

Transformers

Active Training Course "Advanced Deep Learning"

Niklas Langner

RWTH Aachen University

Current Hype: Text-to-Image Models

Text Prompt

Photography of an Astronaut wearing a green spacesuit standing in front of the Colosseum on the moon, with a bouquet of roses in his hand

https://arxiv.org/abs/2112.10752 https://github.com/CompVis/stable-diffusion

Understanding the Text Prompt

Cherry-picked examples:

Successful generations:

Misunderstandings:

https://github.com/CompVis/stable-diffusion

Understanding a long text is **hard**, but network (often) manages to do it \rightarrow **How does it work**?

Natural Language Processing

Before transformers: Recurrent Neural Networks ("RNNs", e.g. LSTMs)

Approach: Analyze the data **sequentially** \rightarrow current step always depends on all previous steps

Sequential Data Processing

In theory: Using an RNN, current step has access to information from all previous steps

In practice: Only works well for small sequences (<20 timesteps) due to too small gradients in regard to far away timesteps

https://arxiv.org/abs/1409.0473

Solution: Attention

Use intermediate results of RNN layers and **combine them using weights** α (alignment score)

Attention Mechanisms

$s_i = f(s_{i-1}, y_{i-1})$	$c_i = \sum_{j=1}^T \alpha_{ij} h$	$a_{ij} \qquad \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$ $e_{ij} = \operatorname{scor}_{k}$	$e(s_{i-1},h_j)$
	Name	Alignment score function	Citation
Commonly used neural network approach	Content-base attention	score $(s_{i-1}, h_i) = \cos(\theta)$ where θ is the angle between s_{i-1} and h_j	Graves2014
	Additive	score $(s_{i-1}, h_j) = v_a^{\mathrm{T}} \tanh(W_a[s_{i-1}; h_j])$	Bahdanau2015
Alignment score:	Location-Based	$\alpha_{ij} = \text{softmax}(W_a s_i)_j$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
Many different options	General	score $(s_{i-1}, h_j) = s_{i-1}^{\top} W_a h_j$ where W_a is a trainable weight matrix in the attention layer.	Luong2015
	Dot-Product	$\operatorname{score}(s_{i-1}, h_j) = s_{i-1}^{T} h_j$	Luong2015
	Scaled Dot-Product	score $(s_{i-1}, h_j) = \frac{s_{i-1}^T h_j}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017
	Important for Transfor	mer https://lilianweng.github.io	/posts/2018-06-24-attention/

Self-Attention

Relate input **to itself** to determine **self-attention**:

The FBI is chasing a criminal on the run.								
The FBI is chasing a criminal on the run.								
The FBI is chasing a criminal on the run.								
The	FBI	is	chasing a	cri	minal on th	ne run	ι.	
The	FBI	is	chasing	a c	riminal on	the r	un.	
The	FBI	is	chasing	a	criminal o	n the	run.	
The	FBI	is	chasing	a	criminal	on th	ne run	ι.
The	FBI	is	chasing	a	criminal	on	the r	un.
The	FBI	is	chasing	a	criminal	on	the	run.
The	FBI	is	chasing	a	criminal	on	the	run

Bolder line: Higher attention

⇒ Adding attention mechanisms to RNNs improves the performance (especially for long sentences) and can enable interesting insights

https://arxiv.org/abs/1601.06733

29.11.2022

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*Niki Parmar*Google BrainGoogle Researchnoam@google.comnikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*†} University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to

Introducing: The Transformer

https://arxiv.org/abs/1706.03762

29.11.2022

Transformer: Attention Mechanism

Interpret attention as function of query Q, keys K and values V

https://arxiv.org/abs/1706.03762

QKV-Self-Attention Implementation

Here: Always use $X \rightarrow$ calculate **self attention** To relate X to different input data X_2 , use X_2 to calculate Q (cross attention)

https://arxiv.org/abs/1706.03762

Multi-Head Attention

29.11.2022

Positional Encoding

Positional Encoding PE is **added to embedded vectors from inputs** to pass positional information to transformer Many different options (both **trainable** and **fixed**), paper uses **fixed encoding**:

https://arxiv.org/abs/1706.03762

Full Transformer Architecture

https://arxiv.org/abs/1706.03762

Text Translation with Transformer

https://arxiv.org/abs/1706.03762

Transformer (big)

 $2.3 \cdot 10^{19}$

41.8

28.4

Impact of Transformers – Language Processing

	GLUE <u>https:/</u>	/gluebenchmark.com/leaderboard			
Ranl	k Name	Model	URL	Score	
1	Microsoft Alexander v-team	Turing ULR v6		91.3	
2	JDExplore d-team	Vega v1		91.3	
3	Microsoft Alexander v-team	Turing NLR v5		91.2	
4	DIRL Team	DeBERTa + CLEVER		91.1	
5	ERNIE Team - Baidu	ERNIE		91.1	
6	AliceMind & DIRL	StructBERT + CLEVER		91.0	
7	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.8	$\left(\right)$
8	HFL iFLYTEK	MacALBERT + DKM		90.7	
9	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6	
10	T5 Team - Google	Т5		90.3	
11	Microsoft D365 AI & MSR AI & GATECH	MT-DNN-SMART		89.9	
12	Huawei Noah's Ark Lab	NEZHA-Large		89.8	
		• •			-
79	GLUE Baselines	BiLSTM+ELMo+Attn		70.0	

Transformers beat LSTMs/Recurrent Neural Networks as state of the art in natural langugage processing!

