
Search for the decay of a heavy Higgs boson into two lighter Higgs bosons of different mass in final states with b quarks and tau leptons at the LHC

23.05.22

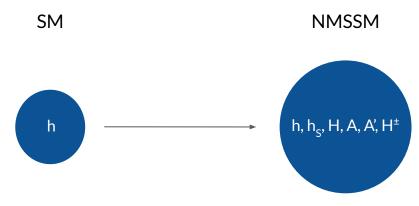
In this talk...

A beyond-Standard-Model search for additional Higgs bosons:

- Inspired by the next-to-minimal supersymmetric Standard Model (NMSSM)
- Majority of background estimation from data
- Multiclassification using a neural net
- Statistical inference to set upper exclusion limits on the signal cross section x BR

Why search for BSM physics?

The Standard Model (SM) provides our current best description of fundamental particles **However:** SM has experimental and theoretical shortcomings (e.g. Gravitation, Dark Matter) \rightarrow search for SM extension or new fundamental theory


Supersymmetric theories:

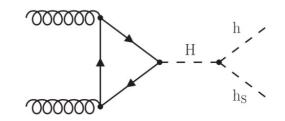
- Class of SM extensions
- Imposes additional symmetry on SM \rightarrow new particles
- Can be parametrised in many ways e.g. the next-to-minimal supersymmetric Standard Model (**NMSSM**)

The NMSSM Higgs Sector (1)

Next-to-minimal realisation of supersymmetry. Extends the SM Higgs sector with an additional SU(2) doublet + singlet

 \rightarrow NMSSM Higgs Sector contains 7 Higgs boson with rich phenomenology

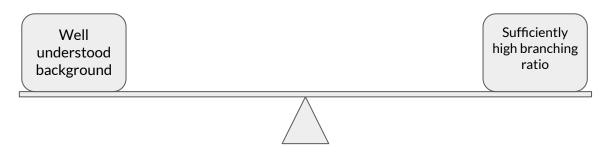
The NMSSM Higgs Sector (2)


Next-to-minimal realisation of supersymmetry. Extends the SM Higgs sector with an additional SU(2) doublet + singlet

 \rightarrow NMSSM Higgs Sector contains 7 Higgs boson with rich phenomenology

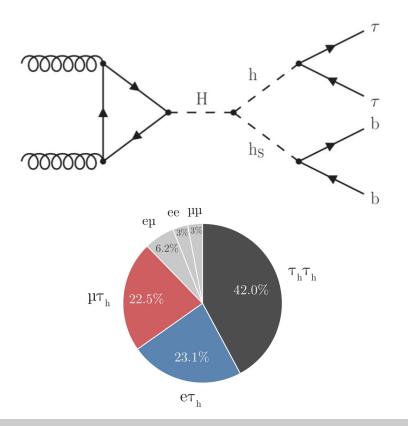
We consider the 3 scalars in this analysis:

- Consider h to have properties of previously discovered Higgs boson
- h_s is considered 'light', H is considered 'heavy'
- $m(h_s)$ and m(H) are free parameters


Scalars: h, h_s, H Pseudoscalars: A, A' Charged: H[±]

$H \rightarrow hh_s$ final states with b quarks and tau leptons (1)

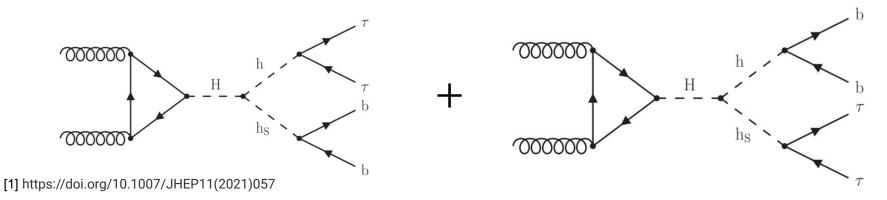
We target final states with a b quark and tau lepton pair (i.e. $H \rightarrow hh_s \rightarrow bb\tau\tau$).


