MOJJIVIRGO

VIRGO DATA ANALYSIS & MUILTI-MESSENGER ASPECTS

Giancarlo Cella – VIRGO COLLABORATION/INFN PISA

 All data analysis activities of interest to Virgo-LIGO-KAGRA are a joint business of both collaborations

Joint LIGO Virgo KAGRA working groups

 LIGO-Virgo-KAGRA data analysis activities for GWs are planned on the basis of the joint data analysis white paper, released yearly

 \Box Tight coupling with:

- D Detector characterization
- \Box Computing and software
- **Q** Calibration
- \Box Low latency working group

Detector tensor and angular sensitivity pattern

 We can represent as a function of the GW's direction of propagation

$$
\Gamma(\hat{n}) = D^{ij} \left[\cos \psi \epsilon_{ij}^{\dagger}(\hat{n}) + \sin \psi \epsilon_{ij}^{\times}(\hat{n}) \right]
$$

- \bullet For each \hat{n} there is an optimal polarization angle ψ_{opt}
- $\psi_{opt} + \pi/2$ gives a decoupled polarization
- This gives the directionality of an interferometric detector

Gravitational wave observations

Several kind of searches, roughly classified in 4 groups:

- \Box **Burst:** search for transients with minimal assumptions about signal's shape
- **Q** CBC: signals from compact binary coalescences, searched with specific, theoretically motivated (GR or alternative models) waveforms.
- **Q CW:** continuous signals: rotating neutron stars, …..
- **Stochastic:** stochastic signals, astrophysical or cosmological origin.

Direct information about mass-energy distribution, unique or complementary observative channel.

Core collapse massive stars, cosmic strings, …

Spinning NS (Isolated or not), Instabilities, …

Inflation, phase transitions, cosmic strings, astrophysical backgrounds,…

Coalescing binaries

A first tool: the Wiener filter

 $\binom{t}{t}$, h(t), h(t)

$$
W(\vec{\alpha}, s) = \int_0^\infty \frac{\tilde{T}(\vec{\alpha}, f)^* \tilde{s}(f)}{S(f)} df
$$

- A scalar product between observed and theoretical signal
- Weighted with the noise power spectrum
- Detection comparison between $\max_{\alpha} W$ and a threshold α
- About 250000 templates
- **Parameter estimation**
	- fast (low latency);

• One for each detector;

Accurate parameter estimation uses a different approach

If we know the statistical properties of detector's noise we can write

- This is the «mother of all information»
- Takeaway message: waveform can contain detailed information about parameters
- We will see some example in the following.....

Other analysis methods, in a nutshell

Continuous waves

- Basically, known signal (but with interesting exceptions)
- But the optimal Wiener filter approach is too much demanding
- Suboptimal approaches: compromise between computational power and coherence/sensitivity

Bursts

- **Unknown signals**
- Several variant of energy excess test, taking advantage of minimal assumptions, such as
	- Very short signal
	- **Consistency between different detectors**

Stochastic background

- "Signal" can be modeled only in a statistical way, as a random process
- **Stationary**
- Gaussian (but this is not necessarily true)

$$
\left\langle s^H s^L \right\rangle = \left\langle h^H h^L \right\rangle + \left\langle h^H h^L \right\rangle + \left\langle n^H h^L \right\rangle + \left\langle n^H h^L \right\rangle
$$

If we assume isotropy, all the information is contained in the signal power spectrum

$$
S(f) = \frac{3H_0^2}{10\pi^2} \frac{\Omega_{GW}(f)}{f^3}
$$

which can be directly estimated. But we can do more…..

Cosmological SB

- Several possible backgrounds:
	- Inflation models
	- Cosmic strings
	- Phase transitions
- We started to have a high enough sensitivity to improve BBN -CMB upper bound
- Some models accessible with advanced detectors

11

THE FIRST 5 YEARS OF **OBSERVATIONS**

GW150914: the first direct GW observation

- $P_{FA} = 1/203000 \text{ yr}^{-1}$
- Significativity > 5.3σ

Interpretation: BBH coalescence Similar events followed:

- GW150914 (September 14th 2015)
- GW151226 (December 26th 2015)
- **GW170104** (January 4th 2016) 13

 15^h $12h$ $5\frac{50}{\text{Mpc}}$ 25 Ω 75

GW170817: a BNS coalescence

- **Seen in GW data**
- Cohincident (in 2s) with a short GRB detected by Fermi/GBM & INTEGRAL (not so energetic, probably off axis)
- Well localized (31 deg² \rightarrow 16 deg²)
- Optical counterpart found in host galaxy NGC 4993
- Kilonova
- **Afterglow observations**

Counterparts

Observatories are still looking at this today.

