Autoencoders

28.4. – 1.12.22, Meinerzburgen

Michael Kreiner (RWTH Aachen University)

Content:

- Un supervised learning
-
- - Antorn coder 5
- Variational centorn coder 5
- Anomaly de le ction

Principle component analysis

- > data reduction
- → de correlation of features

 D ata: $\overleftrightarrow{\mathbf{x}}$ α $\underset{1 \longrightarrow 1}{\sim}$ $\overrightarrow{\times}$ $\left\{ \begin{array}{cc} \mathbf{w}_1 \\ \mathbf{w}_2 \end{array} \right\}$ with $\mathbf{x}^{(i)} \in \mathbb{R}^n$ Data: { x ' , ..., X } with x
Want to compress data x (i) -> = (i) with $\bar{c}^{(i)} \in \mathbb{R}^{\bar{c}}$ and $\bar{l} \in \pi$ but minimal loss of information

Try to Aiud in cooling and decoding functions : ¹¹×-1=2 and I [≈] g (e) ⁼ gltcxll

Simple choice : g(=) = D c; D E ll2^{n x e}

Constraint: Die (whumus of D) are orthogonal to rade other ; D: , ⁱ have unit worn .

Proceed in 2 skeps: λ) find optimal c^* ²¹ Aiud optimal D'

1) Find
$$
z^2
$$
 = $\arg \min_{z \in \mathbb{R}} |z - \gamma(z)|$
\nor $z\pi$ = $\arg \min_{z \in \mathbb{R}} |z - \gamma(z)|$
\n= $\arg \min_{z \in \mathbb{R}} |z - \gamma(z)|^2$
\n= $\arg \min_{z \in \mathbb{R}} |z - \gamma(z)|^2$
\n $\Rightarrow (z - \gamma(z))^T (z - \gamma(z)) = \sum_{x \in \mathbb{R}} |z - \overline{x}^T \gamma(z) - \gamma(z)|^2$
\n $\Rightarrow (z - \gamma(z))^T (z - \gamma(z)) = \sum_{x \in \mathbb{R}} |z - \overline{x}^T \gamma(z) - \gamma(z)|^2$
\n $\Rightarrow \text{Consider } z^* = \arg \min_{z \in \mathbb{R}} (z - 2z^T \gamma(z) + \gamma(z)|^2)$
\n $\exists^* = \text{argmin} (z - 2z^T \text{D} z + \overline{z}^T \text{D}^T \text{D} z)$
\n $\Rightarrow \arg \min_{z \in \mathbb{R}} (z - 2z^T \text{D} z + \overline{z}^T \text{D}^T \text{D} z)$
\n $\overline{z} = (z - 2z^T \text{D} z + \overline{z}^T \text{D}^T) - \overline{z} = 0$
\n $\overline{z} = (z - 2z^T \text{D} z + \overline{z}^T \text{D}^T) - \overline{z} = 0$
\n $\overline{z} = (z - 2z^T \text{D} z + \overline{z}^T \text{D}^T) = -2 \sum_{y \in \mathbb{R}} x_y \frac{\gamma_{y} z - \gamma_{z}}{\gamma_{z}^T} - 2 \sum_{y \in \mathbb{R}} c_y \frac{\partial c_y}{\partial c_y}$
\n $= -2 \sum_{y \in \mathbb{R}} x_y \text{D}_{y \in \mathbb{R}} c_x + \sum_{y \in \mathbb{R}} c_y^2 = -2 \sum_{y \in \mathbb{R}} x_y \text{D}_{y \in \overline{z}} c_x - 2 \sum_{y \in \mathbb{R}} c_y \frac{\partial c_y}{\$

2) Find optimal matrix D: data point i, i-1, ...
D* = curg min'u
$$
\sum_{i} (x_i^{(i)} - r(\vec{x}^{(i)})_i)^2
$$
 subject to D^TD = 1¹e
Problem 1. The sum of the product of \mathbb{R}^n

Consider simplest case: l=1
-> D E IR^{nxe} -> d E IRⁿ

In the simplest case l=1 we consider

$$
\vec{d}^* = \arg\min_{\vec{d}} \sum_{i} \|\vec{x}^{(i)} - \vec{d}\vec{d}^T \vec{x}^{(i)}\|_2^2 \text{ subject to } \|\vec{d}\|_2 = 1
$$
\n
$$
= \vec{d}^T \vec{x}^{(i)} \vec{d} = \left(\vec{d}^T \vec{x}^{(i)}\right)^T \vec{d}
$$
\n
$$
= \vec{x}^{(i)T} \vec{d} \vec{d}
$$

