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Experimental particle physics workflow



Particle collisions happen at a rate 
of 40 MHz with size ~1 MB/event. 


Need to distill to ~1 kHz via lossy, 
irreversible filtering algorithms 
(Trigger).


Data is very heterogenous: low-
level readouts in ~100M channels.
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Simulation
Theoretically well motivated  
Monte Carlo based simulations of  
known and hypothetical processes 
as well as detector responses.


As ~similar amount of simulated  
and real data is needed, significant

compute goes here.
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Reconstruction
Build high level objects (particles, 
leptons, jets, ..) from raw 
measurements in detectors and identify 
different particle decays.


Same processing chain for simulation 
and real data.
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Analysis
Select region of phase space 
that isolates a physical 
phenomen of interest and 
perform detailed statistical 
analysis.


Compares simulation and data, 
quantifies uncertainties.




Machine learning plays an increasing 
role in all of these steps
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Focus on two problems:
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Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
identification & calibration

Final analysis, statistical and 
physical interpretation

Focus on two problems:

Simulation

and finding new physics.
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Widely 
used in 
HEP

One example so 
far: 2206.11898

Unifying theme:  
Generative models
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Introduction to NF

• Basic idea: Learn a mapping between data and an intial 
latent-space distribution (e.g. Gaussians)

• Bijective, so that it is invertable 

(f-1 is not a learned approximated inversion, but the exact 
inverse of f by construction) 

• Actually a diffeomorphism

• Take into account Jacobian determinant (change of prob. 

variable formula) to evaluate probability density in data 
space  
(need to construct f to allow easy calculation of Jacobian 
determinant) 
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Introduction to NF

• Why could this be useful?

• Can sample from latent space and transform with f-1 into 

data space for use as generative model 
• Can assign likelihood to data points by applying f 

• Will see some physics applications later 

• (See e.g. D. J. Rezende and S. Mohamed, Variational inference with 
normalizing flows, International Conference on Machine Learning 37, 1530 
(2015); I. Kobyzev, S. Prince, and M. Brubaker, Normalizing Flows: An 
Introduction and Review of Current Methods, IEEE Transactions on Pattern 
Analysisand Machine Intelligence , 1 (2020))
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Introduction to NF

• Goal: assign probability density to each datapoint

• Learn bijective transformation between data and a latent space with 

tractable probability

• Build from simple invertible transformations with tractable Jacobian
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Coupling Flows

• Coupling flows / real NVP

• Practically not the most widely used flow,  

but useful for illustration/understanding

• Will use an alternative (masked autoregressive flows) for  

exercise


• Forward direction

• s and t are standard (e.g. fully connected) neural networks
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The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2
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f1�!

✓
z1
x2
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f2�!
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z2
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(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Coupling Flows

• Forward and backward direction

• Can already see invertability  

• What about Jacobian determinant?
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The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Calculating Jacobian determinant
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the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
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subsequent transformations f1 and f2 — corresponding to the left and
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As the structure for f1 and f2 is similar, we first focus on f1:
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f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
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The Jacobian matrix for this transformation J1 reads:

J1 =

 
@z1
@x1

@z1
@x2

@x2
@x1

@x2
@x2

!
(18.25)

=

✓
diag(exp(s2(x2)))

@z1
@x2

0 1

◆
. (18.26)

By construction, we arrived at a triangular matrix. This shape greatly
simplifies the calculation of the determinant:

detJ1 =
Y

exp(s2(x2)) = exp
⇣X

s2(x2)
⌘

. (18.27)

Here, the sum goes over the output dimension of s2. In the same way, the
Jacobian determinant for the second half of the transformation f2 can be
calculated to be

detJ2 = exp
⇣X

s1(z1)
⌘

. (18.28)

Combining these shows the simple form of the overall determinant of the
forward pass:

|detJf | = exp
⇣X

s2(x2) +
X

s1(z1)
⌘

= exp
⇣X

s(x)
⌘
. (18.29)

For the last equality, we simplified the notation to highlight that the deter-
minant is the exponential function applied to a sum of network predictions
s. When multiple such blocks are applied in sequence, due to (18.21), we
just gain additional terms in that sum.

