

Sensitivity study for $B^{\pm} \to K^{\pm}a$ (displaced $a \to \gamma\gamma$) at Belle II

ETP Weekly Meeting, May 16, 2022

Alexander Heidelbach, Pablo Goldenzweig, Torben Ferber, Lucas Weidemann

alexander.heidelbach@student.kit.edu

www.kit.edu

Introduction

Theoretical Foundation

Spontaneous Breaking of Global Symmetries

Symmetry of the theory \neq Symmetry of the ground state \Rightarrow Massless Goldstone bosons

Global Anomalies in the Standard Model

Symmetry of the classical theory \neq Symmetry of the quantum theory

 \Rightarrow Noether current is not conserved

E.g. baryon number violation

Theoretical Foundation

Axions and Axion Like Particles
Strong *CP* problem:
Not-forbidden, *CP*- and *P*-odd Lagrangian:
ℒ_θ = θ (g_s²)/(32π²) G_{µν}^a G^{a,µν}, θ = θ_{QCD} + argdet(M_uM_d) →
Solution: Axion
New U(1)_{PQ} that is spontaneously broken and anomalous such

that Goldstone boson *a* couples to gluons (mirrors \mathscr{L}_{θ})

Scalar potential V_a for $a: \langle a \rangle$ cancels θ and $m_a \approx m_\pi F_\pi/2f_a$

ALPs: Do not solve strong *CP* problem and couple to other Standard Model particles

 $V_a = F_\pi^2 m_\pi^2 \cos\left(\theta - \frac{a(x)}{f_a}\right)$

Photon Acceptance

Belle 2 (gen. level

Photon Acceptance

Photon pair is not accepted due to one of the photons being misreconstructed

Most common observation for the lower energetic photon:
We detected an electron whose mother is a photon
This photon originated from the generated ALP

Possible explanation: photon pair conversion

$M_{\gamma\gamma}$ Resolution for Displaced ALPs

$M_{\gamma\gamma}$ Resolution for Displaced ALPs

 \Rightarrow Perform the following analysis for each lifetime independently

Analysis Setup

Privately Generated Signal Samples

- $m_a \in [0.175, 4.600]$ GeV/ c^2 in steps 0.1 GeV/ c^2 excluding $m_\eta \in [0.45, 0.63]$ GeV/ c^2 and $m_{\eta'} \in [0.91, 1.01]$ GeV/ c^2
- $c\tau_a \in \{0.0, 1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0\}$ GeV/ c^2 (exponential distribution)
- $N_{\rm MC} = 50\,000$
- Detector setup and beam background corresponding to early-phase 3
- Belle II MC samples corresponding to $100\,{\rm fb}^{-1}$

Charged:
$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^+B^-$$

- Mixed: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^0 \overline{B}^0$
- Continuum: $e^+e^- \rightarrow q\bar{q}$

Candidate Selection

Signal Extraction Strategy

Signal Extraction Strategy

Signal Extraction

Signal PDF: Double-Sided Crystal Ball \square n_r, n_l : fixed (empirical) $\mu, \sigma, \alpha_r, \alpha_l$: fixed (interpolated) **Background PDF**: Chebyshev Polynomials ■ 3rd order polynomials are stable **x**_{1.2.3}: floating Bump Hunt Scan: $M_{\gamma\gamma} \in [0.175, 4.600]$ GeV/ c^2 For each lifetime independently Steps of 2.5 MeV/ c^2

Excluding η, η' resonances

Sensitivity

Branching Ratio: $Br(B \to Ka) \times Br(a \to \gamma\gamma) = \frac{N_{Sig}}{2N_{B\bar{B}}Br(\Upsilon(4S) \to B^+B^-)\epsilon_{Sig}}$ Upper Limit Calculation: $q_{N_{Sig}} = \begin{cases} -2\ln\frac{\mathscr{L}(N_{Sig}, \hat{\theta}')}{\mathscr{L}(N_{Sig} = \hat{N}_{Sig}, \hat{\theta})}, & \hat{N}_{Sig} \leq N_{Sig} \end{cases}$

$$0, N_{\text{Sig}} > N_{\text{Sig}}$$

$$Asymptotic Approximation (Cowan et al.):$$

$$1 - \text{CL} = p_{N_{\text{Sig}}} = 1 - \Phi\left(\sqrt{q_{N_{\text{Sig}},A}}\right)$$

To-Do: Toy MC study to compare calculated limit

17 16. May 2022 Alexander Heidelbach: $B \rightarrow Ka, a \rightarrow \gamma \gamma$

Belle II Group, ETP, Karlsruhe Institute of Technology

Sensitivity

- We can achieve a comparable (~2 less) sensitivity on $100 \, \text{fb}^{-1}$ Belle II MC as compared to the published BaBar results for $424 \, \text{fb}^{-1}$ data
- We extended the sensitivity to displaced ALP decays with a mass $m_a > 2.5 \text{ GeV}/c^2$
- We extended the search for ALP lifetimes up to $c\tau_a \leq 50\,{\rm cm}$

Outlook

$\blacksquare B^{\pm} \to K^{\pm}(a \to \gamma \gamma) \text{ at Belle II}$

- Produce more MC signal samples for small ALP masses
- Perform a scan of $M_{_{\gamma\gamma}}$ on Belle II MC samples corresponding to $500\,{
 m fb}^{-1}$
- Include leptonic background samples $e^+e^- \rightarrow l^+l^-$
- Present search in Dark Sector Belle II meeting and ask permission to unblind on sideband data
- Control channel study
- Assess systematic uncertainties and consider the look-elsewhere effect
- Possibly change cut-based candidate selection approach to ML based ansatz (pending BA thesis based on <u>https://arxiv.org/abs/2110.00810</u>)

Outlook

- General Goals:
 - Development of tracking calorimeter prototypes
 - ALP data analysis
- LUXE-NPOD (<u>https://arxiv.org/abs/2107.13554</u>)
 - Optical dump at XFEL \rightarrow large flux of hard photons
 - Sensitive to ALP to photon couplings
- SHADOWS (https://arxiv.org/abs/2110.08025)
 - Proton beam dump experiment placed off-axis

Sensitive to
$$B^{\pm} \to K^{\pm}(a \to \gamma \gamma)$$

Target+TAX area

VA62 experimental area