenomenological consequences for LHC physics:

- top pair production: sensitive, but effects not measurable @ LHC
- Higgs pair production: sensitive and within LHC reach *
 - \rightarrow reduction of $gg \rightarrow hh$ rate (**continuum**)
 - \rightarrow modifications of **resonant** $H \rightarrow hh^* \rightarrow$ up to ~ 2.5 @ LHC sensitivity
- \Rightarrow indirect constraints on $\xi_c \sim 1$ from Higgs pair production measurements @ LHC

Thanks for Your attention!

Lisa Biermann (ITP, KIT)

SFOEWPT and HPP in a 2HDM-EFT