Introduce some luephil notation: design matrix X E IR"",

$$
X_{i,j} = \overrightarrow{x}^{(i)} \text{ or } \text{explicitively } \times = \begin{bmatrix} x_n^{(i)} & \cdots & x_n^{(i)} \\ x_n^{(i)} & \cdots & x_n^{(i)} \\ \vdots & \vdots & \vdots \\ x_n^{(m)} & \cdots & x_n^{(m)} \end{bmatrix}
$$

Then
$$
d^* = \omega q \frac{1}{4} \sin \|x - \frac{1}{4}x\|^2
$$

\nLet's work out $||x - \frac{1}{4}x||^2$
\n $||x - \frac{1}{4}x||^2 = \text{Tr}\left(\frac{1}{4}x - \frac{1}{4}x^2\right)^T \left(\frac{1}{4}x - \frac{1}{4}x^2\right)$
\n $-\frac{1}{4}x^2 - \frac{1}{4}x^3\frac{1}{4}x^2 + \frac{1}{4}x^4\frac{1}{$

Unsupervised learning

Machine learning for unlabeled data : Aiud patterns , detect out liers, generate data,...

let us start with a simple example : Oja's rule

Whight update: $\vec{w} \rightarrow \vec{w} \cdot \delta \vec{w}$ with $\delta \vec{w} = \xi y \vec{x}$ \mathcal{F}_{λ} learning rate [→] output lyl becomes the larger the Soutput lyl becomes the larger the in data distribution .

Lan write this as a differential equation :

$$
\tau \frac{d\vec{\omega}}{dt} = y \times \text{ since } \tau \frac{\vec{\omega}(t \cdot \Delta t) - \vec{\omega}(t)}{\Delta t} = y \times
$$

$$
\Rightarrow \vec{\omega}(t \cdot \Delta t) = \vec{\omega}(k) + \frac{\Delta t}{\tau} y \times
$$

Is this stable ?

よりこい $\frac{1}{\omega}$ = 2 $\vec{\omega}^T$ $\frac{d\vec{\omega}}{dt}$ = 2 $\vec{\omega}^T$ $\frac{1}{\tau}$ $y^{\vec{\times}}$ = $\frac{2}{\tau}$ $y^2 > 0$ [→] it grows without bound [→] add some weight decay : r add some wright decay.
J -> $\vec{\omega}$ + Ey(x - yw) vr T ᵈ= $\frac{\lambda\ddot{\zeta}}{\lambda t}$ = $\gamma\vec{x}$ - \propto $[O$ ja 82] ls dja's rule stable? $\frac{d\mathbb{I}\vec{\omega}\mathbb{I}^2}{dt} = 2\vec{\omega}^T \frac{d\vec{\omega}}{dt} = \frac{2}{\tau} \vec{\omega}^T \left(y \vec{x} - \alpha y^2 \vec{\omega} \right) = \frac{2}{\tau} \left(y^2 - \alpha y^2 \vec{\omega}^T \vec{\omega} \right)$ $= \frac{2}{\tau} y^2 (1 - x \ln x)^{1/2}$ \rightarrow converges to $\|\vec{w}\|^2$ = $\sqrt{\alpha}$ What does Kebbian learning do? lousider avirage over input date. $\tau \frac{d\vec{\omega}}{dt} = \langle y\vec{x}\rangle_{\vec{x}} = \langle \vec{x}\vec{x}^{\top}\vec{\omega}\rangle_{\vec{x}} = \langle \vec{x}\vec{x}^{\top}\rangle_{\vec{x}}\vec{\omega} = \zeta\vec{\omega}$ data wuandu a matrix
sor input data wikh zero mean let us write in thous of the eigenmectors of C: $\vec{\omega}(t) = \sum_{i} C_{i}(t) \vec{u}_{i}$ [C is ral b symmetric -> \vec{u}_{i} donn
basis] $\Rightarrow \quad \tau \sum_{i} \frac{d}{dt} \frac{c_{i}(t)}{dt} \overrightarrow{u_{i}} = \overline{2}_{i}^{T} c_{i}(t) \lambda_{i} \overrightarrow{u_{i}}$ $\Rightarrow \tau \frac{dci(t)}{dt} = ci(t) \times i \Rightarrow ci(t) = ci(0) exp(\lambda_i t/\tau)$ $\Rightarrow \overrightarrow{\omega}(k) = \sum_{i} C_{i}(1) \overrightarrow{\mu}_{c} = \sum_{i} C_{i}(0) \exp(\lambda_{i}t/\tau) \overrightarrow{\mu}_{i}$ For $t \gg \tau$, the tour corresponding to the largest riguevalue (sug x,) dominates:

 $\vec{\omega}(t) \propto \vec{u}_1(t)$ [or $\vec{\omega}(t) \propto \vec{u}_1/\sqrt{\alpha}$ for $O(\alpha's$ rele] => Kessian learning implements the principale

let us now try to implement feature learning on unlabeled data with non-linear neural networks.

Start with duta i.i.d. drown form $p(\vec{x})$, and set up neural wet wool with a hidden layer to wrap data to it self:

learning the identity mapping is not very useful . hustrad wustmet

under some peck and enders:

\n– In lms low to divumsion than
$$
\vec{x}
$$

\n– 4 or g has low on party (1,9. li in two g)

\n– dis two in downation in h

or auto in coolers with regularization .

under complete AE Iulian h < dim E) want É ≈ E us AE needs to learn compressed representation of data ~> of . PCA ~> extract salient features of data !

ln pmode (
$$
(\vec{x}, \vec{h})
$$
 = lii pmode ((\vec{x}, \vec{h})) + lii pmode ((\vec{h}))

A heplace prior on hetent variables.

p must (hi) =
$$
\frac{\lambda}{2} \mathcal{L}^{\lambda |hi|}
$$

leads to punctly: $IL(\hat{\mu}) = \lambda \sum_{i} |hi|$

Altronative way to inforce sparsity. Meep average activation in rach hidden rager node
small: hj = h 2. hj (x m) = ho (e.g. - 0.05) (Andrew Vg)

$$
u_{\geq 0} \text{ and } \text{ p under a form:}
$$
\n
$$
\mathcal{L}(h) = \sum_{j=1}^{s} \left(h_{0} \text{ } \text{ln} \left(h_{0} / \hat{u}_{j} \right) + \left(I - \text{ln}_{0} \right) \text{ } \text{ln} \left(\frac{I - \text{ln}_{0}}{1 - \hat{u}_{j}} \right) \right)
$$
\n
$$
= \sum_{j=1}^{s} \mathcal{K} \left(\text{ln}_{0} \|\hat{u}_{j} \right)
$$

Denoising auto uncoders: add noise to input and
minimize $Z(\bar{x}, g(x(\tilde{\vec{z}})))$ minimize Z (E, g (x(E))) copy of & wompted by mise

~> auto encoder must learn to undo corruption of date. Contractive antomicoder: regularize h. (x/x) by punalizing derivatives of 1: Λ (h) = $\lambda \left\| \frac{\partial 4}{\partial x} \right\|$ ≥ ^F ← Frobenius worm

→ forces auto encoder to learn function that does not change under when \vec{x} changes slightly.

Auto en coders belong to the quinal dass of latent variable models

LVMs map between observation space $\vec{x} \in \mathbb{R}^D$ and Lutent space \vec{z} 6 kg: $\vec{\lambda}_{\theta}$: $\vec{\lambda} \rightarrow \vec{z}$; g_{ϕ} : $\vec{z} \rightarrow \vec{x}$

- one lubent variable gets associated with lade data point in training set: $\vec{x}^{(m)} \rightarrow \vec{z}^{(m)}$
- lookent vectors are smaller than observations, Q<D => compression
- models van be linker of non-linker, deterministe or stochustic

Example of a luisair, detruinistée model: principal compount analysis.