To summarize, by splitting the input features into two parts we no-
tice how a transformation block, that is invertible and allows calculat-
ing the change in probability volume, can be constructed from standard
(i.e., non-invertible networks) and basic mathematical operations. When
more expressiveness is needed, multiple such blocks can be applied subse-
quently. An alternative construction based on autoregressive transforma-
tions is sketched in Example 18.6.

Example 18.6. Autoregressive flows: A popular alternative build-
ing block for invertible networks are masked autoregressive flows
(MAFs) [210]. An autoregressive flow is a bijective function of a number
of inputs yt which for each output xt is conditioned on all preceding

with
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Triangular matrix by construction

Similarly simple for J2. Composition of functions 
means multiplying their det J.
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Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

• Autoregressive property: Outputs conditioned on previous 
inputs


• Again, leads to simple Jacobian and invertible functions

• MAF: Masked Autoregressive Flow

• Forward direction (data->latent) fast, backward slow


• IAF: Inverse Autoregressive Flow

• Sampling direction (latent->data) fast


• Many other constructions exist as well (1908.09257 for an 
overview)



How to train NF?

• Loss is the negative log likelihood, 
assume Gaussian latent space distribution


• Sample points from the training dataset

• Transform into latent space using flow 

(and keep track of det J)
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For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
(18.29) yields:

L = �Ex⇠pdata


�1

2
||f(x))||22 +

X
s(x)

�

Using the batch size k, the objective function to be minimized finally be-
comes

L =
1

k

kX

i=1

✓
1

2
||f(xi))||22 �

X
s(xi)

◆
. (18.36)

In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.



Back to physics applications
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Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center
right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.

a WGAN with additional energy constrainer (Sec. 3.2),
and a BIB-AE with energy-MMD and post processing
(Secs. 3.3, 3.4 and 3.5). A detailed discussion of the ar-
chitectures and training hyper parameters can be found
in Appendix A. All architectures are trained on the
same sample of 950k Geant4 showers. Tests are either
shown for the full momentum range (labeled full spec-
trum) or for specific shower energies (labeled with the
incident photon energy in GeV).

4.1 Physics Performance

We first verify in Fig. 5 that the showers generated by
all network architectures visually appear to be accept-
able compared to Geant4. Were we attempting to gen-
erate cute cat pictures, our work would be done already
at this point. Alas, these shower images are eventually
to be used as realistic substitutes in physics analyses so
we need to pay careful attention to relevant di↵erential
distributions and correlations.

In Figure 6 a comparison between two di↵erential
distributions for all studied architectures and Geant4
is shown. The left plot compares the per-cell hit-energy
spectrum averaged over showers for the full spectrum
of photon energies. We observe that while the high-
energy hits are well described by all generative models,
both GAN and WGAN fail to capture the bump around
0.2 MeV. The BIB-AE is able to replicate this feature
thanks to the Post Processor Network.4 This energy
corresponds to the most probable energy loss of a MIP
passing a silicon sensor of the ILD Si-W ECal at per-
pendicular incident angle. Since this is a well-defined
energy, it can be used in highly granular calorimeters
for the equalisation of the cell response as well as for
setting an absolute energy scale. It also leads to a sharp
rise in the spectrum, as lower energies can only be de-
posited by ionizing particles that pass only a fraction of

4 We studied applying post processing to the WGAN ar-
chitecture as well. This is discussed in Section 4.2.

the thickness at the edges of sensitive cells or that are
stopped. The region below half a MIP, corresponding
to around 0.1 MeV, is shaded in dark grey. These cell
energies are very small and therefore will be discarded
in a realistic calorimeter, as their signal to noise ratio is
too low. For the following discussion cell energies below
0.1 MeV will therefore not be considered and only cells
above this cut-o↵ are included in all other performance
plots and distributions.

Next, the plot on the right shows the number of hits
for three discrete photon energies (20 GeV, 50 GeV, and
80 GeV). Here, the GAN andWGAN setups slightly un-
derestimate the total number of hits, while the BIB-AE
accurately models the mean and width of the distribu-
tion. This behavior can be traced back to the left plot.
Since we apply a cuto↵ removing hits below 0.1 MeV, a
model that does not correctly reproduce the hit-energy
spectrum around the cut-o↵ will have di�culties cor-
rectly describing the number of hits.

