
Normalizing Flows
— Active Training Course “Advanced Deep Learning” —

Claudius Krause

Institute for Theoretical Physics, University of Heidelberg

November 30, 2022

Claudius.Krause@thphys.uni-heidelberg.de

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 1 / 40

Further Ressources

If you have questions, please interrupt me and ask!

This lecture is based on:
⇒ “Modern Machine Learning for LHC Physicists”,

SS2022 lecture notes of Heidelberg University, arXiv: 2211.01421

⇒ “Physics 694, Advanced Topics in HEP”,
Spring 2021 lecture notes of Rutgers University,
https://www.physics.rutgers.edu/~dshih/694/

Further Reading:

“HEPML - Living Review”
https://iml-wg.github.io/HEPML-LivingReview/

“Normalizing Flows for Probabilistic Modeling and Inference”
arXiv: 1912.02762

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 2 / 40

https://arxiv.org/abs/2211.01421
https://www.physics.rutgers.edu/~dshih/694/
https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/1912.02762

Motivation: Density Estimation

Problem:

Learn the underlying pdf from which a set of iid samples was drawn.

given: {xi} want: p(x)

m

a.u.

SB SR SB

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

x

pdata(x|m ∈ SR)

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

Important for statistical data
analysis (likelihoods, expectation
values, . . .).

histograms, kernel density
estimation, Gaussian mixture
models, etc. suffer from the
Curse of Dimensionality!

Figure from Hallin et al. [arXiv:2109.00546, PRD]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 3 / 40

Motivation: Density Estimation

Problem:

Learn the underlying pdf from which a set of iid samples was drawn.

given: {xi} want: p(x)

m

a.u.

SB SR SB

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

x

pdata(x|m ∈ SR)

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

Important for statistical data
analysis (likelihoods, expectation
values, . . .).

histograms, kernel density
estimation, Gaussian mixture
models, etc. suffer from the
Curse of Dimensionality!

Figure from Hallin et al. [arXiv:2109.00546, PRD]

probability density function.
p(x) ≥ 0,

∫
dx p(x) = 1

independent, identically distributed

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 3 / 40

Motivation: Density Estimation

Problem:

Learn the underlying pdf from which a set of iid samples was drawn.

given: {xi} want: p(x)

m

a.u.

SB SR SB

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

x

pdata(x|m ∈ SR)

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

Important for statistical data
analysis (likelihoods, expectation
values, . . .).

histograms, kernel density
estimation, Gaussian mixture
models, etc. suffer from the
Curse of Dimensionality!

Figure from Hallin et al. [arXiv:2109.00546, PRD]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 3 / 40

Motivation: Generative Models
Problem:

We have a distribution p(x) and want to sample (“generate”) new
elements that follow it.

given: {xi} want: x ∼ p(x)
- or -

given: f (x) want: x ∼ f (x)/
∫
f (x)

Generation is an important aspect of
simulation.

GANs, VAEs, Normalizing Flows,
Diffusion Models, and their derivates
have different advantages and
disadvantages.

https://thispersondoesnotexist.com/,
based on T. Karras et al. [1912.04958]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 4 / 40

https://thispersondoesnotexist.com/

Motivation: Generative Models
Problem:

We have a distribution p(x) and want to sample (“generate”) new
elements that follow it.

given: {xi} want: x ∼ p(x)
- or -

given: f (x) want: x ∼ f (x)/
∫
f (x)

Generation is an important aspect of
simulation.

GANs, VAEs, Normalizing Flows,
Diffusion Models, and their derivates
have different advantages and
disadvantages.

https://thispersondoesnotexist.com/,
based on T. Karras et al. [1912.04958]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 4 / 40

https://thispersondoesnotexist.com/

Normalizing Flows in a Nutshell

Normalizing Flows learn a coordinate transformation.

Mathematically speaking, this is a bijective function.

Function /
Distribution
in z ∈ Rd

Normalizing Flow
Function /
Distribution
in x ∈ Rd

⇔ ⇔
f (z)=x−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
f −1(x)=z←−−

“easy” base
distribution

bijective
transformation

“target”
distribution

p(x) = π(f −1(x))
∣∣∣det ∂f −1(x)

∂x

∣∣∣
⇔ ⇔

⇐ density estimation, p(x) ⇒ sample generation
⇔ invertible function

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 5 / 40

Normalizing Flows in a Nutshell

Normalizing Flows learn a coordinate transformation.

Mathematically speaking, this is a bijective function.

Function /
Distribution
in z ∈ Rd

Normalizing Flow
Function /
Distribution
in x ∈ Rd

⇔ ⇔
f (z)=x−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
f −1(x)=z←−−

“easy” base
distribution

bijective
transformation

“target”
distribution

p(x) = π(f −1(x))
∣∣∣det ∂f −1(x)

∂x

∣∣∣
⇔ ⇔

⇐ density estimation, p(x) ⇒ sample generation
⇔ invertible function

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 5 / 40

Training Normalizing Flows

Maximum Likelihood Estimation gives the best loss functions:
Regression: Mean Squared Error Loss

Binary classification: Binary Cross Entropy Loss

. . .

Normalizing Flows give us the log-likelihood (LL) explicitly!

⇒ Maximize log q (the LL) over the given samples.
L = −∑

i log q(xi)

⇒ If we don’t have samples, but a target f (x), we can use the
KL-divergence.

