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Principle component analysis
> data reduction

→ de correlation of features

← minimize sum of squares of

projection errors

from boos by Bishop
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→ É " with É
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but minimal loss of information

Try to Aiud in cooling and decoding functions :

11×-1=2 and I ≈ g
(e) = gltcxll

Simple choice : g( e) =D c- ;D c- LR
" + e

constraint : D:
,
i ( columns of D) are orthogonal to each

other
; D: ,

i have unit worn .

Proceed in 2 steps : 1) find optimal c.
*

21 Aiud optimal D
'
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Recall that g (E)
= DE :
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= arginine ( - ZITDE + c-TEIDE )

c-

= the
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Minimize a function 1- ( E ) :

D-= ( -2 ETD c- + Etc ) = 0
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⇒ c- = ☐TE

→ complete reconstruction : r (E) = g. ( 1-(E) I =D
c- =DDTI
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he the simplest case l =L we consider
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by eigenvector of ✗

+
✗ with largest eigenvalue .



Unsupervised learning
Machine learning for unlabeled data : Aiud patterns ,

detect outliers
, generate data ,

.
. .

let us start with a simple example : Oja 's rule

✗ i 0
consider data distribution

p (E) and i. i. d. drawn
× .

y=w→≠✗
3 0

samples ¥ = ( xr
,
. . . .

✗ w )
"

✗
µ
0

Weight update : in → in + die with die = EYE
7
learning rate→ output lyl becomes the larger the

more often input texture occurs

in data distribution
.

Can write this as a ulilbcrcutial equation :

c-
=

= yF since c-
attest 1- Elt)

= y×-It
at

⇒ Elt -ist ) = w- (f) + Styxc-

Is this stable ?

0111542

dt
= 25T dwelt = 2 IT

I

c- YI = E- y
'
> 0

→ it
grows

without bound

→ add some weight decay :

I → in + < y( E- yo ) or c-
ᵈ=

ok
= YI - ✗ y2w- [Oja 82]



Is Oja 's rule stable ?

4115112
µ

= ¥ IT ( YI - ✗ y2ñ ) = ¥ ( y
'
-
✗

y
' Éw)

Oct
= 2 w-

tow

= Z y
' ( I - all w- 114

→ converges
to tlw IF = It

what does Hebbian learning do ?
Consider

average over input data :

c-
die

at
= EYE > E = IF IT is>

⇐
= t.EE?=w--Cw

5

data covariance matrix

for input data with zero mean

let us write I in terms of the eigenvectors of C :

5 (t) = Ii ciltl Ii [ C is oral & symmetric → Ii torni

basis ]

⇒ c- Ii dcilttui = Ei ciltltiñi
i dt

⇒ c-
dci Itt

µ
=
Cilt ) ti ⇒ ciltl = Ci lol exp / title )

⇒ ICH = Ii ciltlui = Ii ciloexp (title / ñi
i i

For t → c-
,
the turn corresponding to the largest

eigenvalue ( say hi / dominates
:

6- (t ) ✗ Fealty [ or ñ HI ✗ hits for Oja 's rule ]

⇒ Hessian learning implements the principle
component analysis !



let us now try to implement feature learning on unlabeled
data with non - linear neural networks

.

Start with data i. i. 0L .

drawn boom p (F) ,
and set up

neural wet wool with a hidden layer to wrap data
to itself :

1-
I > h 8

,
I

--

encoder decoder → auto encoder

learning the identity mapping is not very useful .
her stead construct

under complete auto encoders :

- be trees lower dimension than É

- 1- org
has low capacity ( e. g.

linear g)
- discard uitoomotion in 4

or auto in coolers with regularization .

under complete AE

Iulian h < dim E)

want É ≈ E

us AE needs to learn

compressed representation

of data

~> of .
PCA

~> extract salient features

of data !



Regularised auto in coolers ,
e. g. sparse

auto in waters or

de noising auto in coolers :

sparse auto in coolers :

11×1 = h and glut = I ; win in ize loss function :

argue
in Ei 2 ( ✗mi g 11-1×114+5214I.