Additional distributions are shown in Fig. 7. The
top left depicts the visible energy distribution for the
same three discrete photon energies. Both, the shape,
center and width of the peak are well reproduced for all
models. Due to the sampling nature of the calorimeter
under study, the visible energy is of course much lower
than the incoming photons’ energy.

In the top right and bottom two plots we compare
the spatial properties of the generated showers. First,
on the top right, the position of the center of gravity
along the z axis is shown. The Geant4 distribution is
well modelled by the GANs, however there are slight
deviations for the BIB-AE. A detailed investigation of
this discrepancy showed that the z axis center of gravity
is largely encoded in a single latent space variable. A
mismatch between the observed latent distribution for
real samples and the normal distribution drawn from
when generating new samples directly translates into
the observed di↵erence. Sampling from a modified dis-
tribution would remove the problem.
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Context
• Roughly speaking, “simulation” 

consists of two steps:

• Event generation 

Model short-lived physics 
of high energy particle collision  
and resulting shower
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Context
• Roughly speaking, “simulation” 

consists of two steps:

• Event generation

• Detector simulation 

Describe interaction of particle  
shower with various detector components 
on a microscopic level
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Context
• Roughly speaking, “simulation” 

consists of two steps:

• Event generation

• Detector simulation 

• Both are computationally expensive, performed  
by a multitude of specific software packackes  
and ML-based efforts exist to replace/augment them 

• Potential benefits:

• Reduce ressource consumption (details in JRs talk)

• On-the-fly data generation

• Simulation trained directly on data (reduce modelling 

uncertainty?)

• New analysis techniques utilising fully differentiable 

(invertible?) generators 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Context
• Roughly speaking, “simulation” 

consists of two steps:

• Event generation

• Detector simulation 

• Both are computationally expensive, performed  
by a multitude of specific software packackes  
and ML-based efforts exist to replace/augment them 

• Potential benefits:

• Reduce ressource consumption (details in JRs talk)

• On-the-fly data generation

• Simulation trained directly on data (reduce modelling 

uncertainty?)

• New analysis techniques utilising fully differentiable 

(invertible?) generators 

• Focus on detector (calorimeter) simulation in the following



Calorimeter 
Showers

35

• Calorimeters aim to fully stop incoming particles, 
and measure their energy in the process


• Due to large amount of classical simulation time spent 
on calorimeters, good target for ML-based simulation.


• Started by 1712.10321, MANY results since 

Calorimeters of the 
CMS detector



Calorimeter Showers

36

CALICE AHCal testbeam. 
(Slightly different detector, 

but close enough)

Illustration of particle shower 
in a sampling calorimeter.

One data example.



Concrete Problem
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Describe photon showers in high 
granularity calorimeter segment

• Model energy in 30x30x30 (=27k) cells 
(pixels): grayscale images 

• Incoming photon energies from  
10 to 100 GeV: need to condition on this 

• Consider fixed geometric area of 
detector 

• Use ~1M examples from classical 
simulation as training data
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challenging for the network, but does not pose a fundamental 
problem. Architectures that more accurately encode irregular 
calorimeter geometries in neural networks exist [51], but are 
not the focus of this work.

ILD uses the iLCSoft [52] ecosystem for detector simu-
lation, reconstruction and analysis. For the full simulation 
with Geant4, a detailed and realistic detector model imple-
mented in DD4hep [53] is used. The training data of photon 
showers in the ILD ECal are simulated with Geant4 version 
10.4 (with QGSP_ BERT physics list) and DD4hep version 
1.11. The photons are shot at perpendicular incident angle 
into the ECal barrel with energies uniformly2 distributed 
between 10 and 100 GeV. All incident photons are aimed 
at the x−y center of the grid—i.e., at the point in the mid-
dle between the four most central cells of the front layer. 
An example event display showing such a photon shower is 
depicted in Fig. 1.

The incoming photon enters from the bottom at z = 0 and 
traverses along the z-axis, hitting cells in the center of the 
x−y plane. No variations of the incident angle and impact 
point are performed in this study. The overlay of 2000 show-
ers summed over the y-axis is shown in Fig. 2. As can be 
seen, the cells in the ILD ECal are staggered due to the 
specific barrel geometry. The whole data set for training 
consists of 950k showers with continuous energies between 
10 and 100 GeV. For the evaluations we generated addi-
tional, statistically independent, sets of events: 40k events 
uniformly distributed between 10–100 GeV and 4k events 

each at discrete energies in steps of 10 GeV between 20 and 
90 GeV.