L = DKL[f , q] =
∫
dx f (x) log f (x)

q(x) =
〈

f (x)
q(x) log

f (x)
q(x)

〉
x∼q(x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 6 / 40

Normalizing Flows are great!

Pros and Cons of Normalizing Flows:

+ LL optimaztion is more stable than saddlepoint optimization of
GANs.

+ Do not suffer from mode-collapse.

+ Model selection is straightforward with LL(val-set).

+ Flows are versatile (train for one thing, use for another).

+ Empirically: better at learning distributions to the %-level

– They scale bad with the dimensionality of the problem.

– Some architectures might be slow.

– There are topological constraints.

– Sparse data is hard to learn.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 7 / 40

Applications of Normalizing Flows: Overview
Phase Space Sampling

⇒ sample according to dσ

End-to-End Simulation

⇒ sample from p(events)

Detector Simulation

⇒ sample from p(showers|E)

Bump-Hunt Searches

⇒ use p(data) as bg estimate

Unfolding

⇒ learn p(parton|event)
Inference

⇒ learn p(parameters|data)

Lattice QCD

⇒ improve MCMC proposals

Astrophysics

⇒ stellar densities
Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 8 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x = z2

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x = z2

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x = z2

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x = z2

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x = z2

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

At the Core: Change of Coordinates Formula

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x = z2

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

(x) = 1
2 x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9 / 40

Base distributions

π̄(x⃗) = π(z⃗)
∣∣∣det ∂f (z⃗)

∂z⃗

∣∣∣−1

= π(f −1(x⃗))
∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣
Can be any distribution with only 2 requirements:

▶ We can easily sample from it
▶ We have access to π(x)

Sets the initial domain of the coordinates.

Most common choices:
▶ uniform distribution (compact in [a, b])
▶ Gaussian distribution (in R)

Topology should match the topology of the target space.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 10 / 40

We need a trackable Jacobian and Inverse.

π̄(x⃗) = π(z⃗)
∣∣∣det ∂f (z⃗)

∂z⃗

∣∣∣−1 = π(f −1(x⃗))
∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣
First idea: making f a NN.

× inverse does not always exist
× Jacobian slow via autograd
×

∣∣det ∂f
∂z

∣∣ ∝ O(n3
dim)

⇒ Let a NN learn parameters θ of a pre-defined transformation!

Each transformation is 1d & has an analytic Jacobian and inverse.
⇒f⃗ (x⃗ ; θ⃗) = (C1(x1; θ1),C2(x2; θ2), . . . ,Cn(xn; θn))

T

Require a triangular Jacobian for faster evaluation.

⇒ The parameters θ depend only on a subset of all other coordinates.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 11 / 40

We need a trackable Jacobian and Inverse.

π̄(x⃗) = π(z⃗)
∣∣∣det ∂f (z⃗)

∂z⃗

∣∣∣−1 = π(f −1(x⃗))
∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣
First idea: making f a NN.

× inverse does not always exist
× Jacobian slow via autograd
×

∣∣det ∂f
∂z

∣∣ ∝ O(n3
dim)

⇒ Let a NN learn parameters θ of a pre-defined transformation!

Each transformation is 1d & has an analytic Jacobian and inverse.
⇒f⃗ (x⃗ ; θ⃗) = (C1(x1; θ1),C2(x2; θ2), . . . ,Cn(xn; θn))

T

Require a triangular Jacobian for faster evaluation.

⇒ The parameters θ depend only on a subset of all other coordinates.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 11 / 40

We need a trackable Jacobian and Inverse.

π̄(x⃗) = π(z⃗)
∣∣∣det ∂f (z⃗)

∂z⃗

∣∣∣−1 = π(f −1(x⃗))
∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣
First idea: making f a NN.

× inverse does not always exist
× Jacobian slow via autograd
×

∣∣det ∂f
∂z

∣∣ ∝ O(n3
dim)

⇒ Let a NN learn parameters θ of a pre-defined transformation!

Each transformation is 1d & has an analytic Jacobian and inverse.
⇒f⃗ (x⃗ ; θ⃗) = (C1(x1; θ1),C2(x2; θ2), . . . ,Cn(xn; θn))

T

Require a triangular Jacobian for faster evaluation.

⇒ The parameters θ depend only on a subset of all other coordinates.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 11 / 40

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

z0 =
f0(z1)

z1 =
f1(z2)

zi =
fi (zi+1)

zk =
fk−1(zk)

π0(z0) π1(z1) πk(zk)

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 12 / 40

https://engineering.papercup.com/posts/normalizing-flows-part-2/

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

z0 =
f0(z1)

z1 =
f1(z2)

zi =
fi (zi+1)

zk =
fk−1(zk)

π0(z0) π1(z1) πk(zk)

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 12 / 40

https://engineering.papercup.com/posts/normalizing-flows-part-2/

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

z0 =
f0(z1)

z1 =
f1(z2)

zi =
fi (zi+1)

zk =
fk−1(zk)

π0(z0) π1(z1) πk(zk)

https://engineering.papercup.com/posts/normalizing-flows-part-2/

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 12 / 40

https://engineering.papercup.com/posts/normalizing-flows-part-2/
https://engineering.papercup.com/posts/normalizing-flows-part-2/

Affine Transformations

The coupling function (transformation)
must be invertible and expressive

is chosen to factorize:
f⃗ (x⃗ ; θ⃗) = (C1(x1; θ1),C2(x2; θ2), . . . ,Cn(xn; θn))

T ,

where x⃗ are the coordinates to be transformed and θ⃗ the
parameters of the transformation.

historically first: the affine coupling function

C (x ; s, t) = exp (s) x + t

where s and t are predicted by a NN.

