Normalizing Flows

— Active Training Course "Advanced Deep Learning" —

Claudius Krause

Institute for Theoretical Physics, University of Heidelberg

November 30, 2022

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

Claudius.Krause@thphys.uni-heidelberg.de

Further Ressources

Further Reading:

- "HEPML Living Review" <https://iml-wg.github.io/HEPML-LivingReview/>
- "Normalizing Flows for Probabilistic Modeling and Inference" [arXiv: 1912.02762](https://arxiv.org/abs/1912.02762)

Motivation: Density Estimation

Motivation: Density Estimation

probability density function. $p(x) \geq 0$, $\int dx p(x) = 1$

Problem:

Learn the underlying pdf from which a set of iid samples was drawn.

 $index{index}$ independent, identically distributed

Motivation: Density Estimation

Motivation: Generative Models

Problem:

We have a distribution $p(x)$ and want to sample ("generate") new elements that follow it.

given:
$$
\{x_i\}
$$
 want: $x \sim p(x)$
given: $f(x)$ want: $x \sim f(x)/\int f(x)$

Motivation: Generative Models

Problem:

We have a distribution $p(x)$ and want to sample ("generate") new elements that follow it.

given:
$$
\{x_i\}
$$
 - or -

given: $f(x)$

$$
\text{want: } x \sim f(x) / \int f(x)
$$

want: $x \sim p(x)$

- Generation is an important aspect of simulation.
- GANs, VAEs, Normalizing Flows, Diffusion Models, and their derivates have different advantages and disadvantages.

<https://thispersondoesnotexist.com/>, based on T. Karras et al. [1912.04958]

Normalizing Flows in a Nutshell

Normalizing Flows in a Nutshell

Claudius Krause (ITP Heidelberg) [Normalizing Flows](#page-0-0) November 30, 2022 5/40

Training Normalizing Flows

Maximum Likelihood Estimation gives the best loss functions: • Regression: Mean Squared Error Loss • Binary classification: Binary Cross Entropy Loss \bullet . . .

Normalizing Flows give us the log-likelihood (LL) explicitly!

⇒ Maximize log *q* (the LL) over the given samples.

$$
\mathcal{L} = -\sum_i \log q(x_i)
$$

 \Rightarrow If we don't have samples, but a target $f(x)$, we can use the KL-divergence.

$$
\mathcal{L} = D_{\mathsf{KL}}[f, q] = \int dx \ f(x) \ \log \frac{f(x)}{q(x)} = \left\langle \frac{f(x)}{q(x)} \log \frac{f(x)}{q(x)} \right\rangle_{x \sim q(x)}
$$

Normalizing Flows are great!

Pros and Cons of Normalizing Flows:

- LL optimaztion is more stable than saddlepoint optimization of GANs.
- Do not suffer from mode-collapse.
- Model selection is straightforward with $LL($ val-set).
- Flows are versatile (train for one thing, use for another).
- Empirically: better at learning distributions to the $%$ -level
- They scale bad with the dimensionality of the problem.
- Some architectures might be slow.
- There are topological constraints.
- Sparse data is hard to learn.

Applications of Normalizing Flows: Overview

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

Base distributions

We need a trackable Jacobian and Inverse.

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

- \bullet First idea: making f a NN.
	- \times inverse does not always exist
	- \times Jacobian slow via autograd

$$
\times \left| \det \frac{\partial f}{\partial z} \right| \propto \mathcal{O}(n_{\text{dim}}^3)
$$

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

We need a trackable Jacobian and Inverse.

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

 \bullet First idea: making f a NN. \times inverse does not always exist \times Jacobian slow via autograd \times $\left|\det \frac{\partial f}{\partial z}\right| \propto \mathcal{O}(n_{\text{dim}}^3)$ \Rightarrow Let a NN learn parameters θ of a pre-defined transformation! Each transformation is 1d & has an analytic Jacobian and inverse. $\Rightarrow \vec{f}(\vec{x}; \vec{\theta}) = (C_1(x_1; \theta_1), C_2(x_2; \theta_2), \dots, C_n(x_n; \theta_n))^T$

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

We need a trackable Jacobian and Inverse.