Aig ✗ c- data m ' ' ↑
sparsity penalty on

hidden layer

can derive Illit through modeling joint
distribution

pmoiu (Ii-4 =p ( Ith ) plñ )
←
prior over latent variables

Maximize log - likelihood :

lupmoiee (Eiht = lnpmoowe (Ith) + lupuwdee (E)

A lie place prior on latent variables :

Phone ( hit = ¥ e-
-11hit

leads to penalty : RIKI = l Ii I hit
i

netiruoutiue
way

to enforce sparsity :

keep average
activation in each hidden layer node

^
^

small : hj = £ £!
,

hj ( ✗
'" I = ho ( e. g. = 0.05 ) ( Andrew Ng /

~> add penalty term :

RIN = É:(hour 1h. / in ;) + ( I - hot tu / ' _
↳

))1- lij
j = i

5 sum own hidden units

= É! KL (hotlhj )
j = I



Den ◦ i sing unto encoders : add noise to input and

minimize III. GLACÉ )))
t

copy 4-
I corrupted by wise

~> auto encoder must learn to undo corruption of date .

Contractive auto encoder : regularize h=A( ✗ 1 by penalizing
derivatives of 1- :

~ ( h) = -1113¥ / /
≥

F ← Frobenius worm

→ forces auto encoder to learn function that does

not change much when
E
changes slightly .



Auto encoders belong to the general class of

latent variable models

L ✓Ms wrap
between observation space I c- IRD and

latent space I c-
IRQ : to : I → I

; got : I → É

- one latent variable gets associated with lunch

date point in training set : I
' " '

→ I
'" '

- latent vectors are smaller than observations
,

Q < ☐ ⇒ compression

- models win be linear or non-linear ,
deterministic

or stochastic

Example of a linear ,

deterministic model :

principal component analysis :

2- them : Aiud linear mopping
1 : I → 2- with I c- 1122 and 2- c- IR

and
y

: 2- → ¥ such as to

M

minimize Ii III
' "
-
É " 'VE

i. =L

= É HE '" - gltlx
" 'll /Ii

[ =L

Some classification :

deterministic non - deterministic

linear PCA probabilistic PCA

non - linear Auto encoder Variational AE

- a -
,
no encoder Gen

.

Oulu
.

networks



Auto in cooler : non - linear Acts
,
e. g un

-ul

← wet woods

1- gE E E

[
HE -Eli

2 rn minimize

Both the encoder 1- and the decoder g
are deterministic

.

In this lecture we want to combine the idea of an

auto encoder with the concept of generative modeling
- want to determine models of probability
distributions p( It over data points I ;

- need to capture structural regularities in the data,
e.
g. correlations

between pixels in images ;

- generative latent variable models capture
structure

of data in distribution of latent variables ;

- today we will discuss variational
cento encoders

,

which
only approximate p( \ , but allow to draw

samples boom PCI ) .

Bayesian view of generative latent variable models :

p(E) = Jptzplxlzt OLÉ = Jp(I ,Élolz = E- z=p⇔P(III )
-

generative process

- PCE ) : prior over latent variable 2- c- IRQ

- p(III ) : likelihood ( decoder )
- p ( E ) : marginal lirelihood ,

or evidence

Goal : maximize p(E) = PILE ) by learning Pole) and Ño(III) .



Find model parameters 0 by minimizing negative log -
likelihood :

②
*

= argue
in F- E~p.com ( - tu polit)

⑤

= arginine E- Input a [ - he / IE-znpo.ie , Pol
III))

⊖

a argue
in É! - tu ( E- z~poc-zlpo.LI ' " IÉ ) )

6- [ =L

Unfortunately , calculating pole
" 't is in general

intractable

→ introduce a so - called recognition model 9- ⊖ (ÉIÉ )

to approximate tone posterior pole / It

In A F- - terminology : po ( I 1 E) → decoder

po (III ) → encoder

Example why computing Po (E) = IF-znpo.cz, palIIÉ ) is how d '

from DL course Tiibiugcn ( Poof . Geiger )