Generative Models

Generative models are designed to learn an underlying data 
distribution in a way that allows later sampling and thereby 
producing new examples. In the following, we first present 
two approaches—GAN and WGAN—which represent the 
state-of-the-art in generating calorimeter data and which we 
use to benchmark our results. We then introduce BIB-AE as 
a novel approach to this problem and discuss further refine-
ment methods to improve the quality of generated data.

Generative Adversarial Network

The GAN architecture was proposed in 2014 [16] and had 
remarkable success in a number of generative tasks. It intro-
duces generative models by an adversarial process, in which 
a generator G competes against an adversary (or discrimina-
tor) D. The goal of this framework is to train G in order to 
generate samples x̃ = G(z) out of noise z, which are indis-
tinguishable from real samples x. The adversary network D 
is trained to maximize the probability of correctly classify-
ing whether or not a sample came from real data using the 
binary cross-entropy. The generator, on the other hand, is 
trained to fool the adversary D. This is represented by the 
loss function as

and a schematic of the GAN training is provided in 
Fig. 3 (top).

For practical applications, the GAN needs to simulate 
showers of a specific energy. To this end, we parameterise 

(1)L = min
G

max
D

![logD(x)] + ![log(1 − D(G(z)))],

Fig. 1  A simulated 60 GeV photon shower in the ILD detector, as 
used in the training data

Fig. 2  Overlay of 2000 projections of 50 GeV Geant4 photon show-
ers along the y direction

2 Due to technical issues with the Geant4 generation step, the pro-
duced sample has a difference in statistics of 1 % between the lowest 
and highest energies.
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Architecture

38

• Bounded Information Bottleneck 
Autoencoder (BIB-AE,  
based on 1912.00830)


• Unifies features of GAN and VAE

• 71M trainable parameters

20
05

.0
53

34



39 20
05

.0
53

34

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed 7

Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center
right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.

a WGAN with additional energy constrainer (Sec. 3.2),
and a BIB-AE with energy-MMD and post processing
(Secs. 3.3, 3.4 and 3.5). A detailed discussion of the ar-
chitectures and training hyper parameters can be found
in Appendix A. All architectures are trained on the
same sample of 950k Geant4 showers. Tests are either
shown for the full momentum range (labeled full spec-
trum) or for specific shower energies (labeled with the
incident photon energy in GeV).

4.1 Physics Performance

We first verify in Fig. 5 that the showers generated by
all network architectures visually appear to be accept-
able compared to Geant4. Were we attempting to gen-
erate cute cat pictures, our work would be done already
at this point. Alas, these shower images are eventually
to be used as realistic substitutes in physics analyses so
we need to pay careful attention to relevant di↵erential
distributions and correlations.

In Figure 6 a comparison between two di↵erential
distributions for all studied architectures and Geant4
is shown. The left plot compares the per-cell hit-energy
spectrum averaged over showers for the full spectrum
of photon energies. We observe that while the high-
energy hits are well described by all generative models,
both GAN and WGAN fail to capture the bump around
0.2 MeV. The BIB-AE is able to replicate this feature
thanks to the Post Processor Network.4 This energy
corresponds to the most probable energy loss of a MIP
passing a silicon sensor of the ILD Si-W ECal at per-
pendicular incident angle. Since this is a well-defined
energy, it can be used in highly granular calorimeters
for the equalisation of the cell response as well as for
setting an absolute energy scale. It also leads to a sharp
rise in the spectrum, as lower energies can only be de-
posited by ionizing particles that pass only a fraction of

4 We studied applying post processing to the WGAN ar-
chitecture as well. This is discussed in Section 4.2.

the thickness at the edges of sensitive cells or that are
stopped. The region below half a MIP, corresponding
to around 0.1 MeV, is shaded in dark grey. These cell
energies are very small and therefore will be discarded
in a realistic calorimeter, as their signal to noise ratio is
too low. For the following discussion cell energies below
0.1 MeV will therefore not be considered and only cells
above this cut-o↵ are included in all other performance
plots and distributions.