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

- \bullet First idea: making f a NN. \times inverse does not always exist \times Jacobian slow via autograd \times $\left|\det \frac{\partial f}{\partial z}\right| \propto \mathcal{O}(n_{\text{dim}}^3)$ \Rightarrow Let a NN learn parameters θ of a pre-defined transformation!
	- Each transformation is 1d & has an analytic Jacobian and inverse. $\Rightarrow \vec{f}(\vec{x}; \vec{\theta}) = (C_1(x_1; \theta_1), C_2(x_2; \theta_2), \dots, C_n(x_n; \theta_n))^T$
	- Require a triangular Jacobian for faster evaluation.
		- \Rightarrow The parameters θ depend only on a subset of all other coordinates.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.
\n
$$
\begin{array}{|c|c|c|c|c|}\n\hline\n\pi_0(z_0) & z_0 = & \pi_1(z_1) & z_1 = & \dots & z_i = & \dots & z_k = & \pi_k(z_k) \\
\hline\n\hline\n\text{f}_0(z_1) & & \text{f}_1(z_2) & & \text{f}_i(z_{i+1}) & & \text{f}_{k-1}(z_k)\n\end{array}
$$

A chain of bijectors is also a bijector

<https://engineering.papercup.com/posts/normalizing-flows-part-2/>

A chain of bijectors is also a bijector

<https://engineering.papercup.com/posts/normalizing-flows-part-2/>

Affine Transformations

The coupling function (transformation) • must be invertible and expressive \bullet is chosen to factorize: $\vec{f}(\vec{x}; \vec{\theta}) = (C_1(x_1; \theta_1), C_2(x_2; \theta_2), \dots, C_n(x_n; \theta_n))^T,$ where \vec{x} are the coordinates to be transformed and $\vec{\theta}$ the parameters of the transformation.

historically first: the affine coupling function

$$
C(x; s, t) = \exp(s) x + t
$$

where s and t are predicted by a NN.

- It requires $x \in \mathbb{R}$.
- **Inverse and Jacobian are trivial.**
- Its transformation powers are limited.

Any monotonic function can be used.

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

Any monotonic function can be used.

Changing coordinates from \vec{z} to \vec{x} with a map \vec{x} = $f(\vec{z})$ changes the distribution according to

$$
\bar{\pi}(\vec{x}) = \pi(\vec{z}) \left| \det \frac{\partial f(\vec{z})}{\partial \vec{z}} \right|^{-1} = \pi(f^{-1}(\vec{x})) \left| \det \frac{\partial f^{-1}(\vec{x})}{\partial \vec{x}} \right|
$$

A more complicated transformation then leads to a more complicated transformed distribution. Splines act in a finite domain.

Piecewise Transformations (Splines)

Piecewise Transformations (Splines)

Piecewise Transformations (Splines)

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by $\vec{\theta}_i = \vec{\theta}_i(x_{i$ $\vec{\theta}_1$ = const. ↓ $p(x_1)$

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by $\vec{\theta}_i = \vec{\theta}_i(x_{i$ $\vec{\theta}_1 = \mathsf{const.} \mid \vec{\theta}_2 = \vec{\theta}_2(z_1)$ ↓ ↓ $p(x_1)$ | $p(x_2|x_1)$
Remember: To tame the determinants, the parameters θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by $\vec{\theta}_i = \vec{\theta}_i(x_{i$ $\vec{\theta_1}=\text{const.}\,\left|\right.\,\vec{\theta_2}=\vec{\theta_2}(z_1)\,\left|\right.\,\vec{\theta_3}=\vec{\theta_3}(z_1,z_2)$ ↓ ↓ ↓ $p(x_1)$ | $p(x_2|x_1)$ | $p(x_3|x_1, x_2)$