Phys. Rev. Letter **121**[, 161101 \(2018\) Phys. Rev. Lett.](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.071101) **111**, 071101

 10

 R (km)

 12

14

 $\Lambda_1 = \lambda \left(\frac{c^2}{GM}\right)$

 $\sqrt{1000}$

1250

10

 R (km)

 12

14

500

250

Kilonova

ePessto Credits: Eso/E. Pian et al./S. Smartt & ePessto $1.5d$ $3.5d$ 37.5 Credits: Eso/E. Pian et al./S. Smartt & 1.5 A^{-1})] 36.5 36 Brightness 2.5 $6.5d$ 3.5 $5.5d$ log[Lumi 37.5 4.5 37 36.5 36 20,000 10,000 20,000 10,000 \circ 0.5 2.0 2.5 l .5 Wavelength (Å) Wavelength (um)

Siegel & Metzger 2017b, arXiv:1711.00868 Siegel & Metzger 2017a, PRL, arXiv:1705.05473

E Pian *et al. Nature* **551,** 67 –70 (2017) doi:10.1038/nature24298

Matter ejected in the post-merger phase undergoes r-process

O3 RUN AND BEYOND

The last scientific run: **1st Nov 2019** to **27th Mar 2020**

G2002127-v11

2015 2016 2017 2018 2019 2020 2021 2022 2023

2024

2025

2026

2027

2028

New discoveries? 19

 \Box \Box V1

160

Gravitational-Wave Transient Catalog 3

20

O3b events

GW200220_061928

Most massīve binary system in O3b with total mass = 148 M☉

**GW191219_163120
NSBH merger** between a 1.17 M_o NS and
34.4 ML BL Mest sytrams mass ratio 31.1 M ☉ BH. Most extreme mass ratio (q=0.038) measured to date

GW200115_042309
NSBH merger between a 1.44 M_o NS and
E 0 M . BH $5.9\ \textsf{M}_{\odot}\,\textsf{BH}$

GW200210_092254 NSBH or BBH merger: less massive object has a mass of 2.83 M $_{\odot}$

GW191109_010717

BBH merger which is very likely to have
negative spin

GW191129_134029 Least massive definite BBH merger in O3b, with total mass = 17.6 M_{\odot}

GW191103_012549 GW191105_143521 GW191109_010717 GW191113_071753 GW191126₋₁₁₅₂₅₉ GW191127_050227 GW191129₋₁₃₄₀₂₉ GW191204₋₁₁₀₅₂₉ GW191204_171526 GW191215_223052 GW191216_213338 GW191219_163120 GW191222_033537 GW191230_180458 GW200105_162426 GW200112₋₁₅₅₈₃₈ GW200115_042309 GW200128_022011 GW200129_065458 GW200202_154313 GW200208_130117 GW200208 222617 GW200209_085452 GW200210_092254 GW200216_220804 GW200219_094415 GW200220_061928 GW200220₋₁₂₄₈₅₀ GW200224 222234 GW200225_060421 GW200302_015811 GW200306_093714 GW200308₋₁₇₃₆₀₉* GW200311₋₁₁₅₈₅₃ GW200316_215756 GW200322_091133*

Credits: Martin Hendry, Hannah Middleton

Completing the CBC observations set

- \checkmark GW150914: the first detection of a binary black hole coalescence
- \checkmark GW170817: the first detection of a binary neutron star coalescence
- \checkmark GW200105/GW200115: the first solid evidence of binary NS-BH system coalescence

The complete set of the compact binary coalescences we are expected to detect with earth-bound interferometers;

- Why are we confident about these detections?
- Why are such systems interesting?
- What we have learned?
- What we expect to learn in the future?