It requires x ∈ R.
Inverse and Jacobian are trivial.

Its transformation powers are limited.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 13 / 40

Any monotonic function can be used.

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x = z2

0.0 0.2 0.4 0.6 0.8 1.0z
0.0

0.5

1.0

1.5
(z) = const.0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
x

(x) = 1
2 x

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 14 / 40

Any monotonic function can be used.

Changing coordinates from z⃗ to x⃗ with a map
x⃗ = f (z⃗) changes the distribution according to

π̄(x⃗) = π(z⃗)

∣∣∣∣det ∂f (z⃗)∂z⃗

∣∣∣∣−1

= π(f −1(x⃗))

∣∣∣∣det ∂f −1(x⃗)

∂x⃗

∣∣∣∣
A more complicated transformation then leads to a more complicated
transformed distribution. Splines act in a finite domain.

−B 0 B

x

−B

0

B

g θ
(x

)

RQ Spline

Inverse

Knots

−B 0 B

x

0

1

g
′ θ(
x

)

figures taken from Durkan et al. [arXiv:1906.04032]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 14 / 40

Piecewise Transformations (Splines)

piecewise linear coupling function:

The NN predicts the pdf bin heights Qi .

pdf cdf

Müller et al. [arXiv:1808.03856]

C =
b−1∑
k=1

Qk + αQb

α = x−(b−1)w
w∣∣∣∣ ∂C∂xB

∣∣∣∣ = ∏
i

Qbi

w

rational quadratic spline coupling function:

The NN predicts the cdf bin widths, heights, and derivatives that go in ai&bi .

cdf

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, ’82]

C =
a2α

2 + a1α+ a0
b2α2 + b1α+ b0

still rather easy

more flexible

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 15 / 40

Piecewise Transformations (Splines)

piecewise linear coupling function:

The NN predicts the pdf bin heights Qi .

pdf cdf

Müller et al. [arXiv:1808.03856]

C =
b−1∑
k=1

Qk + αQb

α = x−(b−1)w
w∣∣∣∣ ∂C∂xB

∣∣∣∣ = ∏
i

Qbi

w

rational quadratic spline coupling function:

The NN predicts the cdf bin widths, heights, and derivatives that go in ai&bi .

cdf

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, ’82]

C =
a2α

2 + a1α+ a0
b2α2 + b1α+ b0

still rather easy

more flexible

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 15 / 40

Piecewise Transformations (Splines)

piecewise linear coupling function:

The NN predicts the pdf bin heights Qi .

pdf cdf

Müller et al. [arXiv:1808.03856]

C =
b−1∑
k=1

Qk + αQb

α = x−(b−1)w
w∣∣∣∣ ∂C∂xB

∣∣∣∣ = ∏
i

Qbi

w

rational quadratic spline coupling function:

The NN predicts the cdf bin widths, heights, and derivatives that go in ai&bi .

cdf

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, ’82]

C =
a2α

2 + a1α+ a0
b2α2 + b1α+ b0

still rather easy

more flexible

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 15 / 40

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by θ⃗i = θ⃗i (xj<i)

θ⃗1 = const.

θ⃗2 = θ⃗2(z1)

θ⃗3 = θ⃗3(z1, z2)

θ⃗i = θ⃗i (z1, . . . , zi−1)

↓

↓

↓

. . . ↓

p(x1)

p(x2|x1)

p(x3|x1, x2)

p(xi |x1, . . . , xi−1)

Jacobian :

∣∣∣∣∣∣
 0

∣∣∣∣∣∣︸ ︷︷ ︸
O(d)

=
d∏

i=1

p(xi |x1, . . . , xi−1) = p(x⃗)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 / 40

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by θ⃗i = θ⃗i (xj<i)

θ⃗1 = const. θ⃗2 = θ⃗2(z1)

θ⃗3 = θ⃗3(z1, z2)

θ⃗i = θ⃗i (z1, . . . , zi−1)

↓ ↓

↓

. . . ↓

p(x1) p(x2|x1)

p(x3|x1, x2)

p(xi |x1, . . . , xi−1)

Jacobian :

∣∣∣∣∣∣
 0

∣∣∣∣∣∣︸ ︷︷ ︸
O(d)

=
d∏

i=1

p(xi |x1, . . . , xi−1) = p(x⃗)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 / 40

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by θ⃗i = θ⃗i (xj<i)

θ⃗1 = const. θ⃗2 = θ⃗2(z1) θ⃗3 = θ⃗3(z1, z2)

θ⃗i = θ⃗i (z1, . . . , zi−1)

↓ ↓ ↓

. . . ↓

p(x1) p(x2|x1) p(x3|x1, x2)

p(xi |x1, . . . , xi−1)

Jacobian :

∣∣∣∣∣∣
 0

∣∣∣∣∣∣︸ ︷︷ ︸
O(d)

=
d∏

i=1

p(xi |x1, . . . , xi−1) = p(x⃗)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 / 40