Remember: To tame the determinants, the parameters θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by

\n
$$
\vec{\theta}_i = \vec{\theta}_i(x_{j < i})
$$
\n
$$
\vec{\theta}_1 = \text{const.} \begin{vmatrix} \vec{\theta}_2 = \vec{\theta}_2(z_1) & \vec{\theta}_3 = \vec{\theta}_3(z_1, z_2) & \vec{\theta}_i = \vec{\theta}_i(z_1, \dots, z_{i-1}) \\ \downarrow & \downarrow & \downarrow & \vdots \\ p(x_1) & p(x_2 | x_1) & p(x_3 | x_1, x_2) & \cdots & p(x_i | x_1, \dots, x_{i-1}) \end{vmatrix}
$$

Remember: To tame the determinants, the parameters θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by

\n
$$
\vec{\theta}_i = \vec{\theta}_i(x_{j < i})
$$
\n
$$
\vec{\theta}_1 = \text{const.} \begin{vmatrix} \vec{\theta}_2 = \vec{\theta}_2(z_1) & \vec{\theta}_3 = \vec{\theta}_3(z_1, z_2) & \vec{\theta}_i = \vec{\theta}_i(z_1, \dots, z_{i-1}) \\ \downarrow & \downarrow & \downarrow & \cdots \\ p(x_1) & p(x_2 | x_1) & p(x_3 | x_1, x_2) & \cdots & p(x_i | x_1, \dots, x_{i-1}) \end{vmatrix}
$$

Remember: To tame the determinants, the parameters θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by

\n
$$
\vec{\theta}_i = \vec{\theta}_i(x_{j < i})
$$
\n
$$
\vec{\theta}_1 = \text{const.} \begin{vmatrix} \vec{\theta}_2 = \vec{\theta}_2(z_1) & \vec{\theta}_3 = \vec{\theta}_3(z_1, z_2) & \vec{\theta}_i = \vec{\theta}_i(z_1, \dots, z_{i-1}) \\ \downarrow & \downarrow & \downarrow & \cdots \\ p(x_1) & p(x_2 | x_1) & \cdots & p(x_i | x_1, \dots, x_{i-1}) \end{vmatrix}
$$

Autoregressive NNs: MADE Blocks

$$
\vec{\theta}_i = \vec{\theta}_i(x_1, x_2, \dots, x_{j
$$

Implementation via masking:

- a single "forward" pass gives all $\vec{\theta}_i(x_1,\ldots,x_{i-1})$. ⇒ very fast
- its "inverse" needs to loop through all dimensions. ⇒ very slow

Germain et al. [arXiv:1502.03509]

Autoregressive NNs: MADE Blocks

$$
\vec{\theta}_i = \vec{\theta}_i(x_1, x_2, \dots, x_{j
$$

Implementation via masking:

- a single "forward" pass gives all $\vec{\theta}_i(x_1,\ldots,x_{i-1})$. ⇒ very fast
- its "inverse" needs to loop through all dimensions. ⇒ very slow

Germain et al. [arXiv:1502.03509]

Autoregressive NNs: MADE Blocks

$$
\vec{\theta}_i = \vec{\theta}_i(x_1, x_2, \dots, x_{j < i})
$$

Implementation via masking:

- a single "forward" pass gives all $\vec{\theta}_i(x_1,\ldots,x_{i-1})$. ⇒ very fast
- its "inverse" needs to loop through all dimensions.

Germain et al. [arXiv:1502.03509]

Autoregressive Normalizing Flows allow for 2 different realizations: MAF / IAF

Masked Autoregressive Flow (MAF)

- ⇒ slow in sampling and fast in density estimation.
	- Can be trained via the log-likelihood.

Papamakarios et al. [arXiv:1705.07057]

Inverse Autoregressive Flow (IAF)

- \Rightarrow fast in sampling and slow in density estimation.
	- Log-likelihood training is usually prohibitive in memory and time.

• Instead, we can train an IAF with "Probability Density Distillation" or "teacher-student training".