Huge transformer models are widely-used for language processing:

- Google BERT (340 Million parameters)
- Google T5 (11 billion parameters)
- OpenAl GPT-3 (175 billion parameters)
- Microsoft Megatron-Turing NLG (530 billion parameters)
- → Models using more than one **trillion** parameters are already tested

All using

Transformers

Transformer for Language Processing - Overview

- **Transformers**: Use **attention-mechanism** to analyze data → **Relevance** between different inputs
- Positional Encoding enables the **analysis of sequences**
 - → Ability to understand long and complicated texts
 - Transformers replaced RNNs as state-of-the-art methods for natural language processing

Enabled new applications:

Generating large texts

A robot wrote this entire article. Are you scared yet, human? *GPT-3*

We asked GPT-3, OpenAI's powerful new language generator, to write an essay for us from scratch. The assignment? To convince us robots come in peace

Writing code

Your Al pair programmer

GitHub Copilot uses the OpenAl Codex to suggest code and entire functions in real-time, right from your editor.

Understanding complex prompts

Conversational models

Hi! I am Mount Everest. What would you like to know about me?

, 4

Why do people climb you?

Some people want to show others they could do it, others enjoy the hike and the scenery, and then some people just want to see the world.

Who was the first?

Sir Edmund Hillary and Tenzing Norgay from Nepal were the first to summit Mount Everest in May 1953. They were joined by several others at different times in the successful attempt.

, 41

Image Recognition

Previous state of the art in image recognition: **Convolutional Neural Networks**

- Learned filters that are used to scan images for features
- Inherently uses the symmetries of 2D images, i.e. which pixels are neighbors, where does the image end, etc.
- However: Can be computationally demanding

"Looking forward to the next generation of scalable vision models, one might ask whether this domain-specific design is necessary, or if one could successfully leverage more domain agnostic and computationally efficient architectures to achieve state-of-the-art results."

https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

⇒ Vision Transformer

¹⁾<u>https://commons.wikimedia.org/wiki/File:Typical_cnn.png</u>

Vision Transformer (ViT)

Vision Transformer Performance

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

	1	ransformers	CNNs			
	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)	
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*	
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55	
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	—	
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	—	
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	—	
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	—	
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_	
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k	

Transformer: More efficient

"ViT performs **significantly worse** than the CNN equivalent (BiT) when **trained on ImageNet** (1M images). However, on **ImageNet-21k** (14M images) performance is **comparable**, and on **JFT** (300M images), **ViT now outperforms BiT**."

⇒ Vision Transformer already outperforms (highly-optimized) CNNs, despite using architecture created for language processing

https://arxiv.org/abs/2010.11929

Vision Transformer Insight

https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

https://arxiv.org/abs/2010.11929

Vision Transformer Insight

https://arxiv.org/abs/2105.07197

Input

ImageNet Leaderboard

Image Classification on ImageNet:

Rank	Model	Top 1 ↑ Top 5 Accuracy Accuracy	Number of params	Year	Tags 🖻
1	CoCa (finetuned)	91.0%	2100M	2022	ALIGN Transformer JFT-3B
2	Model soups (BASIC-L)	90.98%	2440M	2022	Conv+Transformer JFT-3B ALIGN
3	Model soups (ViT-G/14)	90.94%	1843M	2022	JFT-3B Transformer
4	ViT-e	90.9%	3900M	2022	Transformer JFT-3B

https://paperswithcode.com/sota/image-classification-on-imagenet

Transformers beat CNNs as state of the art in image recognition!

Application Example: Cosmic-Ray Element Reconstruction at Pierre Auger Observatory

Pierre Auger Observatory Surface Detector

- Located in the *Pampa Amarilla* near Malargüe, Argentina
- Covers an area of roughly 3000 km²
- **Hexagonal grid** of 1660 water-Cherenkov stations
- Sample air shower footprint

Shower Image Credit: https://www-zeuthen.desy.de/~jknapp/fs/proton-showers.html

Cosmic-Ray Mass Reconstruction Neural Network

1) Image Credit: <u>https://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>

Challenges of Transformer Application

⇒ Default attention quickly needs very large amounts of VRAM if data structure is too large, alternatives exist

1) Image Credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Chances of Transformer Application

Spatial Transformer

- Use simple, **out of the box vision transformer** to replace hexagonal convolution
- Loses inherent knowledge of:
 - Hexagonal symmetry
 - 2D structure
- Increases number of parameters by factor 17
- Reduces training time by 50%
- Increases performance!