Companion papers: O3b Astrophysical Distribution

Entering in the «statistical information driven» regime

- **NSBH binaries**
- **Lower mass gap**
- NS mass distribution
- Substructure in BBH mass distribution
- BBH rate evolution with redshift

Companion papers: O3b Astrophysical Distribution

Constraints on cosmological parameters

- No «bright sirens» in O3
- **Hierarchical inference** Joint fit of cosmological parameters and BBH source population properties

 m_i^{det} $m_i = \frac{i}{1+z(D_L;H0,\Omega_m,w_0)}$

 Statistical galaxy catalog method Fix the source population, use statistical galaxy catalog information to provide redshift information

 $-$ -- prior

ITTI Truncated

- 20% improvement on O2 for H_0
- Still dominated by systematic effects

O3a CBC Testing GR (Phys. Rev. D 103, 122002)

RT Residual test

- **IMR** Inspiral Merger Ringdown consistency test
- PAR parameterized test of GW generation
- **SIM Spin Induced Moments:**

 $Q = -\kappa \chi^2 m^3$

MDR Modified Dispersion Relations:

 $E^2 = p^2 c^2 + A_\alpha p^\alpha c^\alpha$

- RD Ringdown
- ECH Echoes
- **POL Polarization content**

Modified gravity roadmap

- Improved constraints on Lorentz violation
- Graviton mass $m_a \leq 1.76 \times 10^{-23}$ eV/ c^2
- Constraints on post-Newtonian parameters improved by a factor 2

 $M/M(z+1)$

GW190425: Observation of a Compact Binary Coalescence with total mass ~ 3.4 M_{\odot} AJL 892 (2020) L3

Figure 5. Total system masses for GW190425 under different spin priors, and those for the 10 Galactic BNSs from Farrow et al. (2019) that are expected to merge within a Hubble time. The distribution of the total masses of the latter is shown and fit using a normal distribution shown by the dashed black curve. The green curves are for individual Galactic BNS total mass distributions rescaled to the same ordinate axis height of 1.

- Most likely BNS system: another BNS detection but…
- …no solid electromagnetic counterpart
- Total mass $3.4^{+0.3}_{-0.1}M_{\odot}$ $D_L = 159^{+69}_{-71}M$
- Significantly different from the known population of Galactic BNS systems
- **Cannot rule out BBH or BHNS** 28

GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric masses Phys. Rev. D 102, 043015 (2020)

- Evidence for (3,3) multipole: $f_{\alpha}(t) = \alpha f_{22}(t)$ • Tighter bounds on intrinsic
- source parameters
- Bounds on abundances
- Consistency with GR

GW190814: Gravitational Waves from the Coalescence of a 23 M_{\odot} Compact Object Abbott et al 2020 ApJL 896 L44

GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_o

• Short signal, difficult to analyze

• Hierarchical merger of lower-mass black holes Phys. Rev. Lett. 125, 101102 (2020) Astrophys. J. Lett. 900, L13 (2020)

- Network SNR about 14-15
- BBH z=0.8 with unusually high component masses
- Mild evidence for spin-induced orbital precession
- Primary in mass gap for pair-instability SN theory
- Final: IMBH
- Formation channels?
	- Multiple stellar coalescence
	-

THE ASTROPHYSICAL JOURNAL LETTERS, 915:L5 (24pp), 2021 July 1 © 2021. The Author(s). Published by the American Astronomical Societ **OPEN ACCESS**

https://doi.org/10.3847/2041-8213/ac082e

GW200105/GW200115

Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

- GW200105 was observed by two detectors (LIGO Livingston & Virgo). The signal can be appreciated directly in the LIGO Livingston time -frequency map ;
- GW200115 was observed by three detector LIGO -Virgo detector network. Note the low frequency Frequency (Hz) features in LIGO Livingston: this is (non stationary/non Gaussian) noise.
- In both cases, Virgo SNR was not high enough for a detection claim
- Parameter estimation is a different issue: there all the

Time (seconds)

The compact objects zoo

We know about compact objects both from GW and electromagnetic observations.

- GW200105/GW200115 where not the first candidates for NSBH coalescences
- GW190426: in principle good parameters, but we have low confidence about the reality of this event
- GW190814: a real (and interesting) event. But the secondary mass is quite large for a neutron star $(2.50M_{\odot} < m < 2.67M_{\odot})$ at 90% confidence). Probably a BHBH. See: R. Abbott et al 2020 ApJL 896 L44

Localization and follow-up

 60°

- Sky localization: 7700 deg² \rightarrow 6000 deg²
- 170 Mpc $\lt D_L$ \lt 390 Mpc
- **Several follow-ups:** no counterparts

GW200105

2 detectors

 30°

 60°

Thick solid contours: 90% credible regions from the low-latency sky localization algorithm

Shaded patch: preferred high-spin analysis, dotted contours are 90% credible regions

■ 200 Mpc $< D_L < 450$ Mpc

900 deg² \rightarrow 600 deg²

Several follow-ups: no counterparts

• Sky localization:

Singer LP and Price L 2016 *PRD* **93** 024013 , Speagle J. S. 2020 *MNRAS* **493** 3132, Lange J., O'Shaughnessy R. and Rizzo M. 2018 arXiv:1805.10457,

Veitch J., Raymond V., Farr B. *et al* 2015 *PRD* **91** 042003

Direct evidence of NS

- The deformability parameter is very small when $M_{BH} \gg M_{NS}$

$$
\tilde{\Lambda} = \frac{32}{39} \frac{M_{NS}^4 (M_{NS} + 12M_{BH})}{(M_{NS} + 12M_{BH})^5} \left(\frac{R_{NS}c^2}{GM_{NS}}\right)^5 k_2
$$

Foucart F (2020) Front. Astron. Space Sci. 7:46. doi: 10.3389/fspas.2020.00046

Why no electromagnetic counterpart?

- Several observations, but no convincing electromagnetic counterparts. This is not surprising, for several reasons:
	- With the observed (too large) mass asymmetries, no tidal disruption is expected.
	- Note that anti-aligned spins suppress disruption
	- \blacksquare Fyents are far from us
	- There is a large uncertainty in localization, which reduces the chances of a positive follow up
- Some improvement is expected with a better sensitivity
	- Event rate will increase, so it will be possible to better explore the large space of parameters for this kind of events
	- Sky localization (and parameter estimation) could improve for louder events

[Image credit: S.V.Chaurasia (Stockholm University), T. Dietrich (Potsdam University and Max Planck Institute for 37Gravitational Physics), N. Fischer, S. Ossokine, H. Pfeiffer (Max Planck Institute for Gravitational Physics), T. Vu.]

Multimessenger

No solid electromagnetic counterparts found in O3 Several attempts, not confirmed We are looking far, and GW are not beamed. What we could do better? GW side \rightarrow improve localization em side \rightarrow improve sensitivity

Independent method for Hubble parameter determination: GW are a new cosmic distance marker **Abbott et al. 2017, Nature, 551, 85A**

- Most direct way: when we have an optical counterpart
- Alternatively: by localizing the host galaxy
- And/or: statistically, on a large sample of events

Search on O3a data set, using detection from Fermi & Swift satellites.

- No significant evidence for gravitational-wave signals associated with the followed-up GRB
- Lower bounds on the rate of short gamma-ray bursts as a function of redshift for $z \leq 1$

Alert timeline in O3 (see https://emfollow.docs.ligo.org/userguide/index.html)

Time since gravitational-wave signal

Localization

- Localization is roughly proportional to the timing accuracy $\Delta \tau$,

$$
\Delta\tau=\frac{1}{2\pi\,\mathrm{SNR}\,\Delta f}
$$

 Phase and amplitude consistency are taken into account also.

41

Gravitational lensing of GW

Analogous to gravitational lensing of light GWs got:

- Magnification
- Multiple "images"
- Frequency dependent deformations

Potentially:

- Test of fundamental physics
- Localization of merging BH
- Precision cosmology
- Microlens population studies

GW transients un -modeled searches

- All -sky search for short GWs bursts. Astrophysics sources could include: BBH, CCSNe, cosmic strings, pulsar glitches (*arxiv:2107.03701*):
	- all sky unmodeled search for GW transients ≤ 1 s
	- no new candidates found apart from CBC sources
	- set current upper limit (about one order of magnitude better than the previous O2 limit over most of the frequency bandwidth)
- All -sky search for long GW bursts. Astrophysics sources could include fallback accretion, accretion disk instabilities, newborn neutron stars from BNS merger or core-collapse supernovae, eccentric compact
binary coalescences (*arxiv:2107.13796*):
	- all sky un-modeled search for GW transients 2-500 s
	- no new candidates found
	- no new candidates tound
■ amplitude sensitivity improved by a factor of 1.8 wrt the analysis from O2
- **IMBH search & GRB search**
	- Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo
	- Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO -Virgo Run O3b
	- **In preparation: magnetar bursts, FRB triggered search, eccentric BBH**

CW searches

- Weak and persistent signal.
	- Targeted (particular source)
	- All sky (unknown sources)
- Not really monocromatic
	- **Modulations**
	- **Spin down, environment effects,** glitches

J0537-6910

Abbott et al. arXiv:2012.12926

Stochastic background searches

Stochastic background searches (Phys. Rev. D **¹⁰⁴**, 022005)