Kingma et al. [arXiv:1606.04934]

$$
Loss = MSE(z, z') + MSE(x, x') + MSE(z_i, z'_i) + MSE(x_i, x'_i) + MSE(\theta_z, \theta'_z) + MSE(\theta_x, \theta'_x)
$$

$$
Loss = MSE(z, z') + MSE(x, x') + MSE(z_i, z'_i) + MSE(x_i, x'_i) + MSE(\theta_z, \theta'_z) + MSE(\theta_x, \theta'_x)
$$

$$
Loss = MSE(z, z') + MSE(x, x') + MSE(z_i, z'_i) + MSE(x_i, x'_i) + MSE(\theta_z, \theta'_z) + MSE(\theta_x, \theta'_x)
$$

$$
Loss = MSE(z, z') + MSE(x, x') + MSE(z_i, z'_i) + MSE(x_i, x'_i) + MSE(\theta_z, \theta'_z) + MSE(\theta_x, \theta'_x)
$$

$$
Loss = MSE(z, z') + MSE(x, x') + MSE(z_i, z'_i)+ MSE(x_i, x'_i) + MSE(\theta_z, \theta'_z) + MSE(\theta_x, \theta'_x)
$$

$$
Loss = MSE(z, z') + MSE(x, x') + MSE(z_i, z'_i)+ MSE(x_i, x'_i) + MSE(\theta_z, \theta'_z) + MSE(\theta_x, \theta'_x)
$$

$$
Loss = MSE(z, z') + MSE(x, x') + MSE(z_i, z'_i)+ MSE(x_i, x'_i) + MSE(\theta_z, \theta'_z) + MSE(\theta_x, \theta'_x)
$$

Taming Jacobians 2: Bipartite Flows ("INNs")

Further improvements

Incorporating Symmetries: • Symmetric base distribution • Equivariant transformation: $f(g \cdot x) = g \cdot f(x)$ Kanwar et al. [arXiv:2003.06413]; Köhler et al. [arXiv:2006.02425]

Further improvements

Incorporating Symmetries:

- Symmetric base distribution
- Equivariant transformation: $f(g \cdot x) = g \cdot f(x)$

Kanwar et al. [arXiv:2003.06413]; Köhler et al. [arXiv:2006.02425]

More expressive transformations:

• Make C a monotonic NN, with θ given by another NN.

Huang et al. [arXiv:1804.00779]

Make C the solution of an ODE, with C' given by the NN.

Grathwohl et al. [arXiv:1810.01367]

Further improvements

Incorporating Symmetries:

- Symmetric base distribution
- Equivariant transformation: $f(g \cdot x) = g \cdot f(x)$

Kanwar et al. [arXiv:2003.06413]; Köhler et al. [arXiv:2006.02425]

More expressive transformations:

• Make C a monotonic NN, with θ given by another NN.

Huang et al. [arXiv:1804.00779]

Make C the solution of an ODE, with C' given by the NN.

Grathwohl et al. [arXiv:1810.01367]

Dimensional reduction:

• Project data to submanifold and learn on this space.

Esser et al. [arXiv:2004.13166], Brehmer/Cranmer [arXiv:2003.13913]

Further improvements II

Improving precision of sampled distributions by using classifiers:

- Train a classifier on samples vs truth.
- By the Neyman-Pearson Lemma, the output of the classifier is related to the LL ratio. $NN(x) = \frac{p_{truth}(x)}{1-p_{truth}(x)} = \frac{p_{truth}(x)}{p_{generated}(x)} \equiv w$

Further improvements II

Improving precision of sampled distributions by using classifiers:

- Train a classifier on samples vs truth.
- By the Neyman-Pearson Lemma, the output of the classifier is related to the LL ratio. $NN(x) = \frac{p_{truth}(x)}{1-p_{truth}(x)} = \frac{p_{truth}(x)}{p_{generated}(x)} \equiv w$
- 1 instead of the plain samples x , we can now consider them weighted by $w(x)$ DCTRGAN: Diefenbacher et al. [arXiv:2009.03796]