Some dessistication:

Both the mcoder 4 and the decoder q are deterministic

In this lecture we want to combine the idea of an auto uncoder with the concept of gurnative modeling

- want to determine models of probability want to detrruine models of probable
- need to capture structural regularities in the data, e. g. correlations between pixels in images ;
- generative latent variable models capture structure of data in distribution of raturt variables;
- to day we will discuss variational automoders which only approximate p(x), but allow to draw samples toom $p(\vec{x})$. de will
- only ap
- vilus of :
p(=) p(=)=)
purtetius :
purtetius :

Bayesian view of gunwative lotant variable models

$$
\phi(\vec{x}) = \int \underbrace{\phi(\vec{x}) \phi(\vec{x} | \vec{z}) d\vec{z}}_{\text{quadratic process}} = \int \phi(\vec{x}, \vec{z}) d\vec{z} = \mathbb{E}_{\vec{z} \sim p(\vec{z})} \phi(\vec{x} | \vec{z})
$$

- PCE) : prior over latent variable 2- c- IRQ p(III) : likelihood (decoder) p (^E) : marginal lirelihood , or evidence Goal : maximize p(E) ⁼ PILE) by learning Pole) and Ño(III) .

Find model parameters θ by minimizing negative log. likelihood :

$$
\Theta^{\alpha} = \underset{\alpha}{\text{argmin}} \mathbb{E}_{\vec{x} \sim \rho_{\text{start}}} \left(- \text{ln} \left(\phi_{\alpha}(\vec{x}) \right) \right)
$$

=
$$
\underset{\alpha}{\text{argmin}} \mathbb{E}_{\vec{x} \sim \rho_{\text{start}}} \left[- \text{ln} \left(\mathbb{E}_{\vec{z} \sim \rho_{\alpha}(\vec{z})} \rho_{\theta}(\vec{x}(\vec{z}) \right) \right)
$$

$$
\underset{\alpha}{\text{argmin}} \sum_{i=1}^{N} - \text{ln} \left(\mathbb{E}_{\vec{z} \sim \rho_{\theta}(\vec{z})} \phi_{\theta}(\vec{x}^{(i)}(\vec{z}) \right)
$$

Without the value of a particular function, and the value of a function, in the equation, the equation is in the equation, the equation is in the equation, the equation is
$$
q_{\theta}(\vec{z}|\vec{x})
$$
 is in the equation.

$$
ln AE = turuivology: Po(\vec{x}|\vec{z}) \rightarrow deoder
$$

 $Po(\vec{z}|\vec{x}) \rightarrow unisbor$

Example why wonputing $p_{\theta}(\overline{x})$ = $\mathbb{E}_{2 \wedge p_{\theta}(x)}$ $p_{\theta}(\overline{x}|\overline{z})$ is howd

tow can we use the recognition model g(=21 to

$$
\ln p(\vec{x}) = \mathbb{E}_{z \sim q(\vec{z}|\vec{x})} \ln \left(p(\vec{x}) \frac{p(\vec{z}|\vec{x})}{p(\vec{z}|\vec{x})} \right)
$$
\n
$$
= \mathbb{E}_{z \sim q} \left(\hat{z}|\vec{x} \right) \left(\ln \left(\frac{p(\vec{z},\vec{x})}{q(\vec{z}|\vec{x})} \right) + \ln \left(\frac{q(\vec{z}|\vec{x})}{p(\vec{z}|\vec{x})} \right) \right)
$$
\n
$$
= \mathbb{E}_{z \sim q} \left(\hat{z}|\vec{x} \right) \ln \left(\frac{p(\vec{z},\vec{x})}{q(\vec{z},\vec{x})} \right) + \mathbb{E}_{z \sim q} \left(\frac{q(\vec{z}|\vec{x})}{q(\vec{z},\vec{x})} \right) \right)
$$
\n
$$
\geq \mathbb{E}_{z \sim q} \left(\hat{z}|\vec{x} \right) \ln \left(\frac{q(\vec{z},\vec{x})}{q(\vec{z},\vec{x})} \right)
$$
\n
$$
\approx \text{total or lower bound } (\text{ELBO})
$$

Note:
$$
q(\vec{z}|\vec{x})
$$
 is variational approximation to the
postuior $p(\vec{z}|\vec{x})$

As and the coder structure: $\vec{x} \stackrel{q}{\longrightarrow} \vec{z} \stackrel{p}{\longrightarrow} \vec{x}$

Variation de automnoder.