- Decays to b quarks (which hadronise to form b-jets):
 - \circ (+) high branching ratio
 - (-) less well understood background
- The τ leptons are identified via their decay products (e, μ , hadrons) :
 - (+) well understood background
 - (-) lower branching ratio

$H \rightarrow hh_s$ final states with b quarks and tau leptons (2)

An analysis targeting $H \rightarrow h(\tau \tau)h_s(bb)$ was published in 2021 by the CMS collaboration [1]:

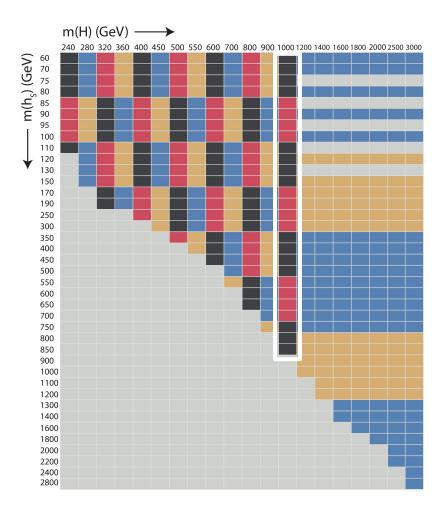
- Considered to full CMS Run-2 data (2016 + 2017 + 2018 data taking periods)
- Targets 3 most common *τ*-pair decay modes


[1] https://doi.org/10.1007/JHEP11(2021)057

$H \rightarrow hh_s$ final states with b quarks and tau leptons (3)

This analysis is a proof of concept to extend [1] with the $H \rightarrow h(bb)h_{s}(\tau\tau)$ final state.

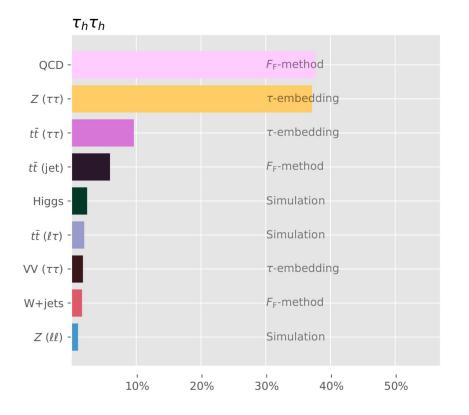
A number of simplifications w.r.t original analysis are made:


- Only consider 2018 period
- Only consider $\tau_h \tau_h$ decay mode

Signal Simulation

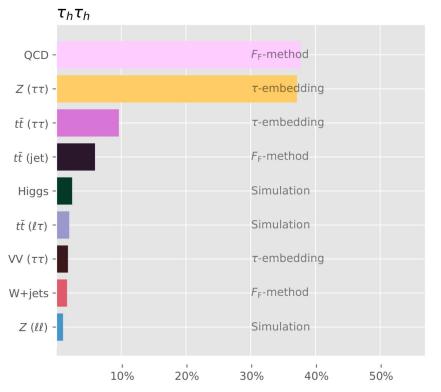
 $H \rightarrow h(bb)h_s(\tau\tau) / h(\tau\tau)h_s(bb)$ samples have been privately produced:

- MadGraph5_aMC@NLO
- 27 mass combinations with m(H) = 1000 GeV and m(h_s) = [60, 850] GeV were produced (on-shell)
- 200,000 events for each mass point
- Production required ~ 100,000 CPU hours (local resources, NEMO)


Background Estimation (1)

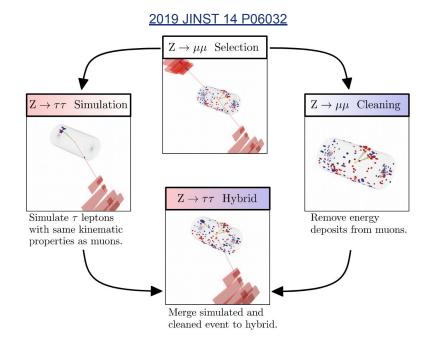
Processes that produce

- A genuine or 'fake' tau lepton pair
- A genuine or 'fake' b-Jet pair


Most prominent in $T_h T_h$ channel:

- QCD multijet production
- $Z \rightarrow TT$

Background Estimation (2)

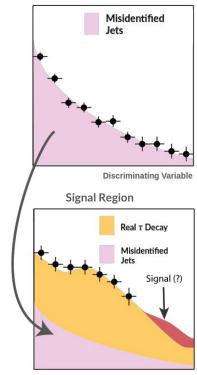

- T-embedding for all events with two genuine tau leptons
- F_F method for events entering the analysis due to misidentified quark/gluon induced jets
- 3. Monte Carlo (MC) simulation for $SM h \rightarrow TT$ events + misc.