 \Rightarrow corrects $p_{\text{generated}}(x)$ to $p_{\text{truth}}(x)$

Further improvements II

Improving precision of sampled distributions by using classifiers:

- Train a classifier on samples vs truth.
- By the Neyman-Pearson Lemma, the output of the classifier is related to the LL ratio. $NN(x) = \frac{p_{truth}(x)}{1-p_{truth}(x)} = \frac{p_{truth}(x)}{p_{generated}(x)} \equiv w$
- 1 instead of the plain samples x , we can now consider them weighted by $w(x)$ DCTRGAN: Diefenbacher et al. [arXiv:2009.03796]

$$
\Rightarrow \text{ corrects } p_{\text{generated}}(x) \text{ to } p_{\text{truth}}(x)
$$

2 Modify loss to $\mathcal{L} = -\sum_i \frac{1}{w(x_i)} \log q(x_i)$

 \Rightarrow "bad" points are more important for optimization.

DiscFlow: Butter et al. [arXiv:2110.13632]

Applications of Normalizing Flows: Overview

Applications: Learning the true Posterior Distribution

Applications: Learning the true Posterior Distribution

Normalizing Flows can learn conditional probabilities.

 \Rightarrow use them to learn the posterior p(parameters|data)

BayesFlow/cINN: Radev et al. [arXiv:2003.06281]

Applications: Learning the true Posterior Distribution

 \Rightarrow use them to learn the posterior p(parameters|data)

BayesFlow/cINN: Radev et al. [arXiv:2003.06281]

Applications: Anomaly Detection (Bump Hunts)

Introducing Bump Hunts: Searches with few model assumptions

Applications: Anomaly Detection (Bump Hunts)

 0.4 0.6 0.8

Background Signal

 10

Barbaround

Backgrou

Sonal

 $\overline{\mathbf{8}}$

 10 15

m[2-m]1 [TeV]

Applications: Anomaly Detection (ANODE)

Applications: Anomaly Detection (ANODE) on Gaia data

Claudius Krause (ITP Heidelberg) [Normalizing Flows](#page-0-0) November 30, 2022 30/40

Applications: Anomaly Detection (ANODE) on Gaia data

Claudius Krause (ITP Heidelberg) [Normalizing Flows](#page-0-0) November 30, 2022 30/40

An optimal classifier is also optimal for distinguishing S from B.

E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 JHEP]

 (S) (B) (B) (S)

 (s) (s) (s)

 $(B)(B)(B)$

 $(B)(B)(S)(R)$

Applications: Numerical Integration with Importance Sampling

$$
I = \int_0^1 f(\vec{x}) d\vec{x} \xrightarrow{\text{MC}} \frac{1}{N} \sum_i f(\vec{x}_i) \qquad \vec{x}_i \dots \text{uniform}, \quad \sigma_{\text{MC}}(I) \sim \frac{1}{\sqrt{N}}
$$

$$
= \int_0^1 \frac{f(\vec{x})}{q(\vec{x})} q(\vec{x}) d\vec{x} \xrightarrow{\text{MC}} \frac{\text{MC}}{\text{importance sampling}} \frac{1}{N} \sum_i \frac{f(\vec{x}_i)}{q(\vec{x}_i)} \qquad \vec{x}_i \dots q(\vec{x}),
$$

We therefore have to find a $q(\vec{x})$ that approximates the shape of $f(\vec{x})$.