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by θ⃗i = θ⃗i (xj<i)

θ⃗1 = const. θ⃗2 = θ⃗2(z1) θ⃗3 = θ⃗3(z1, z2) θ⃗i = θ⃗i (z1, . . . , zi−1)
↓ ↓ ↓ . . . ↓

p(x1) p(x2|x1) p(x3|x1, x2) p(xi |x1, . . . , xi−1)

Jacobian :

∣∣∣∣∣∣
 0

∣∣∣∣∣∣︸ ︷︷ ︸
O(d)

=
d∏

i=1

p(xi |x1, . . . , xi−1) = p(x⃗)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 / 40

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by θ⃗i = θ⃗i (xj<i)

θ⃗1 = const. θ⃗2 = θ⃗2(z1) θ⃗3 = θ⃗3(z1, z2) θ⃗i = θ⃗i (z1, . . . , zi−1)
↓ ↓ ↓ . . . ↓

p(x1) p(x2|x1) p(x3|x1, x2) p(xi |x1, . . . , xi−1)

Jacobian :

∣∣∣∣∣∣
 0

∣∣∣∣∣∣︸ ︷︷ ︸
O(d)

=
d∏

i=1

p(xi |x1, . . . , xi−1) = p(x⃗)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 / 40

Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
θ must depend only on a subset of all other coordinates.

Autoregressive models solve this by θ⃗i = θ⃗i (xj<i)

θ⃗1 = const. θ⃗2 = θ⃗2(z1) θ⃗3 = θ⃗3(z1, z2) θ⃗i = θ⃗i (z1, . . . , zi−1)
↓ ↓ ↓ . . . ↓

p(x1) p(x2|x1) p(x3|x1, x2) p(xi |x1, . . . , xi−1)

Jacobian :

∣∣∣∣∣∣
 0

∣∣∣∣∣∣︸ ︷︷ ︸
O(d)

=
d∏

i=1

p(xi |x1, . . . , xi−1) = p(x⃗)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 / 40

Autoregressive NNs: MADE Blocks

MADE Block

bijector input cond. input

transformation parameters

θ⃗i = θ⃗i (x1, x2, . . . , xj<i)

Implementation via masking:

a single “forward” pass gives
all θ⃗i (x1, . . . , xi−1).
⇒ very fast

its “inverse” needs to loop
through all dimensions.
⇒ very slow

Germain et al. [arXiv:1502.03509]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 17 / 40

Autoregressive NNs: MADE Blocks

MADE Block

bijector input cond. input

transformation parameters

θ⃗i = θ⃗i (x1, x2, . . . , xj<i)

Implementation via masking:

a single “forward” pass gives
all θ⃗i (x1, . . . , xi−1).
⇒ very fast

its “inverse” needs to loop
through all dimensions.
⇒ very slow

Germain et al. [arXiv:1502.03509]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 17 / 40

Autoregressive NNs: MADE Blocks

MADE Block

bijector input cond. input

transformation parameters

θ⃗i = θ⃗i (x1, x2, . . . , xj<i)

Implementation via masking:

a single “forward” pass gives
all θ⃗i (x1, . . . , xi−1).
⇒ very fast

its “inverse” needs to loop
through all dimensions.
⇒ very slow

Germain et al. [arXiv:1502.03509]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 17 / 40

Autoregressive Normalizing Flows allow for 2 different
realizations: MAF / IAF

Masked Autoregressive Flow (MAF)
⇒ slow in sampling and fast in density estimation.

Can be trained via the log-likelihood.

Papamakarios et al. [arXiv:1705.07057]

Inverse Autoregressive Flow (IAF)

⇒ fast in sampling and slow in density estimation.

Log-likelihood training is usually prohibitive in memory and time.

Instead, we can train an IAF with
“Probability Density Distillation” or “teacher-student training”.

Kingma et al. [arXiv:1606.04934]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 18 / 40

Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

slow: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

student IAF

slow: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

fast: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Loss = MSE(z , z ′) + MSE(x , x ′) + MSE(zi , z
′
i)

+ MSE(xi , x
′
i) + MSE(θz , θ

′
z) + MSE(θx , θ

′
x)

MSE(z , z ′) MSE(zi , z
′
i) + MSE(θz , θ

′
z) MSE(x , x ′)MSE(xi , x

′
i) + MSE(θx , θ

′
x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 19 / 40

Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

slow: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

student IAF

slow: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

fast: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Loss = MSE(z , z ′) + MSE(x , x ′) + MSE(zi , z
′
i)

+ MSE(xi , x
′
i) + MSE(θz , θ

′
z) + MSE(θx , θ

′
x)

MSE(z , z ′) MSE(zi , z
′
i) + MSE(θz , θ

′
z) MSE(x , x ′)MSE(xi , x

′
i) + MSE(θx , θ

′
x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 19 / 40

Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

slow: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

student IAF

slow: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

fast: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Loss = MSE(z , z ′) + MSE(x , x ′) + MSE(zi , z
′
i)

+ MSE(xi , x
′
i) + MSE(θz , θ

′
z) + MSE(θx , θ

′
x)

MSE(z , z ′)

MSE(zi , z
′
i) + MSE(θz , θ

′
z) MSE(x , x ′)MSE(xi , x

′
i) + MSE(θx , θ

′
x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 19 / 40

Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

slow: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

student IAF

slow: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

fast: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Loss = MSE(z , z ′) + MSE(x , x ′) + MSE(zi , z
′
i)