Next, the plot on the right shows the number of hits
for three discrete photon energies (20 GeV, 50 GeV, and
80 GeV). Here, the GAN andWGAN setups slightly un-
derestimate the total number of hits, while the BIB-AE
accurately models the mean and width of the distribu-
tion. This behavior can be traced back to the left plot.
Since we apply a cuto↵ removing hits below 0.1 MeV, a
model that does not correctly reproduce the hit-energy
spectrum around the cut-o↵ will have di�culties cor-
rectly describing the number of hits.

Additional distributions are shown in Fig. 7. The
top left depicts the visible energy distribution for the
same three discrete photon energies. Both, the shape,
center and width of the peak are well reproduced for all
models. Due to the sampling nature of the calorimeter
under study, the visible energy is of course much lower
than the incoming photons’ energy.

In the top right and bottom two plots we compare
the spatial properties of the generated showers. First,
on the top right, the position of the center of gravity
along the z axis is shown. The Geant4 distribution is
well modelled by the GANs, however there are slight
deviations for the BIB-AE. A detailed investigation of
this discrepancy showed that the z axis center of gravity
is largely encoded in a single latent space variable. A
mismatch between the observed latent distribution for
real samples and the normal distribution drawn from
when generating new samples directly translates into
the observed di↵erence. Sampling from a modified dis-
tribution would remove the problem.

Ground Truth GAN Wasserstein 
GAN BIB-AE

Individual shower images very hard to judge per-eye

Results
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• Different from e.g. photographs, 
there is a number physically 
meaningful quantities


• Use to judge quality of simulated 
data


• BIB-AE first model to correctly 
model cell-energy distribution 
(histogram of pixel values) correctly


• (And of course other marginal 
distributions and correlations)

Results
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compared to Geant4. Were we attempting to generate cute 
cat pictures, our work would be done already at this point. 
Alas, these shower images are eventually to be used as 
realistic substitutes in physics analyses so we need to pay 
careful attention to relevant differential distributions and 
correlations.

In Fig. 6 a comparison between two differential distribu-
tions for all studied architectures and Geant4 is shown. The 
left plot compares the per-cell hit-energy spectrum averaged 
over showers for the full spectrum of photon energies. We 
observe that while the high-energy hits are well described 
by all generative models, both GAN and WGAN fail to 
capture the bump around 0.2 MeV. The BIB-AE is able to 

replicate this feature thanks to the Post Processor Network.4 
This energy corresponds to the most probable energy loss 
of a MIP passing a silicon sensor of the ILD Si-W ECal at 
perpendicular incident angle. Since this is a well-defined 
energy, it can be used in highly granular calorimeters for 
the equalisation of the cell response as well as for setting 
an absolute energy scale. It also leads to a sharp rise in the 
spectrum, as lower energies can only be deposited by ion-
izing particles that pass only a fraction of the thickness at the 
edges of sensitive cells or that are stopped. The region below 
half a MIP, corresponding to around 0.1 MeV, is shaded in 
dark grey. These cell energies are very small and therefore 

Fig. 5  Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center right), and BIB-AE 
(right) architectures. Colors encode the deposited energy per cell

Fig. 6  Differential distributions comparing the per-cell energy (left) 
and the number of hits above 0.1 MeV (right) between Geant4 and 
the different generative models. Shown are Geant4 (grey, filled), our 
GAN setup (blue, dashed), our WGAN (red, dotted) and the BIB-AE 

(green, solid). The energy per-cell is measured in MeV for the bottom 
axis and in multiples of the expected energy deposit of a minimum 
ionizing particle (MIP) for the top axis

4 We studied applying post processing to the WGAN architecture as 
well. This is discussed in Sect. 4.2.
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Generative Frontiers
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• Good progress in various directions 



Generative Frontiers

42

• Good progress in various directions 

• Still many issues to be solved:

• Experimental integration of simulation for 

high-granularity calorimeters

• Multi-dimensional conditioning

• Whole calorimeter simulation

• Irregular geometries

• Benchmarking

• … 



Generative Frontiers
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• Good progress in various directions 

• Still many issues to be solved:

• Experimental integration of simulation for 

high-granularity calorimeters

• Multi-dimensional conditioning

• Whole calorimeter simulation

• Irregular geometries

• Benchmarking

• … 

• Statistics? 