 \Rightarrow Once found, we can use it for event generation, *i.e.* sampling p_i, ϑ_i , and φ_i according to $d\sigma(p_i, \vartheta_i, \varphi_i)$

Applications: Numerical Integration with Importance Sampling

$$
I = \int_0^1 f(\vec{x}) d\vec{x} \xrightarrow{\text{MC}} \frac{1}{N} \sum_i f(\vec{x}_i) \qquad \vec{x}_i \dots \text{uniform}, \quad \sigma_{\text{MC}}(I) \sim \frac{1}{\sqrt{N}}
$$

$$
= \int_0^1 \frac{f(\vec{x})}{q(\vec{x})} q(\vec{x}) d\vec{x} \xrightarrow{\text{MC}} \frac{\text{MC}}{\text{importance sampling}} \frac{1}{N} \sum_i \frac{f(\vec{x}_i)}{q(\vec{x}_i)} \qquad \vec{x}_i \dots q(\vec{x}),
$$

We therefore have to find a $q(\vec{x})$ that approximates the shape of $f(\vec{x})$.

 \Rightarrow Once found, we can use it for event generation,

i.e. sampling p_i, ϑ_i , and φ_i according to $d\sigma(p_i, \vartheta_i, \varphi_i)$

We need both samples x and their probability $q(x)$. ⇒ We use a bipartite, coupling-layer-based Flow.

Applications: Numerical Integration with Importance Sampling

Statistical Divergences are used as loss functions:

Kullback-Leibler (KL) divergence: $D_{KL} = \int p(x) \log \frac{p(x)}{q(x)} dx$ \approx $\frac{1}{N} \sum \frac{p(x_i)}{q(x_i)} \log \frac{p(x_i)}{q(x_i)},$ $x_i \ldots q(x)$

Applications: $e^+e^- \rightarrow 3j$.

Applications: $e^+e^- \rightarrow 3j$.

Applications: Calorimeter Shower Generation

- We consider a toy calorimeter inspired by the ATLAS ECal: flat alternating layers of lead and LAr
- They form three instrumented layers of dimension 3×96 , 12×12 , and 12×6
- Showers of $e^+,\gamma,$ and π^+ (100k each)
- All are centered and perpendicular
- \bullet E_{inc} is uniform in [1, 100] GeV

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Calorimeter Shower Generation in 2 steps: learn $p(\mathcal{I}|E_{\text{inc}})$

Flow I

- learns $p_1(E_0, E_1, E_2|E_{\text{inc}})$
- is optimized using the log-likelihood.

Flow II

- learns $p_2(\hat{\vec{\mathcal{I}}}|E_0,E_1,E_2,E_{\text{inc}})$ of normalized showers
- \bullet in CALOFLOW v1 (2106.05285 called "teacher"):

Masked Autoregressive Flow trained with log-likelihood

- Slow in sampling (\approx 500 \times slower than CALOGAN)
- \bullet in CALOFLOW v2 (2110.11377 called "student"):
	- Inverse Autoregressive Flow trained with Probability Density Distillation from teacher (log-likelihood prohibitive)
		- van den Oord et al. [1711.10433]
		- i.e. matching IAF parameters to frozen MAF
	- Fast in sampling ($\approx 500 \times$ faster than CALOFLOW v1)

Calorimeter Shower Generation in 2 steps: learn $p(\vec{\mathcal{I}} | E_{\text{inc}})$

Calorimeter Shower Generation in 2 steps: learn $p(\vec{\mathcal{I}} | E_{\text{inc}})$

 \leftarrow density estimation in training, E_{inc} from GEANT4 data

Applications: Calorimeter Shower Generation

A Classifier provides the "ultimate metric".

According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish the two samples.
- A powerful classifier trained to distinguish the samples should therefore learn (something monotonically related to) this.
- If this classifier is confused, we conclude $p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$

 \Rightarrow This captures the full 504-dim. space.

- ? But why wasn't this used before?
- \Rightarrow Previous deep generative models were separable to almost 100%!

DCTRGAN: Diefenbacher et al. [2009.03796, JINST]

Applications: Calorimeter Shower Generation

CK, D. Shih [2106.05285, 2110.11377]

- **•** First generative model to fool a classifier.
- Does not scale well to higher dimensions.
- Good generation times with teacher-student-training or CL-based flow.

Work in progress with F. Ernst, L. Favaro, T. Plehn, D. Shih —