+ MSE(xi , x
′
i) + MSE(θz , θ

′
z) + MSE(θx , θ

′
x)

MSE(z , z ′) MSE(zi , z
′
i) + MSE(θz , θ

′
z) MSE(x , x ′)MSE(xi , x

′
i) + MSE(θx , θ

′
x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 19 / 40

Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

slow: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

student IAF

slow: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

fast: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Loss = MSE(z , z ′) + MSE(x , x ′) + MSE(zi , z
′
i)

+ MSE(xi , x
′
i) + MSE(θz , θ

′
z) + MSE(θx , θ

′
x)

MSE(z , z ′) MSE(zi , z
′
i) + MSE(θz , θ

′
z)

MSE(x , x ′)

MSE(xi , x
′
i) + MSE(θx , θ

′
x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 19 / 40

Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

slow: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

student IAF

slow: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

fast: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Loss = MSE(z , z ′) + MSE(x , x ′) + MSE(zi , z
′
i)

+ MSE(xi , x
′
i) + MSE(θz , θ

′
z) + MSE(θx , θ

′
x)

MSE(z , z ′)

MSE(zi , z
′
i) + MSE(θz , θ

′
z)

MSE(x , x ′)MSE(xi , x
′
i) + MSE(θx , θ

′
x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 19 / 40

Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

slow: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

student IAF

slow: density estimation, p(x)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise data

fast: sample generation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Loss = MSE(z , z ′) + MSE(x , x ′) + MSE(zi , z
′
i)

+ MSE(xi , x
′
i) + MSE(θz , θ

′
z) + MSE(θx , θ

′
x)

MSE(z , z ′) MSE(zi , z
′
i) + MSE(θz , θ

′
z) MSE(x , x ′)

MSE(xi , x
′
i) + MSE(θx , θ

′
x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 19 / 40

Taming Jacobians 2: Bipartite Flows (“INNs”)

θx∈A(x ∈ B) & θx∈B(x ∈ A)

⇒ Coordinates are split in 2 sets, transforming each other.

forward:
yA = xA

yB,i = C(xB,i ; θ(xA))

inverse:
xA = yA

xB,i = C−1(yB,i ; θ(xA))

Jacobian:∣∣∣∣∣1
∂C
∂xA

0 ∂C
∂xB

∣∣∣∣∣ = ∏
i

∂C(xB,i ; θ(xA))

∂xB,i

NN permutation

xA

xB

yx

C (xB ; θ(xA))
Dinh et al. [arXiv:1410.8516]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 20 / 40

Further improvements

Incorporating Symmetries:
Symmetric base distribution

Equivariant transformation: f (g · x) = g · f (x)
Kanwar et al. [arXiv:2003.06413]; Köhler et al. [arXiv:2006.02425]

More expressive transformations:

Make C a monotonic NN, with θ given by another NN.

Make C the solution of an ODE, with C ′ given by the NN.

Huang et al. [arXiv:1804.00779]

Grathwohl et al. [arXiv:1810.01367]

Dimensional reduction:

Project data to submanifold and learn on this space.

Esser et al. [arXiv:2004.13166], Brehmer/Cranmer [arXiv:2003.13913]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 21 / 40

Further improvements

Incorporating Symmetries:
Symmetric base distribution

Equivariant transformation: f (g · x) = g · f (x)
Kanwar et al. [arXiv:2003.06413]; Köhler et al. [arXiv:2006.02425]

More expressive transformations:

Make C a monotonic NN, with θ given by another NN.

Make C the solution of an ODE, with C ′ given by the NN.

Huang et al. [arXiv:1804.00779]

Grathwohl et al. [arXiv:1810.01367]

Dimensional reduction:

Project data to submanifold and learn on this space.

Esser et al. [arXiv:2004.13166], Brehmer/Cranmer [arXiv:2003.13913]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 21 / 40

Further improvements

Incorporating Symmetries:
Symmetric base distribution

Equivariant transformation: f (g · x) = g · f (x)
Kanwar et al. [arXiv:2003.06413]; Köhler et al. [arXiv:2006.02425]

More expressive transformations:

Make C a monotonic NN, with θ given by another NN.

Make C the solution of an ODE, with C ′ given by the NN.

Huang et al. [arXiv:1804.00779]

Grathwohl et al. [arXiv:1810.01367]

Dimensional reduction:

Project data to submanifold and learn on this space.

Esser et al. [arXiv:2004.13166], Brehmer/Cranmer [arXiv:2003.13913]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 21 / 40

Further improvements II

Improving precision of sampled distributions by using classifiers:
Train a classifier on samples vs truth.

By the Neyman-Pearson Lemma, the output of the classifier is

related to the LL ratio. NN(x) = ptruth(x)
1−ptruth(x)

= ptruth(x)
pgenerated(x)

≡ w

1 instead of the plain samples x , we can now consider them
weighted by w(x)

⇒ corrects pgenerated(x) to ptruth(x)

2 Modify loss to L = −∑
i

1
w(xi)

log q(xi)

⇒ “bad” points are more important for optimization.

DCTRGAN: Diefenbacher et al. [arXiv:2009.03796]

DiscFlow: Butter et al. [arXiv:2110.13632]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 22 / 40

Further improvements II

Improving precision of sampled distributions by using classifiers:
Train a classifier on samples vs truth.