Statistics
If we train a generator on N data points, and use it to produce M>>N 
examples, what is the statistical power of the M points?


Compare (known) truth distribution to sample and oversampled data from GAN
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Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), and
GAN (orange). We fit to and train on 100 data points, but also show (hypothetical) results
for larger data sets with 200, 300, 500 and 1000 data points (dotted blue). These results were
obtained using the same procedure as for the sample, but they have no influence on the GAN
or fit. Left to right we show results for 10, 20, and 50 quantiles.

populated 1D-phase space, the assumed functional value for the fit allows the data to have the
same statistical power as a dataset with no knowledge of the functional form that is 10 times
bigger. If we define the amplification factor as the ratio between asymptotic performance to
training events, the factor when using the fit information would be about 10. The question
is, how much is a GAN with its very basic assumptions worth, for instance in comparison to
this fit?

We introduce a simple generative model using the generator-discriminator structure of a
standard GAN. This architecture remains generic in the sense that we do not use specific
knowledge about the data structure or its symmetries in the network construction. Our setup
is illustrated in Fig. 3. All neural networks are implemented using PyTorch [48]. The
generator is a fully connected network (FCN). Its input consists of 1000 random numbers,
uniformly sampled from [�1, 1]. It is passed to seven layers with 256 nodes each, followed by
a final output layer with d nodes, where d is the number of phase space dimensions. To each
fully-connected layer we add a 50% dropout layer [49] to reduce over-fitting which is kept
active during generation. The generator uses the ELU activation function [50].

The discriminator is also a FCN. In a naive setup, our bi-modal density makes us especially
vulnerable to mode collapse, where the network simply ignores one of the two Gaussians. To
avoid it, we give it access to per-batch statistics in addition to individual examples using an
architecture inspired by DeepSets [51, 52]. This way its input consists of two objects, a data
point x 2 Rd and the full batch B 2 Rd,n, where n is the batch size and x corresponds to one
column in B. First, we calculate the di↵erence vector between x and every point in B, B� x
with appropriate broadcasting, so that B � x 2 Rd,n as well. This gives the discriminator a
handle on the distance of generated points. This distance is passed to an embedding function
� : Rd,n ! Rm,n, where m the size of the embedding. The embedding � is implemented as
three 1D-convolutions (256 filters, 256 filters, m filters) with kernel size 1, stride 1 and no
padding. Each of the convolutions uses a LeakyReLU [53] activation function with a slope
of 0.01. For the embedding size we choose m = 32.

We then use an aggregation function F : Rm,n ! Rm along the batch-size direction. The

5
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2 One-dimensional camel back

The first function we study is a one-dimensional camel back, made out of two normalized
Gaussians Nµ,�(x) with mean µ and width �,

P (x) =
N�4,1(x) +N4,1(x)

2
. (1)

We show this function in Fig. 1, together with a histogrammed data set of 100 points. We
choose this small training sample to illustrate the potentially dramatic improvement from a
generative network especially for an increasing number of dimensions. As a benchmark we
define a 5-parameter maximum-likelihood fit, where we assume that we know the functional
form and determine the two means, the two widths and the relative height of the Gaussians in
Eq. (1). We perform this fit using the iminuit [46] and probfit [47] Python packages. The
correctly assumed functional form is much more than we can encode in a generative network
architecture, so the network will not outperform the precision of this fit benchmark. On the
other hand, the fit illustrates an optimal case, where in practice we usually do not know the
true functional form.

To quantify the agreement for instance between the data sample or the fit on the one hand
and the exact form on the other, we introduce 10, 20, or 50 quantiles. We illustrate the case
of 10 quantiles also in Fig.1. We can evaluate the quality of an approximation to the true
curve by computing the average quantile error

MSE =
1

Nquant

NquantX

j=1

✓
xj �

1

Nquant

◆2

, (2)

where xj is the estimated probability in each of the Nquant quantiles, which are defined with
known boundaries. In a first step, we use this MSE to compare

1. low-statistics training sample vs true distribution;

2. fit result vs true distribution.

