

Search for Dark Matter with Graph Neural Networks at CMS

ETP Meeting Jost von den Driesch | April 25, 2022

www.kit.edu

Outline

- Introduction to Dark Matter
- Introduction to MET reconstruction
- Part I: GraphMET
- Part II: Sensitivity analysis of different MET reconstruction methods
- Summary and Outlook

Evidence for Dark Matter

Galaxies

RADIUS [kpc]

https://arxiv.org/pdf/astro-ph/0603143.pdf

Galaxy Clusters

Cosmic Microwave Background

http://newscenter.lbl.gov/wp-content/uploads/sites/2/Planck-and-CMB-sim-revised.jpg

Search for Dark Matter – Interactions

Gravity?

Electromagnetic interaction?

- Strong interaction?
- Weak interaction?

New interaction?

?

 (\mathbf{X})

Search for Dark Matter – Direct Detection

https://upload.wikimedia.org/wikipedia/commons/8/80/Alpha Magnetic Spectrometer - 02.jpg

Search for Dark Matter – Production

https://cmsexperiment.web.cern.ch/sites/cmsexperiment.web.cern.ch/files/cms 160312 02.png

Introduction to MET Reconstruction

Challenge

Direct measurement of DM not possible

Five detected particles and one undetectable particle in the transverse plane

Idea

MET Reconstruction Methods at CMS

Particle Flow (PF) algorithm¹

- Aim: Event reconstruction and particle identification
- Idea: Combine information of different detector components
- Typically ~ 2-3k PF candidates per event

https://www.researchgate.net/publication/278086364/figure/fig1/AS:651473847320576 @1532334877151/Pileup-the-number-of-individual-proton-proton-collisions-in-eachevent-is-getting-of.png

True **MET** = $-\Sigma p_{T,k} + \Sigma p'_{T,k}$

Main interaction all detected particles pileup

[1] https://arxiv.org/pdf/1706.04965.pdf

Main Challenge: Pileup

Ideas:

- Purist approach: no corrections
- Substitution Apply Jet Calibrations (JEC) \rightarrow MET Type I
- Subscript{Produce weights: MET = $\Sigma w_k p_{T,k} \rightarrow PUPPI MET$, DeepMET, GraphMET

 \rightarrow PF MET

Detected particles from main interaction

From Neuron to Graph Neural Network

Neuron:

- Aggregate multi-dimensional information for each particle separately into one MET weight
- Input information: p_T , p_x , p_y , m, η , dxy, dz, electric charge, from PV, pdg-ID
- Description per particle

From Neuron to Graph Neural Network

Neural Network:

- Several parallel and successive neurons
- Able to fit more complex models than a single neuron
- Description per particle

From Neuron to Graph Neural Network

Graph Neural Network (GCNConv¹):

- Several parallel and successive neural networks
- Able to aggregate information of several particles at once
- Description per event

Reminder: Accuracy vs. Precision

MET Reconstruction Quality

Evaluation on independent Z $\rightarrow \nu\nu$ (+1Jet) sample

Response

Quantifies accuracy \rightarrow target value: 1

Resolution

Quantifies precision \rightarrow target value: 0 GeV

Summary: MET Reconstruction Quality

Intuitive Interpretation

Part II: Sensitivity Analysis

General Idea

Investigate sensitivity dependency of MET estimator in an analysis sensitive to MET

Calculate expected asymptotic upper limits with different MET methods and compare them

Setup:

MC only analysis

 \rightarrow Truth information available

- Production of data sets with PF information
 - \rightarrow large data sets
 - \rightarrow Consider only main backgrounds

Search for Dark Matter in the Leptonic MonoTop Channel

Simplified Model

- Stable Dark Matter particle χ with mass m_{$\chi}</sub>$
- Mediator V with mass m_V

Signature:

• Single top quark and large MET \rightarrow suppressed in SM

Selections Criteria for Leptonic Channel

Main Selections:

- Exactly one lepton in central region (muon or electron)
- $p_{\tau}(q1) \ge 70$ GeV in central region
- MET ≥ 100 GeV
- $\Delta \Phi(MET, q1) \ge 1.5$
- m_⊤(W) ≥ 40 GeV

Control Regions:

- N(b-tags) = 2 → enriched in ttbar events
 N(b-tags) = 0 → enriched in W events

Control rate in fit

Signal Region:

■ N(b-tags) = 1 \rightarrow enriched in monotop events

Main Backgrounds in Signal Region

Main Selections:

- Exactly one lepton in central region (muon or electron)
- $p_T(q1) \ge 70$ GeV in central region
- MET ≥ 100 GeV
- ΔΦ(MET, q1) ≥ 1.5
- m_T(W) ≥ 40 GeV

Signal Region:

• N(b-tags) = 1 \rightarrow enriched in monotop events

Questions to Control Regions

- Is data description by MC roughly accurate?
 - Perfect description not needed as sensitivity analysis is MC only
 - Comparison of reconstruction methods more interesting than absolute limits at this point
- Major discrepancies when using different MET reconstruction methods?
 - Shapes
 - Event-yield

Control Region MET

Control Region M_T

Questions to Control Regions

- Is data description by MC roughly accurate?
 - Perfect description not needed as sensitivity analysis is MC only
 - Comparison of reconstruction methods more interesting than absolute limits at this point
- Major discrepancies when using different MET reconstruction methods?
 - Shapes
 → Less smearing in M_T distribution for GraphMET due to better MET resolution
 Event-yield
 → Due to MET underestimation of GraphMET and MET cut

Karlsruhe Institute of Technology

Signal Region MET

Karlsruhe Institute of Technology

Signal Region M_T

Summary and Outlook

GraphMET

- Introduction of a new MET reconstruction method using GNNs
- Improved resolution
- Room for improvement in response
 - Add term in loss function
 - Apply calibration
 - Systematics should be investigated further

Sensitivity Analysis

- First application case for GraphMET: Search for Dark Matter in the leptonic monotop channel
- Templates don't indicate any major problems
- Expected upper limits indicate slight improvements when using GraphMET compared to MET-T1
- Further investigations
 - More background processes
 - Include GraphMET systematics

BACKUP

GraphMET – Setup

• Connection criterion for two particles: $\Delta R \le 0.4$

Investigated Topologies

Degree of freedom	Investigated options
Graph style	Fixed, dynamic
Update method	GCNConv, Edgeconv
Embedding	Yes/no
Activation function	ELU, ReLU, sigmoid, tanh
ΔR≤	0.2, 0.4 , 0.8, 1.5
Max. number of neighbors	0, 100, 250, 500
Number of graph layers	1, 2, 3, 4 , 5, 6
Dimension of feature vectors	8, 16, 32 , 64

(final configuration in bold letters)

Decision based on loss and computing resources

GraphMET – Setup

- Connection criterion: $\Delta R \le 0.4$
- Loss function: \mathcal{L} = Mean Squared Error (GraphMET, GenMET)
- Trainable parameters: 6256
- Activation functions: ELU
- Output-Activation: Sigmoid \rightarrow w_k \in [0,1]
- Training sample: Events with genuine MET \rightarrow Z \rightarrow vv (+ Jets)

GraphMET Architecture

Embedding for continuous and discrete variables,

four graph layers and two multi-layer perceptrons aggregating the input information into the MET weight