Background Estimation: Tau-Embedding

Used to model background processes with genuine τ -pairs:

- 1. Selecting $\mu\mu$ events from data
- 2. Remove muon energy deposits
- 3. Simulate τ -leptons in place of muons
- 4. Merge simulation with original event

Reduced associated uncertainties vs full MC estimation


Background Estimation: F_F Method

Sideband region: e.g. same sign QCD taus

Used to model jets incorrectly identified as $\tau_{\rm h}$:

- 1. Bckgd. processes are selected by process specific properties e.g.:
 - QCD: same sign
 - tt: additional leptons
- 2. Define sideband region enriched in misidentified jets
- 3. Calculate multivariate transfer function $F_i \rightarrow$ apply to sideband region

No MC corrections needed in estimating signal region

Multivariate

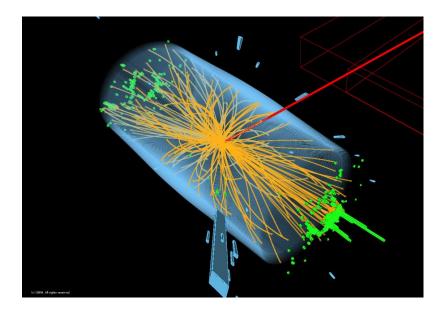
transfer

function:

 $F_i(p_T N_{iet},...)$

Background Estimation: Simulation

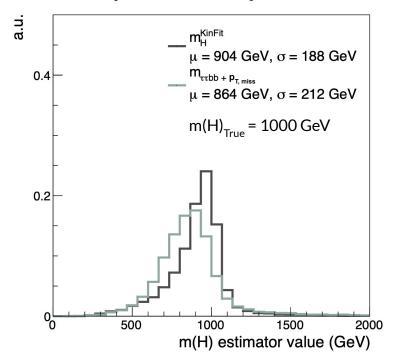
Used to estimate a number of minor backgrounds e.g.:


- SM $h \rightarrow TT$
- $Z \rightarrow ee, Z \rightarrow \mu\mu$
- tt(/T)

Events are weighted with a factor

$$\beta = L_{\text{int}} \cdot \sigma \cdot \frac{1}{N_{\text{sim}}}$$

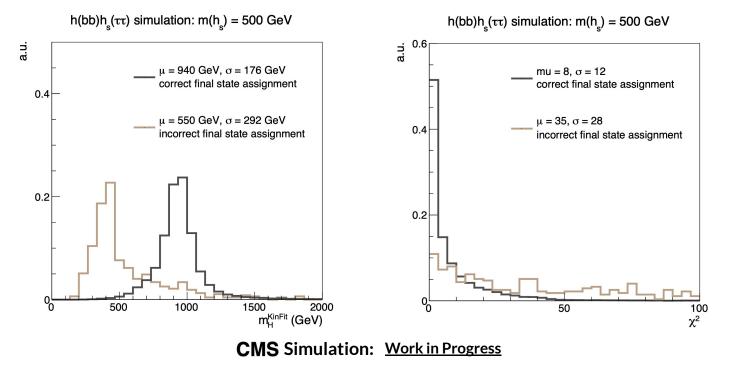
- L_{int}: Integrated luminosity
- σ: process cross section
- N_{sim}: # of sim. events


Kinematic Fit of bb + $\tau\tau$ Mass (1)

 χ^2 estimate of the mass of the bb $\tau\tau$ -system:

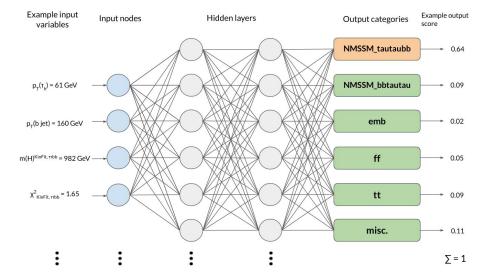
- Minimise χ² for range of m(h_s) hypotheses ([30 GeV, 3000 GeV])
- Fit with lowest minimal χ^2 value is chosen
- Output: m(H) estimator, m(h_s), χ^2 value of fit
- Improves resolution of the reconstructed mass m_{bbrτ}

$$\chi^{2} = \chi^{2}_{b_{1}} + \chi^{2}_{b_{2}} + \chi^{2}_{recoil}$$


 $h(\tau\tau)h_s(bb)$ simulation: $m(h_s) = 500 \text{ GeV}$

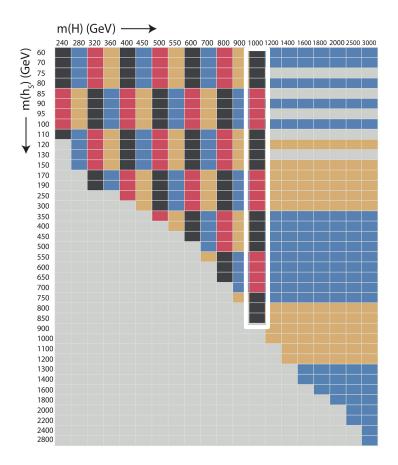
CMS Simulation: <u>Work in Progress</u>

Kinematic Fit of bb + $\tau\tau$ Mass (2)


Fit performed once for each signal final state, outputs of both are saved

Event Classification (1)

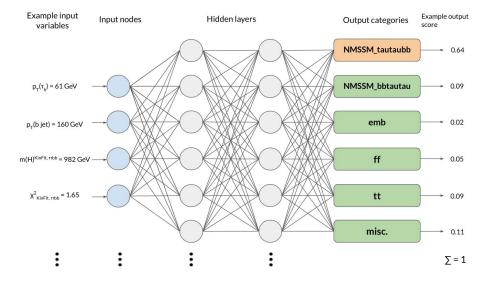
Multiclass classification based on **Neural Net** (NN) with 4 background categories and 2 signal categories:


- 28 Input features
- NN returns a probability-like score for each category. The event is assigned to category with highest score with value NN_{max}

Event Classification (1)

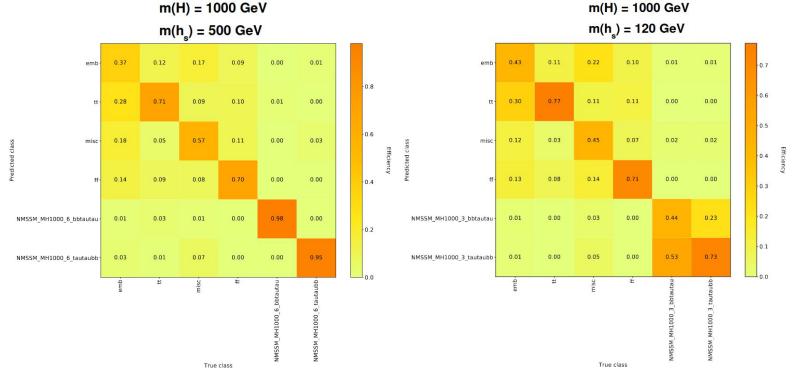
Multiclass classification based on **Neural Net** (NN) with 4 background categories and 2 signal categories:

- 28 Input features
- NN returns a probability-like score for each category. The event is assigned to category with highest score with value NN_{max}
- 7 NNs are trained for 7 different mass groupings



Event Classification (2)

NN features:


- Fully connected feed-forward network
- 2 hidden layers with 200 nodes
- Minimise the empirical risk function (balanced batches, N = 600)

$$R_{\text{emp}} = -\sum_{j=1}^{N} w^j \sum_{i=1}^{C} t_i^j \cdot \log(y_i^j)$$

Event Classification (3)

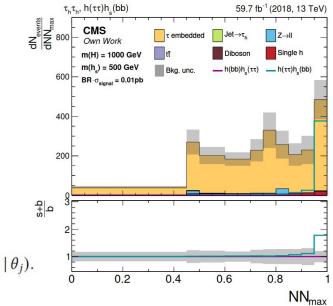
Comparison of different m(h_s) mass points:

m(H) = 1000 GeV

Statistical Inference

Calculate 95% CL CL_s limits on $H \rightarrow hh_s$ assuming absence of signal:

• Calculate likelihood function based on a poisson ansatz for individual bin content

