
This course material has been developed from the SimDataLab “Enginee-
ring in Energy and Mobility” (Project NHR@KIT) and the Engineering
Competence Center (Project s5 of bwHPC) – both being parts of the
Steinbuch Centre for Computing (SCC) at the Karlsruhe Institute of
Technology

The course material should be used mainly for purposes of the course
“Introduction to OpenFOAM” and may be shared between the users of the
supercomputers of SCC as well as of the users of all bwHPC supercom-
puters

Tutorial: BwUniCluster 2.0/HoreKa

Starting Parallel Computations with OpenFOAM

 In this tutorial we will learn how to submit a job (using a script-file) for execution of
parallel computation on the BwUniCluster 2.0 or HoreKa. Parallel simulations can be used
to speed up the process of simulation by a significant margin. However, they have to be
executed according to the guidelines below in order to ensure that the simulation runs
correctly. Also, special preprocessing is necessary for OpenFOAM in case of parallel
simulations.

First of all, it is important to understand what the logical structure of our clusters
looks like.

 1. Logical structure of the supercomputers

 The bwUniCluster 2.0 or HoreKa are parallel computers which are divided into
logical units called nodes. Each of those nodes consists of multiple cores with memory
attached to them (each core can be thought as a single PC-processor). All components of the
whole logical structure can communicate with each other via a communication protocol
called MPI, which allows for parallel computing. MPI (Message Passing Interface) is
necessary for the data exchange between the processors – both between the cores within a
node or between the cores of multiple nodes, see the Figure.

Fig. 1 The logical structure of the cluster

 When submitting a job, the user should specify the number of cores and the number
of nodes for the particular simulation. There are different queues for testing, for using only
one node, or using two or more nodes. The job submission is carried out by one single
command followed by the name of a file that describes the desired number of cores, or

nodes, the memory, the job-queue and the name of the OpenFOAM-solver. But before
submitting the job, a special preprocessing of OpenFOAM needs to be done.

 2. Preprocessing of OpenFOAM for parallel computations

 First, we need to decide on how many parallel cores we would like to start the
simulation. For starters, it is always a good idea to take a small number of cores – in our
case four. We are going to prepare OpenFOAM for this exact number of cores.
 Log onto the server and go to your workspace. Then go to the directory where you
wish to start OpenFOAM, i.e. – to the directory with the case you will simulate.
 In the 'system' subdirectory you can (usually) find the decomposeParDict file where
you can set up the way subdomains are created; if this file is not available, you can take it
from an appropriate tutorial case. Notice the number of subdomains which is equal to the
product of the coordinates of the partition vector (in this example: for the (1 4 1) partition
this number is equal to 1x4x1 = 4). This value will be needed in the creation of the job file
later in the tutorial.
 A typical decomposeParDict file usually looks something like this:

// * //

numberOfSubdomains 4; the mesh will be divided into 4 subdomains

method simple; for this method we also specify the number of splits in each direction

coeffs; some methods (like “scotch”) do not require coefficients
{
 n (1 4 1); 4 subdomains (splits) are created in the y-direction
}

//***//

After you have configured the file to your liking execute the following commands in
your working directory:

$> blockMesh
$> setFields
$> decomposePar

 3. Creating the job-file

 After that, log onto the cluster in your command-line interpreter and go to your
working directory in your workspace. Create an empty job file using the following
command:

$> touch {name of the the job-file}.sh

(For example: $> touch job1_development_queue_2_cores.sh)

Open the job-file in order to edit it. A typical job file takes the following form:

//

#!/bin/bash The header of the file

#SBATCH --partition dev_multiple the job will be submitted to the queue dev_multiple
#SBATCH –nodes=2 two nodes will be used
#SBATCH --ntasks-per-node=2 the number of cores to be used on each node
#SBATCH –time=00:30:00 the job will run for the maximum of 30 minutes
#SBATCH –mem=8000mb the job may use the max. of 8 Gb
#SBATCH –job-name=coursejob the name of the job given by the user

module purge
module load cae/openfoam/v2106-impi loading OPENFoam on the execute core
source $FOAM_INIT

compressibleInterFoam the name of the solver

//

Note!: On HoreKa use dev_cpuonly instead of dev_multiple.

 There is also an alternative way of creating the job file – you can go to:

https://wiki.bwhpc.de/e/BwUniCluster_2.0_Slurm_common_Features

where the user can copy a job file and modify it.

 4. Submitting the job (commands of the SLURM job scheduler)

 After editing and saving the job file we can submit the job using the following
command from our working directory:

$> sbatch {name of the job-file}.sh

(For example: $> sbatch job1_development_queue_4_cores.sh)

 which sends our job on the development queue for single nodes and then causes all of
the commands in the job-file to be executed step by step. In order to see the list of all your
pending jobs you can use the command:

$> squeue --start

 We can also see a very detailed information about the state of our job using the
following command:

$> scontrol show job

 After our job has been completed, we can use the following OpenFOAM command
to combine results from all subdomains into one:

$> reconstructPar

 The results of our simulation can be downloaded from our working directory onto
our own PC where we can then perform the visualization in Paraview on our own PC. This
is the recommended way for visualization of small and medium sized grids.