 $\alpha=3$

It is also possible to look at anisotropies

- The single detector is not particularly directional, but the network is;
- At the moment, no evidence for a SBGW
- Continuously improving the upper limit for direction-dependent GW luminosity

 $\alpha = 2/3$

 $\alpha = 0$

 SNR

 \mathbf{UL}

 $\rm [erg~cm^{-2}~Hz^{-1}$

Gravitational waves and dark matter

- Evidences: CMB power spectrum, cluster & galactic rotation curves, gravitational lensing
- Large span for DM candidate masses: from ultralight bosons ($\sim 10^{-22}$ eV) to BH (~ 1 – 100 M_{\odot}).
- Gravitationally interacting, gravitational physics can help!
- GW sources can be affected by DM
	- By changes of their evolution by environmental effects
	- By changes of their nature and dynamics (when new interactions exist in the DM sector). They can be DM candidates by itself (SSM black holes)

[Reference: arXiv:1707.04591](http://arxiv.org/abs/arXiv:1707.04591)

DM candidates searchable with gravitational waves

- Environmental effects on compact objects
	- The compact object structure can be changed: accretion disk, spin down effects, formation of a DM core
	- The GW production mechanism can be changed
	- Inpact on propagation of generated GW and EM waves
	- Signature: Unusual waveform

Primordial black holes

- Microlensing data seems to exclude that ALL DM can be explained in this way.
- Not completely uncontroversial, some assumptions can be weakened;
- Could be responsible for a fraction of DM;
- \rightarrow **Signature:** Subsolar mass BH evidence
- **Exotic objects**
	- GW190521 is compatible with a merger between two complex vector boson star, with $m_b\stackrel{\thicksim}{\sim} 8.7\times 10^{-13}$ eV (head on collision)
		- See Phys. Rev. Lett. **126**, 081101
- Superradiance effects
	- A Kerr BH can transfer efficiently its energy to a cloud of ultra-light bosons, (scalar or vector) when $\lambda_c \sim R_s$ (which means $10^{-21} eV < m_b < 10^{-11} eV$)
	- The cloud can emit a nearly-periodic, long duration GW signal potentially detectable by LIGO-Virgo-
KAGRA if $10^{-13} eV < m_b < 10^{-11} eV$

From: https://physics.aps.org/articles/v10/83

Subsolar mass BH search

- SSM BH cannot be produced by any astrophysical mechanism
- No candidate found
- Significative improvement of microlensing and SN lensing constraints
- Will improve in the future

DM direct coupling

- **DM** can DIRECTLY (no GW) couple to the detector, in a way which depends on the candidate
	- Dilaton (fundamental constant modulation)
	- Axion (IF beam phase modulation)
	- dark photon (direct coupling to mirrors)
	- **tensor,**
	- ……
- Ultra-light DM: bosonic field with huge occupation numbers
- Signature: Quasi-monochromatic (Maxwell-Boltzmann broadened) signal correlated between different detectors
- \rightarrow Frequency is determined by the mass
- Broadening contains information about DM distribution

The 2σ exclusion limit and 5σ discovery potential obtained from LIGO and LISA after 2 yr of coincident running for B dark photon dark matter. Coupling strength is normalized to EM coupling strength, i.e., $\epsilon = \alpha/\alpha_{EM}$,
which is not constrained theoretically From: Phys. Rev. Lett. **121**, 061102

O4: what we expect

SNR = 8 on each detector

Living Rev Relativ **23,** 3 (2020). https://doi.org/10.1007/s41114-020-00026-9

Summary

- LIGO-Virgo and future GW detectors opening new windows for study of extreme astrophysical systems
- O3 provides new constraints on BBH population models, deviations from general relativity, masses of BHs, formation channels of massive BHs, and more
- Starting to explore
	- Neutron star astrophysics (structure? EOS? Vortex dynamics?)
	- **Merger physics**
	- **Cosmology**
	- **Lensing**
	- Multi-messenger astronomy (GRB, kilonova)
	- Connections with fundamental theories (dark matter, dark energy, graviton mass, Lorentz invariance bounds, speed of light, speed of GW, test of Equivalence principle)
	- Beyond GR (polarization of gravitational waves, testing GR in dynamic strong field regime)
	- **E** Structure of BH (no hair theorem, exotic objects, QNM, echos, parity violation, axions)

A lot of work to do, and (hopefully) a lot of new scientific discoveries ahead.

Thank you for your attention....