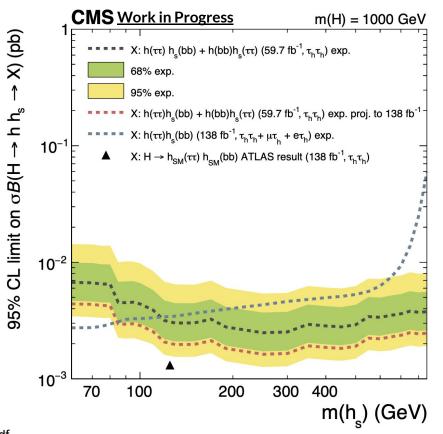

$$\mathcal{P}(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad \mathcal{L}(d \mid \mu \cdot s(\theta) + b(\theta)) = \prod_{i \in \text{bins}} \mathcal{P}(d_i \mid \mu \cdot s(\theta) + b(\theta)) \ge \prod_{j \in \text{nuis.}} C(\hat{\theta}_j \mid \theta)$$

• Profile likelihood test statistic

$$q_{\mu} = -2\ln\left(\frac{\mathcal{L}(d \mid \mu \cdot s(\hat{\theta}_{\mu}) + b(\hat{\theta}_{\mu}))}{\mathcal{L}(d \mid \hat{\mu} \cdot s(\hat{\theta}) + b(\hat{\theta})}\right)$$

• CL_s method

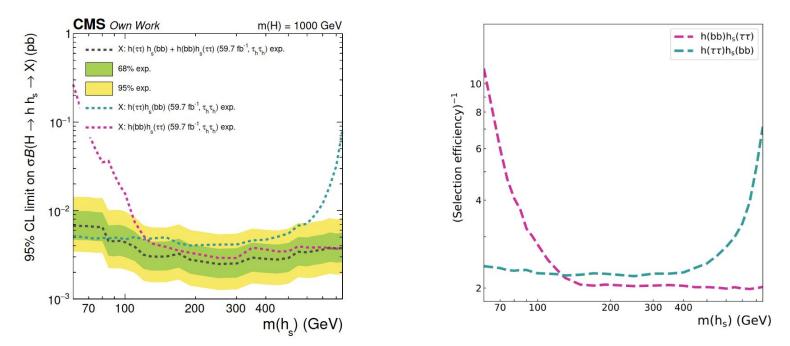
$$\mathrm{CL}_{\mathrm{s}} = \frac{p_{\mu}}{1 - p_0}$$


- Analysis is model-independent until this point
- Can be interpreted in terms of any X→xh model by scaling expected yields of the signal final states (assume equal yields here)

Results (1)

Analysis sensitivity is gauged by the calculated expected exclusion limits on

 $\sigma B(H \rightarrow hh_s \rightarrow bb + \tau\tau)$

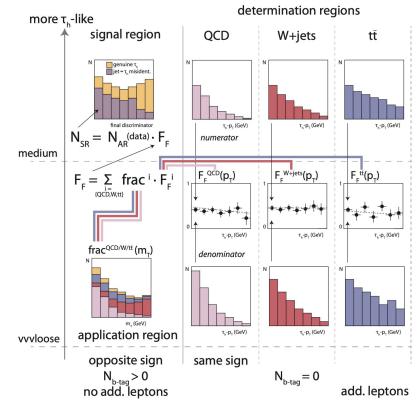

Combination of $h(bb)h_s(\tau\tau) + h(\tau\tau)h_s(bb)$ final states (red) improves upon sensitivity of $h(\tau\tau)h_s(bb)$ analysis (blue) significantly for $m(h_s) > 80$ GeV

[2] http://cdsweb.cern.ch/record/ 2777236/files/ATLAS-CONF-2021-030.pdf

Results (2)

Taking a look at the results split by signal final states:

 \rightarrow Analysis sensitivity is driven by selection efficiency


Conclusion

A novel search for $H \rightarrow hh_s$ decays was presented:

- NMSSM inspired but largely model independent
- Employs background estimation methods such as τ-embedding and the F_F method
- Multiclassification is performed using multivariate NN with two signal classes
- Significant improvement in exclusion sensitivity is achieved when $h(bb)h_s(\tau\tau) + h(\tau\tau)h_s(bb)$ final states are considered simultaneously

Thank you!

Backup - F_F Method