By the Neyman-Pearson Lemma, the output of the classifier is

related to the LL ratio. NN(x) = ptruth(x)
1−ptruth(x)

= ptruth(x)
pgenerated(x)

≡ w

1 instead of the plain samples x , we can now consider them
weighted by w(x)

⇒ corrects pgenerated(x) to ptruth(x)

2 Modify loss to L = −∑
i

1
w(xi)

log q(xi)

⇒ “bad” points are more important for optimization.

DCTRGAN: Diefenbacher et al. [arXiv:2009.03796]

DiscFlow: Butter et al. [arXiv:2110.13632]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 22 / 40

Further improvements II

Improving precision of sampled distributions by using classifiers:
Train a classifier on samples vs truth.

By the Neyman-Pearson Lemma, the output of the classifier is

related to the LL ratio. NN(x) = ptruth(x)
1−ptruth(x)

= ptruth(x)
pgenerated(x)

≡ w

1 instead of the plain samples x , we can now consider them
weighted by w(x)

⇒ corrects pgenerated(x) to ptruth(x)

2 Modify loss to L = −∑
i

1
w(xi)

log q(xi)

⇒ “bad” points are more important for optimization.

DCTRGAN: Diefenbacher et al. [arXiv:2009.03796]

DiscFlow: Butter et al. [arXiv:2110.13632]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 22 / 40

Applications of Normalizing Flows: Overview
Phase Space Sampling

⇒ sample according to dσ

End-to-End Simulation

⇒ sample from p(events)

Detector Simulation

⇒ sample from p(showers|E)

Bump-Hunt Searches

⇒ use p(data) as bg estimate

Unfolding

⇒ learn p(parton|event)
Inference

⇒ learn p(parameters|data)

Lattice QCD

⇒ improve MCMC proposals

Astrophysics

⇒ stellar densities
Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 23 / 40

Applications: Learning the true Posterior Distribution

Normalizing Flows can learn conditional probabilities.
⇒ use them to learn the posterior p(parameters|data)

⇒ train
⇐ infer

BayesFlow/cINN: Radev et al. [arXiv:2003.06281]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 24 / 40

Applications: Learning the true Posterior Distribution
Normalizing Flows can learn conditional probabilities.
⇒ use them to learn the posterior p(parameters|data)

ν-Flows: infering the ν-momentum in semileptonic t̄t-events.

Lepton

Jets

Misc
Deep Set

Conditional Invertible Neural Network

Embedding Network

3.5 3.0 2.5 2.0 1.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6a.
u. Truth Neutrino

pmiss
T + mW Constraint
-FF
-Flows

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6a.
u. Truth Neutrino

pmiss
T + mW Constraint
-FF
-Flows

6 4 2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6a.
u. Truth Neutrino

pmiss
T + mW Constraint
-FF
-Flows

BayesFlow/cINN: Radev et al. [arXiv:2003.06281]

ν-Flows: Leigh et al. [arXiv:2207.00664]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 25 / 40

Applications: Learning the true Posterior Distribution

Normalizing Flows can learn conditional probabilities.
⇒ use them to learn the posterior p(parameters|data)

Unfolding detector effects:

10 15 20 25 30 35 40 45 50
pT,q1

[GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ev
en

ts
n

or
m

al
iz

ed

cINN eINN

FCGAN

single detector event
3200 unfoldings

P
arton

T
ru

th

0.0 0.2 0.4 0.6 0.8 1.0
quantile pT,q1

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ev

en
ts

cI
N
N

eINN FCGAN

BayesFlow/cINN: Radev et al. [arXiv:2003.06281]

Butter et al. [arXiv:2006.06685]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 26 / 40

Applications: Anomaly Detection (Bump Hunts)

m

a.u.

SB SR SB

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

x

pdata(x|m ∈ SR)

x

pdata(x|m ∈ SB)
= pbg(x|m ∈ SB)

Assumptions
signal is localized in m

background in m is smooth

∃ additional discriminating
features x

Select events with

⇒ pdata
pbackground

∼ psignal
pbackground

Introducing Bump Hunts: Searches with few model assumptions

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 27 / 40

Applications: Anomaly Detection (Bump Hunts)

LHC Olympics R&D dataset:

1,000,000 QCD dijet events

1,000 signal events
W ′ → X (→ qq)Y (→ qq)

mW ′ = 3.5TeV,
mX = 500GeV, mY = 100GeV

In SR, 3.3TeV < mJJ < 3.7TeV:
▶ 121,352 bg events
▶ 772 sg events

S/
√
B = 2.2

LHCO: G. Kasieczka et al. [2101.08320]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 28 / 40

Applications: Anomaly Detection (ANODE)

Anomaly Detection with Density Estimation (ANODE):

train “outer” density estimator
pdata(x |mJJ ∈ SB)

train “inner” density estimator
pdata(x |mJJ ∈ SR)

compute
pinner(x|mJJ)
pouter(x|mJJ)

for mJJ ∈ SR

B. Nachman, D. Shih, [2001.04990, PRD]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 29 / 40

Applications: Anomaly Detection (ANODE) on Gaia data
Looking for stellar streams: www.esa.int

−10 0 10
φ (◦)

−10

0

10

λ
(◦

)