Minimire sound to negative log libelihood.

$$
\theta^* = \alpha r \sin i\omega \mathbb{E} \times \gamma \text{p}_{data}(-\lambda \omega \text{p}_{\theta}(\vec{x}))
$$

\n $= \alpha r \sin i\omega \sum_{i=1}^{N} (-\lambda \omega \text{p}_{\theta}(\vec{x}^{(i)}))$
\n $\approx \alpha r \sin i\omega \sum_{i=1}^{N} [KL(q_{\theta}(\vec{z}|\vec{x}^{(i)}) \|\text{p}(\vec{z})) + \mathbb{E} \vec{z} \times q_{\theta}(\vec{z}|\vec{x}^{(i)})(-\lambda \omega \text{p}_{\theta}(\vec{x}^{(i)}|\vec{z}))]$

Com we train the VAE using backpropagation? Nud to colmbute gradient of an expectation value. Simple example. $\overrightarrow{\nabla}_{\theta} \mathbb{E}_{\tilde{\zeta} \sim p(\tilde{\zeta})} \left(\measuredangle_{\theta}(\tilde{\zeta}) \right) = \overrightarrow{\nabla}_{\theta} \left(p(\tilde{\zeta}) \measuredangle_{\theta}(\tilde{\zeta}) d\tilde{\zeta} - \int p(\tilde{\zeta}) \overrightarrow{\nabla}_{\theta} \measuredangle_{\theta}(\tilde{\zeta}) d\tilde{\zeta} \right)$ - $E\vec{z} \sim p(\vec{z}) \left[\vec{\nabla}_{\theta} \nabla_{\theta} (\vec{z}) \right]$

But what happens
$$
i\lambda \phi(\vec{z}) - \phi_{\vec{v}}(\vec{z})
$$
?
\n
$$
\overline{\nabla}_{\theta} \mathbb{E} \vec{z} \sim p(\vec{z}) [\Lambda_{\theta}(\vec{z})] = \overline{\nabla}_{\theta} \Big[\int p_{\theta}(\vec{z}) \Lambda_{\theta}(\vec{z}) d\vec{z} \Big]
$$
\n
$$
= \mathbb{E} \vec{z} \sim p_{\theta}(\vec{z}) [\overline{\nabla}_{\theta} \Lambda_{\theta}(\vec{z})] + \int \Lambda_{\theta}(\vec{z}) \overline{\nabla}_{\theta} p_{\theta}(\vec{z}) d\vec{z}
$$

Reparance trisation trick:

Introduce random variasle $\vec{\epsilon} \sim p(\vec{\epsilon})$ and write $Z = g_{\bullet}(\vec{z}, \vec{x})$ (e.g. $\vec{z} \sim \mathcal{N}(\vec{0}, 4)$ and $\vec{z} = \vec{\mu}(\vec{x}) + \vec{z} \circ \vec{\sigma}(\vec{x})$) unt-wise product Then $E\left[\mathcal{A}(\vec{z})\right] = E\left[\mathcal{A}(\vec{z})\right]$ $E\left[\mathcal{A}(\gamma_{\rho}(\vec{z},\vec{x}))\right]$ $\Rightarrow \nabla_{\theta} E_{3\wedge \vec{p}_{0}(z)} [\chi(\vec{z})] - \nabla_{\theta} E_{\vec{z} \wedge p(\vec{z})} [- \cdot -]$ $-E_{\frac{1}{2} \sim p(\vec{\tau})}$ $\left[\nabla_{\theta} \mathcal{L}(\theta) \left(\vec{\tau}, \vec{x}\right)\right]$ rualuate with MC meturds: $\frac{1}{L} \sum_{a}^{L} \nabla_{\theta} \mathcal{L} \left(g_{\theta}(\vec{\epsilon}^{(k)}, \vec{x}) \right)$

Convolutional neural networks for jet images

 F_{ref} σ τ Λ and σ architecture. The deep convolutional network architecture. The first layer σ Komiske PT, Metodiev EM, Schwartz MD. J. High Energy Phys. 01:110 (2017)

Typical single top-jet $\qquad QCD$ -jet Average top-jet Average QCD-jet

Kasieczka et al., SciPost Phys. 7, 014 (2019)

Anomaly detection with autoencoders

cf Heimel, Kasieczka, Plehn, Thompson, SciPost Phys. 6, 030 (2019); Farina, Nakai, Shih, PRD 101 (2020)

Anomaly detection with autoencoders

MSE loss

described to the corresponding to the corresponding to the corresponding decoder which is used to form the corresponding deficiency of the corresponding to Γ