

Challenges in ET cryogenics

Steffen Grohmann Lennard Busch Xhesika Koroveshi

22.04.2022 Einstein Telescope / Virgo @ KIT Workshop

www.kit.edu

Motivation for ET-LF

ET-LF Interferometer (3...30 Hz)

- Sensitivity improvement $\Delta S < 10^{-3}$ @ 3 Hz compared to 2.5G detector (KAGRA)
- Laser power ~ 18 kW
- Cryogenic optics at *T*~10 ... 20 K essential

ET-LF core technology: Cryogenics

ET-LF noises: Cryogenic vs. room-temperature (RT) operation

- Suspension thermal noise (STN) dominant @ 3 ... 30 Hz frequency range
- Cryogenic payload @ T ~ 2 ... 20 K essential for sensitivity goal!
 - Low-noise cooling method required

KIT @ ET: Key positions

He-II suspension capillary concept for ET-LF

Challenges in ET cryogenics

Payload heat extraction via He-II

 $T > T_{\lambda}$

 $T < T_{\lambda}$

Two liquid phases of ⁴He:

- He-I (classical liquid helium)
 - Behaviour: ~ideal gas
- He-II (*"two fluid model"*^{[1][2]})
 - Normal component
 - Superfluid component
 - Bose-Einstein condensate

He-II: exceptional heat transfer properties

 $T_{\lambda}(1 \text{ atm}) \approx 2.17 \text{ K}$

Sources: [1] Tisza, L. Transport Phenomena in Helium II, Nature 141, 913 (1938). [2] Landau, L. Theory of the Superfluidity of Helium II. Phys. Rev. 60, 356-358 (1941).

⁴He phase diagram: 100Solid

Payload heat extraction via He-II

Two liquid phases of ⁴He:

Cooling via He-II suspension capillary

Courtesy of M Stamm (2021)

Suspension thermal noise model

Suspension thermal noise (STN) model includes: Simple Pendulum model 2 K $\square k = k_0 \cdot (1 + i \cdot \boldsymbol{\Phi}_{fiber}(\boldsymbol{\omega}) * \boldsymbol{D})$ **Discrete FDT model** [1] for inhomogeneous stage temperatures T @ Ma: 2 K – Mi: 10 K Marionette Energy dissipations via loss angle Φ $\Phi_{fiber}(\omega) = \Phi_{thermoelastic}(\omega) + \Phi_{bulk} + \Phi_{surface}$ Pendulum model with elastic beam fiber 10 K $\Box E = E_0 \cdot (1 + i \cdot \boldsymbol{\Phi_{fiber}}(\boldsymbol{\omega}))$ Design parameter variation, low-temperature physical properties... Mirror

[1] Concept based on Komori et al. (2018)

Conclusions from feasibility analysis

Thermal & mechanical dimensioning

Cooling capacities up to 0.5 W, or even up to 1.0 W, are feasible

T_{marionette}@ 2 K and T_{mirror} @ 14 – 20 K, with $\Delta T \approx 50$ mK

Frequency / Hz

He-based cooling concept for ET-LF

ET-LF test mass cryostat cooling

Temperature stages:

Part(s)	Temp. level	Est. cooling power
HF & LF cryotraps	≤ 20…80 K	x10 ⁴ W
Outer thermal shield	≤ 20…80 K	x10 ³ W
Inner thermal shield	5 K	x10 ² W
Payload interface	2 K	x10º W

Helium system: remote cooling power generation

 \rightarrow distribution to cryogenic consumers

Challenges in ET cryogenics

Helium cooling system: Conceptual PFD

Process flow diagram (PFD):

- Will be published in Advances in Cryogenic Engineering 2021
- Extensive explanatory project note uploaded to TDS (07/2021)
 - → <u>https://apps.et-gw.eu/tds/?content=3&r=17648</u>
 - Particular focus: cooling power generation for payload at 2 K
 - Creation of He-II bath
 - Connection to payload interface via long supply capillaries

Karlsruhe Institute of Technology

Cryogenic supply capillaries

Key boundary conditions:

- Operating pressure: 0.12 MPa
- Capillary length: 15 m
- Capillary cold end temp.: 1.75 K
- Payload interface temp.: 1.85 K

Configuration example: **17 capillaries** with d_i = 2.0 mm can extract **500 mW** from a payload interface at **1.85 K** over **15 m** distance with a Δ*T* of only **0.1 K**.

Plans for ET development infrastructure at KIT

Plans for ET development infrastructure at KIT

CN, bldg. 245 (west):

Karlsruhe Institute of Technology

Plans for ET development infrastructure at KIT

Thank you for your attention!