In Fig. 2 the horizontal lines show this measure for histograms with 100 to 1000 sampled
points and for the fit to 100 points. For the 100-point sample we construct an error band by
evaluating 100 statistically independent samples and computing its standard deviation. For
the fit we do the same, i.e. fit the same 100 independent samples and compute the standard
deviation for the fit output. This should be equivalent to the one-sigma range of the five
fitted parameters folded with the per-sample statistics, if we take into account all correlations.
However, we use the same procedure to evaluate the uncertainty on the fit, as is used for the
other methods.

The first observation in Fig. 2 is that the agreement between the sample or the fit and
the truth generally improves with more quantiles, indicated by decreasing values of the quan-
tile MSE on the y-axis. which is simply a property of the definition of our quantile MSE error
above. Second, the precision of the fit corresponds to roughly 300 hypothetical data points
for 10 quantiles, 500 hypothetical data points for 20 quantiles, and close to 1000 hypothetical
data points for 50 quantiles. This means that for high resolution and an extremely sparsely

4
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Figure 5: Relative deviation of the training sample (left) and the GANned events (right) for
the 2D Gaussian ring. We show the same 7⇥ 7 2D-quantiles as in Fig. 4,

separately, remembering that the network is trained on Cartesian coordinates. In our setup
the GAN learns the peaked structure of the radius, with an amplification factor around four,
much better than the flat distribution in the angle, with an amplification factor below two.
Both of these amplification factors are computed for ten quantiles, to be compared with the
1D-result in Fig. 2. We can combine the two dimensions and define 7⇥ 7 quantiles, to ensure
that the expected number of points per quantile remains above one. The 2D amplification
factor then comes out slightly above three, marginally worse than the 50 1D-quantiles shown
in Fig. 2. One could speculate that for our simple GAN the amplification factor is fairly
independent of the dimensionality of the phase space.

We illustrate the 49 2D-quantiles in Fig. 5, where the color code indicates the relative
deviation from the expected, homogeneous number of 100/49 events per quantile. We see the
e↵ect of the GAN improvement with more subtle colors in the right panel. While it is hard
to see the quality of the GAN in radial direction, we observe a shortcoming in the azimuthal
angle direction, as expected from Fig. 4. We also observe the largest improvement from the
GAN in the densely populated regions (as opposed to the outside) which agrees with the
network learning to interpolate.

4 Multi-dimensional spherical shell

To see the e↵ect of a higher-dimensional phase space we further increase the number of
dimensions to five and change the Gaussian ring into a spherical shell with uniform angular
density and a Gaussian radial profile

P (r) = N4,1(r) +N�4,1(r)

(4)

with radius r � 0 and angles '1,..,4.

Even if we limit ourselves to the hard scattering, around ten phase space dimensions is
typical for LHC processes we would like to GAN [19]. In typical LHC applications, the number

8

Relative deviation from Gaussian ring distribution
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Test the statistical properties of 
simplified calorimeter showers.
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quantile values

DJS(g, p) =
1
2

X

Qi2Q

Ç
gi log

gi
1
2(gi + pi)

+ pi log
pi

1
2(gi + pi)

å
. (5)

Just like the DJS, this estimate lies between zero and log 2. It turns into the continuous DJS
between the histogram estimators

g(x) =
X

Qi2Q

gi

vol(Qi)
1Qi
(x) =
X

Qi2Q

#{x 0 2Qi | x 0 2 G}
#G · vol(Qi)

1Qi
(x)

and p(x) =
X

Qi2Q

pi

vol(Qi)
1Qi
(x) ,

(6)

with vol the n-dimensional volume, 1Qi
the indicator function of the i-th quantile and G all

showers in either an evaluation set of GEANT4 samples or in the generated set. As for all
histogram estimators, independent of the choice of bin edges, the overall number of bins, the
cardinality of the fitted set, as well as the number of showers per bin have to go to infinity
for the estimator to converge to the underlying distribution. As DJS goes to zero, the two
distributions g and p are identical.

To determine the quality of our generative model relative to truth or validation distribu-
tions, we look at the dependence of the Jensen–Shannon divergence DJS on the number of
quantiles nquant we can reliably construct. This will allow us to gauge where the density es-
timation underlying the VAE-GAN beats the statistically limited training data. As discussed
earlier, we estimate the uncertainty on DJS for the 5k and 10k evaluation sets of GEANT4 data
from five independent sets each.