How can we use the recognition model 9- (Elt ) to
maximize likelihood ?

he P(E) = Ez - q(⇒± , tu (p (E) P
# 1×-1

PCIIE ) )

912--1 E)) + tu / 9- (
ÉII /

= E-
2- rq(I /E) ( in (PCÉI ) p(2--1×-1

) )
= /F-

2- ~ q(I / It lu ( PIÉI
)

a- II.⇒ ) + kll9d¥⇒HpEiEl)_
≥ lEz~q(I# \ in (PCE ,

# I

9- (EI) )
is evidence lower bound ( EL BO )

Note : q( It It is variational approximation to true

posterior ptzlx )

KL - turn measures approximation error

Rather than maximizing log - likelihood ,
minimize

negative log- likelihood :

- tuple ) ≤ E- Inge# (E) lu (
%# ' ± )

PII , I ) )
= LEI - g- (III / µ ( 91-2-1

It

plz) p(III) )

= E-E- q(Ih⇒ ( in ( 9-
(IIF )

pity / - tuple lit)
= KL ( 9/12=1×-111 PLEI) - EI - cetera l - lnp (IIIT)
-
~ reconstruction error

us auto in cooler structure : I
%

] I P , I



Variational auto encoder
:

minimize bound to negative log likelihood :

②
*

=

arguein
E-

x-npaatul-lupo.CH/0--angmiu-?l-tnpo-lx-' " 1)
⊖ i = i

≈ argmiu Éi [ KL (go.IE/I'
" I HPLÉ )) + EI~q.CI/x-iiy(-lnpo-lx- "

'

' II)))
⊖

i = 1

In V12 F-
, 9- ⊖ (It E) is a multivariate Gaussian , parametrized

by neural network :

9-0-12=1×7 =

( are 1£:
• (e)µ,

exp / - { (I - to (E) It -2. (E) (I _ aioli )))

→ mean A- and covariance Ii are functions of the data

and determined by a neural network .

Standard set - up : choose g- III F) = N (I lÑ ,
-2 ) and prior

p (E) = N / 0,1 ) as Gaussian ,
and [= diag (E)

Then :
KL (9512--111 p(It) = fqlzl ( tingle) - tu plz1) It

Q

= {Ii ( + of - I - tnsj )
j = i

can we train the VAE using bad propagation ?
Need to calculate gradient of an expectation value .

Simple example :

Ño E- In pie, ( to (E)I = Ñ⊖ Split to (E) DE = fptz )Ñ⊖ to (E) DI

= E-IrpE) [% 1- ⊖ (E)]



But what happens if PLEI - Patel ?

Bo EE -pie , [ 1-0-(2-7) = to [ Spa (E) to (E) OLI]
= EE~po.cz, [ B- to (E)] + f to (E) Epo (E) dz
-7

Reparauutrisutiou tied :

hrhooluce random varices le E- -p (E) and write

2- = go.CI , I ) ( e. g. ERNIE ,
A- 1 and I = a- (E) + I -081¥ ) )

g-

element - wise product

Then F- E- paces [ 1- ( It] = E- I - pie, [ 1- ( go.CI , E ))]

⇒ Do IF-z-np-o.cz) ( ACE)] = Do EE~pce.it - a - ]

= E- En plait [ Do 1- ( go.IE , E)I]
-

evaluate with MC methods : ≤ É! B- 1 (go.IE " '
, I )))

l =L

See Kingma and welling 2014
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Convolutional neural networks for jet images
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Figure 2. An illustration of the deep convolutional neural network architecture. The first layer is
the input jet image, followed by three convolutional layers, a dense layer and an output layer.

Only moderate optimization of the network architecture and minimal hyperparameter-

tuning were performed in this study. This optimization included exploration of different

optimizers (Adam, Adadelta, RMSprop), filter sizes, number of filters, activation functions

(ReLU, tanh), and regularization (dropout, L2-regularization), though this exploration was

not exhaustive. Further systematic exploration of the space of architectures and hyperpa-

rameter values, such as with Bayesian optimization using Spearmint [51], might increase

the performance of the deep neural network.