−20 0
µ∗φ (mas/yr)

−20

0

µ
λ

(m
as

/y
r)

0 1 2 3
b− r

10

15

20

g

D. Shih et al. [2104.12789, MNRAS]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 30 / 40

https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2022/02/gaia_reveals_a_new_member_of_the_milky_way_family/23954169-1-eng-GB/Gaia_reveals_a_new_member_of_the_Milky_Way_family.jpg

Applications: Anomaly Detection (ANODE) on Gaia data
Looking for stellar streams: www.esa.int

−10 0 10
φ (◦)

−10

0

10

λ
(◦

)

−20 0
µ∗φ (mas/yr)

−20

0

µ
λ

(m
as

/y
r)

0 1 2 3
b− r

10

15

20

g

D. Shih et al. [2104.12789, MNRAS]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 30 / 40

https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2022/02/gaia_reveals_a_new_member_of_the_milky_way_family/23954169-1-eng-GB/Gaia_reveals_a_new_member_of_the_Milky_Way_family.jpg

Applications: Anomaly Detection (CATHODE)
Classifying Anomalies THrough Outer Density Estimation (CATHODE):

train “outer” density estimator
pdata(x |mJJ ∈ SB)

sample “artificial” events from
pouter(x |mJJ ∈ SR)

can also oversample

train a classifier on these samples
vs data A. Hallin, J. Isaacson, G. Kasieczka, CK, B. Nachman, T. Quadfasel,

M. Schlaffer, D. Shih, M. Sommerhalder [2109.00546, PRD]

Classification without Labels (CWoLa)
learns from mixed samples.

An optimal classifier is also optimal for
distinguishing S from B.

E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 JHEP]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 31 / 40

Applications: Numerical Integration with Importance
Sampling

I =

∫ 1

0

f (x⃗) dx⃗
MC−−→ 1

N

∑
i

f (x⃗i) x⃗i . . . uniform, σMC(I) ∼ 1√
N

=

∫ 1

0

f (x⃗)

q(x⃗)
q(x⃗)dx⃗

MC−−−−−−−−−−−−→
importance sampling

1

N

∑
i

f (x⃗i)

q(x⃗i)
x⃗i . . . q(x⃗),

In the limit q(x⃗) ∝ f (x⃗), we get σIS(I) = 0

We therefore have to find a q(x⃗) that approximates the shape of f (x⃗).

⇒ Once found, we can use it for event generation,
i.e. sampling pi , ϑi , and φi according to dσ(pi , ϑi , φi)

We need both samples x and their probability q(x).
⇒ We use a bipartite, coupling-layer-based Flow.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 32 / 40

Applications: Numerical Integration with Importance
Sampling

I =

∫ 1

0

f (x⃗) dx⃗
MC−−→ 1

N

∑
i

f (x⃗i) x⃗i . . . uniform, σMC(I) ∼ 1√
N

=

∫ 1

0

f (x⃗)

q(x⃗)
q(x⃗)dx⃗

MC−−−−−−−−−−−−→
importance sampling

1

N

∑
i

f (x⃗i)

q(x⃗i)
x⃗i . . . q(x⃗),

In the limit q(x⃗) ∝ f (x⃗), we get σIS(I) = 0

We therefore have to find a q(x⃗) that approximates the shape of f (x⃗).

⇒ Once found, we can use it for event generation,
i.e. sampling pi , ϑi , and φi according to dσ(pi , ϑi , φi)

We need both samples x and their probability q(x).
⇒ We use a bipartite, coupling-layer-based Flow.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 32 / 40

Applications: Numerical Integration with Importance
Sampling

How it works:

i-flow
xi

f(xi)
Ĩ

apply gradient descent

sam
pling

f
loss

g(xi)

i-flow: C. Gao, J. Isaacson, CK [arXiv:2001.05486, ML:ST]
gitlab.com/i-flow/i-flow

q(xi)

ADAM optimizer

Statistical Divergences are used as loss functions:

Kullback-Leibler (KL) divergence:

DKL =
∫
p(x) log p(x)

q(x)dx ≈ 1
N

∑ p(xi)
q(xi)

log p(xi)
q(xi)

, xi . . . q(x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 33 / 40

Applications: e+e− → 3j .

← cosϑ of decaying fermion with beam

← φ of decaying fermion with beam

← cosϑ of decay

← φ of decay

← propagator of decaying fermion

← multichannel

Target distribution

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 34 / 40

Applications: e+e− → 3j .

← cosϑ of decaying fermion with beam

← φ of decaying fermion with beam

← cosϑ of decay

← φ of decay

← propagator of decaying fermion

← multichannel

Learned distribution

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 35 / 40

Applications: Calorimeter Shower Generation

We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

They form three instrumented layers of dimension
3× 96, 12× 12, and 12× 6

Showers of e+, γ, and π+ (100k each)

All are centered and perpendicular

Einc is uniform in [1, 100] GeV

Lo
ca

l E
ne

rg
y

D
ep

os
it

[M
eV

]

0

5

10

15

20

25

30

Depth from Calorimeter Center [mm]
200− 150− 100− 50− 0 50 100 150 200

 d
ire

ct
io

n
[m

m
]

η

200−

150−

100−

50−

0

50

100

150

200

-
Geant4, Pb Absorber, lAr Gap, 10 GeV e

η
z

φ

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 36 / 40

Calorimeter Shower Generation in 2 steps: learn p(I⃗|Einc)
Flow I

learns p1(E0,E1,E2|Einc)

is optimized using the log-likelihood.