⇒ Domain agnostic transformer can be trained quickly, and outperforms approach focused on data symmetry (similar to Vision Transformer on images)

1) Image Credit: <u>https://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>

Transformers in Science

Similar to other fields, transformers are used instead of LSTMs or CNNs, as well as for new applications:

DeepMind AI cracks 50-year-old problem of protein folding

Program solves scientific problem in 'stunning advance' for understanding machinery of life

Famous science application: Protein unfolding

Applications in Astro- and Particle Physics are becoming more common: (The following list contains some of the results from arXiv and is not extensive)

Time Sequence Analyses

https://arxiv.org/pdf/2207.07414.pdf

SPACE-BASED GRAVITATIONAL WAVE SIGNAL DETECTION AND EXTRACTION WITH DEEP NEURAL NETWORK

Time Sequence Analyses

https://arxiv.org/pdf/2207.02777.pdf

Vision Transformer Applications

Strong Gravitational Lensing Parameter Estimation with Vision Transformer

Other Applications

Particle Physics

https://arxiv.org/pdf/2102.05073.pdf Point Cloud Transformers applied to Collider Physics

JetClass Classification

Accuracy

0.772

0.809

0.844

0.861

0.849

PFN

P-CNN

ParT

ParticleNet

ParT (plain)

params FLOPs

4.62 M

15.5 M

540 M

340 M

260 M

86.1 k

354 k

370 k

2.14 M

2.13 M

https://arxiv.org/pdf/2202.03772.pdf

"P-MHA, an augmented version that can also exploit the pairwise particle interactions directly [...]

Essentially, we add the interaction matrix **U** [...]. *This allows P-MHA to incorporate particle interaction features designed from physics principles ..."*

Top-Tagging

P-CNN 0.930 PFN — ParticleNet 0.940 JEDI-net (w/ $\sum O$) 0.930 PCT 0.940 LGN 0.929 rPCN — LorentzNet 0.942 ParT 0.940 ParT 0.942 ParT 0.942 ParT 0.942 ParT 0.942 ParT 0.942 ParT.f.t. 0.944		Accuracy
PFN — ParticleNet 0.940 JEDI-net (w/ $\sum O$) 0.930 PCT 0.940 LGN 0.929 rPCN — LorentzNet 0.942 ParT 0.940 PartT 0.942 Part 0.942 Part 0.942 Part 0.942 Part 0.942 Part-f.t. 0.944	P-CNN	0.930
ParticleNet 0.940 JEDI-net (w/ $\sum O$) 0.930 PCT 0.940 LGN 0.929 rPCN — LorentzNet 0.942 ParT 0.940 ParticleNet-f.t. 0.942 ParT 0.940	PFN	_
JEDI-net (w/ $\sum O$) 0.930 PCT 0.940 LGN 0.929 rPCN — LorentzNet 0.942 ParT 0.940 ParticleNet-f.t. 0.942 ParT-f.t. 0.944	ParticleNet	0.940
PCT 0.940 LGN 0.929 rPCN — LorentzNet 0.942 ParT 0.940 ParticleNet-f.t. 0.942 ParT 0.940 ParticleNet-f.t. 0.942	JEDI-net (w/ $\sum O$)	0.930
LGN 0.929 rPCN — LorentzNet 0.942 ParT 0.940 ParticleNet-f.t. 0.942 ParT-f.t. 0.944	PCT	0.940
rPCN — LorentzNet 0.942 ParT 0.940 ParticleNet-f.t. 0.942 ParT-f.t. 0.944	LGN	0.929
LorentzNet 0.942 ParT 0.940 ParticleNet-f.t. 0.942 ParT-f.t. 0.944	rPCN	_
ParT 0.940 ParticleNet-f.t. 0.942 ParT-f.t. 0.944	LorentzNet	0.942
ParticleNet-f.t. 0.942 ParT-f.t. 0.944	ParT	0.940
ParT-f.t. 0.944	ParticleNet-f.t.	0.942
	ParT-f.t.	0.944

(Also best in quark-gluon tagging)

Particle Physics

https://arxiv.org/pdf/2203.05687.pdf

Summary

- Transformer: Based on attention mechanism
- New State-of-the art in many fields
 - Natural language processing
 - Image recognition
 - ...
- Large amounts of VRAM needed to analyze long sequences
 - Alternatives (Reformer, Sparse Transformer, Perceiver) exist, but some are less accessible
- Easily applicable to many different tasks, due to being **domain agnostic**
 - Quickly spreading to more branches of machine learning
 - Usage of transformers in **physics** at an early stage with **promising results**