3.3 Jet images in color

All implementations of the jet images machine learning approach that we know of take as

the input image a grid where the input layer contains the pre-processed energy or transverse

momentum in a particular angular region. This can be thought of as a grayscale image,

with only intensity in each pixel and all color information discarded. In computer vision

– 8 –

 Komiske PT, Metodiev EM, Schwartz MD. J. High Energy Phys. 01:110 (2017)
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Kasieczka et al., SciPost Phys. 7, 014 (2019)

SciPost Physics Submission

a new set of questions related to training data, benchmarking, calibration, systematics, etc.

2 Data set

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26] with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking e�ciency and momen-
tum smearing changes with ⌘. The fat jet is then defined through the anti-kT algorithm [27]
in FastJet [28] with R = 0.8. We only consider the leading jet in each event and require

pT,j = 550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within �R = 0.8,
and all top decay partons to be within �R = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |⌘j | < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

Particle information or additional tracking information is not included in this format.
For instance, we do not record charge information or the expected displaced vertex from the
b-decay. Therefore, the quoted performance should not be considered the last word for the
LHC. On the other hand, limiting ourselves to essentially calorimeter information allows us
to compare many di↵erent techniques and tools on an equal footing.

Our public data set consists of 1 million signal and 1 million background jets and can be
obtained from the authors upon request [29]. They are divided into three samples: training
with 600k signal and background jets each, validation with 200k signal and background jets
each, and testing with 200k signal and 200k background jets. For proper comparison, all
algorithms are optimized using the training and validation samples and all results reported
are obtained using the test sample. For each algorithm, the classification result for each jet

Figure 1: Left: typical single jet image in the rapidity vs azimuthal angle plane for the top
signal after pre-processing. Center and right: signal and background images averaged over
10,000 individual images.

4

Typical single top-jet Average top-jet Average QCD-jet 

Jet images

EBER
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Figure 3. Reconstruction of an exemplary image (1st column) after 1, 5, 10, 25, 100, 250 (top
to bottom) epochs of training. We also show the squared error per pixel between input and re-
constructed image (2nd column) and its di↵erence w.r.t. the previous row (3rd column). The 4th
column shows the intensity of the 20 brightest input pixels (blue) together with the reconstructed
intensity (orange) and the corresponding squared error (purple crosses).

– 6 –

Figure 3. Reconstruction of an exemplary image (1st column) after 1, 5, 10, 25, 100, 250 (top
to bottom) epochs of training. We also show the squared error per pixel between input and re-
constructed image (2nd column) and its di↵erence w.r.t. the previous row (3rd column). The 4th
column shows the intensity of the 20 brightest input pixels (blue) together with the reconstructed
intensity (orange) and the corresponding squared error (purple crosses).
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Encoder Decoder

cf Heimel, Kasieczka, Plehn, Thompson, SciPost Phys. 6, 030 (2019); Farina, Nakai, Shih, PRD 101 (2020) 

Anomaly detection with autoencoders

Figure 2. Architecture of our autoencoder, see also Ref. [30].

in the central pixels. For top jets, there is a clearly visible three-prong structure (as

expected for top-quark decays after preprocessing). Of course, individual jets are harder

to distinguish than their average images may indicate.

As our anomaly detection algorithm, we use a convolutional autoencoder with an

architecture similar to the one in Ref. [30]. We implement our AE with Tensorflow

2.4.1 [47], relying on the built in version of Keras [48]. Several convolution layers with

4 ⇥ 4 kernel and average pooling layers with 2 ⇥ 2 kernel are applied before the image is

flattened and a fully connected network reduces the input further into the bottleneck latent

space with 32 nodes. The Parametric ReLU activation function is used in all layers. The

described encoder structure is inverted to form the corresponding decoder which is used to

reconstruct the original image from its latent space description. Our architecture is defined

in Fig. 2; the hyperparameter settings are described in more detail in Appendix A.