Flow II
learns p2(

ˆ⃗I|E0,E1,E2,Einc) of normalized showers

in CaloFlow v1 (2106.05285 — called “teacher”):

in CaloFlow v2 (2110.11377 — called “student”):

Masked Autoregressive Flow trained with log-likelihood

Slow in sampling (≈ 500× slower than CaloGAN)

Inverse Autoregressive Flow trained with Probability Density
Distillation from teacher (log-likelihood prohibitive)

i.e. matching IAF parameters to frozen MAF

Fast in sampling (≈ 500× faster than CaloFlow v1)

van den Oord et al. [1711.10433]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 37 / 40

Calorimeter Shower Generation in 2 steps: learn p(I⃗|Einc)

504 dim.
Base dist.

MADE

BlockEi

Einc
MADE

BlockEi

Einc
MADE

BlockEi

Einc ...
MADE

BlockEi

Einc

Normalizing Flow Bijector — Flow II

GEANT4 data

pre-

proces
sin

g
CaloFlow samples

post-processing

density estimation in training, Ei from GEANT4 data

shower generation, Ei from Flow I

3 dim.
Base dist.

MADE

Block

Einc
MADE

Block

Einc
MADE

Block

Einc ...
MADE

Block

Einc

Normalizing Flow Bijector — Flow I GEANT4 data
Ei

sampled Ei
post-processing

pre-p
roces

sin
g

density estimation in training, Einc from GEANT4 data

sampling of Ei for Einc

CaloFlow

RQS RQSinv. RQSperm. RQSinv.

RQS RQSinv. RQSperm. RQSinv.

Data processing Flow I
“←” map Ei to [0, 1]

“←” work in logit space

“→” invert logit

“→” map back to Ei

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 38 / 40

Calorimeter Shower Generation in 2 steps: learn p(I⃗|Einc)

504 dim.
Base dist.

MADE

BlockEi

Einc
MADE

BlockEi

Einc
MADE

BlockEi

Einc ...
MADE

BlockEi

Einc

Normalizing Flow Bijector — Flow II

GEANT4 data

pre-

proces
sin

g
CaloFlow samples

post-processing

density estimation in training, Ei from GEANT4 data

shower generation, Ei from Flow I

3 dim.
Base dist.

MADE

Block

Einc
MADE

Block

Einc
MADE

Block

Einc ...
MADE

Block

Einc

Normalizing Flow Bijector — Flow I GEANT4 data
Ei

sampled Ei
post-processing

pre-p
roces

sin
g

density estimation in training, Einc from GEANT4 data

sampling of Ei for Einc

CaloFlow

RQS RQSinv. RQSperm. RQSinv.

RQS RQSinv. RQSperm. RQSinv.

Data processing Flow II
“←” add noise

“←” normalize layers to 1

“←” work in logit space

“→” invert logit

“→” renormalize to Ei

“→” apply threshold

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 38 / 40

Applications: Calorimeter Shower Generation

A Classifier provides the “ultimate metric”.

According to the Neyman-Pearson Lemma we have:
The likelihood ratio is the most powerful test statistic to distinguish
the two samples.

A powerful classifier trained to distinguish the samples should therefore
learn (something monotonically related to) this.

If this classifier is confused, we conclude pGeant4(x) = pgenerated(x)

⇒ This captures the full 504-dim. space.

? But why wasn’t this used before?

⇒ Previous deep generative models were separable to almost 100%!

DCTRGAN: Diefenbacher et al. [2009.03796, JINST]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 39 / 40

Applications: Calorimeter Shower Generation

First generative model to fool a classifier.

Does not scale well to higher dimensions.

Good generation times with teacher-student-training or CL-based flow.

AUC
DNN based classifier

Geant4 vs. Geant4 vs. (teacher) Geant4 vs. (student) Geant4 vs.
CaloGAN CaloFlow v1 CaloFlow v2 CL-based flow

e+ 1.000(0) 0.859(10) 0.786(7) 0.638

γ 1.000(0) 0.756(48) 0.758(14) 0.631

π+ 1.000(0) 0.649(3) 0.729(2) 0.705

10 3 10 1

E0/Etot

10 4

10 3

10 2

10 1

100

101

10 1 100

E1/Etot

10 2

10 1

100

101

10 3 10 1 101

E2/Etot

10 3

10 2

10 1

100

101

102

103

102 104

Depth-weighted total energy ld
10 8

10 7

10 6

10 5

10 4

10 3

10 2

0.5 1.0 1.5 2.0
Shower Depth sd

0

1

2

3

4

5

6

7

0.0 0.2 0.4 0.6 0.8
Shower Depth Width sd

0

1

2

3

4

5

6

7

103 104 105 106 107 108 109 1010

Generated Showers

103

104

105

106

107

108

109

1010

ti
m

e
[s

]

GEANT 4

CaloFlow v1

CaloFlow v2

CaloGAN

100

101

102

103

104

105

106

107

ti
m

e
[h

]

CK, D. Shih [2106.05285, 2110.11377]

Work in progress with F. Ernst, L. Favaro, T. Plehn, D. Shih

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 40 / 40