Following Ref. [30], to evaluate the reconstruction of the input picture we use the mean

squared error (MSE), i.e. the average of the squared error of each reconstructed pixel with

respect to its input value, as a loss function. During testing the value of the loss function

is also used as the discriminator between signal and background. An event is tagged as

signal/anomaly if the value of the loss function is larger than a given threshold. Changing

the threshold value, one obtains the usual receiver operating characteristic (ROC) curve.

2.2 Limited reconstruction

We first investigate what the AE is actually learning, as it is trained for the reconstruction of

the input and not as an anomaly tagger. Fig. 3 shows the learning history of an exemplary

top jet in terms of its reconstruction after training on top jets for a given number of epochs.

To guide the eye, we also show the evolution of the squared error per pixel and highlight

the reconstruction of the intensity of the brightest pixels in detail. Moreover, the MSE of

the reconstruction, i.e. the loss function of the AE, is given as a measure for the overall

reconstruction improvement.

During the first epoch, the AE learns to reconstruct the average top jet image, as can

be seen by comparing the reconstructed image to the average image in Fig. 1. (Note that

the images in Fig. 1 are shown on a logarithmic scale.) In the following epochs, the squared

error is dominated by the brightest pixels. The AE improves the loss by improving their

reconstruction, so its trainable weights are updated accordingly. After 10 epochs, the AE

recovers a smeared reconstruction of the brightest pixels. After roughly 25 epochs, the

weights are learned to reconstruct the brightest pixels so well that the corresponding error

becomes small compared to the error of the remaining pixels. However, the AE further

– 5 –
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Figure 2. Architecture of our autoencoder, see also Ref. [30].

in the central pixels. For top jets, there is a clearly visible three-prong structure (as

expected for top-quark decays after preprocessing). Of course, individual jets are harder

to distinguish than their average images may indicate.

As our anomaly detection algorithm, we use a convolutional autoencoder with an

architecture similar to the one in Ref. [30]. We implement our AE with Tensorflow

2.4.1 [47], relying on the built in version of Keras [48]. Several convolution layers with

4 ⇥ 4 kernel and average pooling layers with 2 ⇥ 2 kernel are applied before the image is

flattened and a fully connected network reduces the input further into the bottleneck latent

space with 32 nodes. The Parametric ReLU activation function is used in all layers. The

described encoder structure is inverted to form the corresponding decoder which is used to

reconstruct the original image from its latent space description. Our architecture is defined

in Fig. 2; the hyperparameter settings are described in more detail in Appendix A.

Following Ref. [30], to evaluate the reconstruction of the input picture we use the mean

squared error (MSE), i.e. the average of the squared error of each reconstructed pixel with

respect to its input value, as a loss function. During testing the value of the loss function

is also used as the discriminator between signal and background. An event is tagged as

signal/anomaly if the value of the loss function is larger than a given threshold. Changing

the threshold value, one obtains the usual receiver operating characteristic (ROC) curve.

2.2 Limited reconstruction

We first investigate what the AE is actually learning, as it is trained for the reconstruction of

the input and not as an anomaly tagger. Fig. 3 shows the learning history of an exemplary

top jet in terms of its reconstruction after training on top jets for a given number of epochs.

To guide the eye, we also show the evolution of the squared error per pixel and highlight

the reconstruction of the intensity of the brightest pixels in detail. Moreover, the MSE of

the reconstruction, i.e. the loss function of the AE, is given as a measure for the overall

reconstruction improvement.

During the first epoch, the AE learns to reconstruct the average top jet image, as can

be seen by comparing the reconstructed image to the average image in Fig. 1. (Note that

the images in Fig. 1 are shown on a logarithmic scale.) In the following epochs, the squared

error is dominated by the brightest pixels. The AE improves the loss by improving their

reconstruction, so its trainable weights are updated accordingly. After 10 epochs, the AE

recovers a smeared reconstruction of the brightest pixels. After roughly 25 epochs, the

weights are learned to reconstruct the brightest pixels so well that the corresponding error

becomes small compared to the error of the remaining pixels. However, the AE further
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