4 16 64 256 1k 4k 16k
nquant

10�1

10�2

10�3

10�4

10�5

1k 5k

10k 50k

1k�1000k

218k validation
showers

DJS

Evis

Geant4

VAE-GAN

Figure 6: Dependence of DJS on the number of quantiles nquant for different amounts
of GEANT4 data (orange) and VAE-GAN data (blue) for the observables given in
Eq.(2). Solid lines indicate meaningful, non-sparse quantile sets. The 1k GEANT4
samples were also used to train the VAE-GAN. Errors are calculated as the standard
deviation from five datasets. For 50k we omit the negligible errors.
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Figure 4: Differential distributions for the observables given in Eq.(2) from GEANT4
and from the VAE-GAN-generated images. Errors of the validation set (grey) and the
training set (orange) correspond to the Poisson-error per bin, while the uncertainty
on the VAE-GAN line (blue) is illustrated by the standard deviation of three indepen-
dent trainings on the 1k training data. All histograms are normalized, such that all
bins add up to one. The insets show the ratio to the high-statistics estimate of the
truth distribution.

and our VAE-GAN, but now using the high-statistics validation set. Figure 4 shows a set of
distributions for 1k shower images used for a single VAE-GAN training and 1000k showers
from the corresponding generative network. They are compared to the validation set of 218k
GEANT4 showers. In addition to the continuous distributions we also show the number of
active pixels per image. First, we see that statistical fluctuations of the training set propagate
into under- and over-densities of the learned distributions. One prominent difference is the
number of active pixels, which can be attributed to the under-estimation of the number of low
energy hits below 5 MeV. The remaining learned distributions are smoother and show fewer
fluctuations than the training data. For the visible per-pixel energy, the VAE-GAN interpolates
into the sparsely populated interval between around 2 and 120 MeV even though the training
set does not include a single pixel in this range. Previous work has shown [30] how to correct
the low-energy behavior through an additional, consecutively trained post-processing network,
using an maximum mean discrepancy loss [18,57] on the pixel energy spectrum. Here we skip
this post-processing and instead focus on the statistical properties of the generated data for
visible pixel energies above 5 MeV.

Quantiles

We now turn to quantifying the efficacy of the VAE-GAN, given the strong performance shown
in Fig. 4. Like in Sec. 2, we could use standard histograms with bins of equal size. However,
in this case the occupation number of the bins strongly depend on the assumed support of the
distributions and on the binning. To avoid zero bins and sparse distributions we have to define
the ranges and binnings by hand, making this strategy inconsistent in evaluation. Instead,
we now split the support of the distributions into bins of equal probability weight, so-called
quantiles, forming the set Q. We generate the quantiles for a given distribution by iteratively

6
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Figure 1: Illustrated transformation of the original calorimeter images from left to
right. All histograms feature a logarithmic color coding, with an equal scaling for the
10 ⇥ 10 images. The final step of cutting below half the MIP energy is applied for
evaluation only.

method can be applied to gauge the merit of a generative surrogates whenever the underlying
distribution can be accessed either through a large number of samples or analytically. We
expect similar results in all cases where the smoothness assumption on the underlying density
distribution is valid.

The paper is organized as follows. In Sec. 2, we start by introducing our data set and the
established generative Variational Autoencoder-GAN (VAE-GAN) architecture adapted to this
simulation [30]. Next, we describe our treatment of the comparison between generated and
truth samples and the relevant observables in Sec. 3. We then present the amplification effects
of the generative networks in Sec. 4. This comparison includes an estimate of the effective
sample size to the information encoded and a comparison to standard density estimators. In
Sec. 5, we briefly summarize our promising findings.

2 Dataset and model

The International Large Detector (ILD) [44] is one of two detector concepts proposed for the In-
ternational Linear Collider (ILC). It is optimized towards the Particle Flow analysis concept for
optimal global event reconstruction [45,46]. It combines high-precision tracking and vertex-
ing capabilities with very good hermiticity and highly-granular electromagnetic and hadronic
calorimeters (ECal/HCal). We choose one of its two proposed electromagnetic calorimeters,
the Si-W ECal, for our dataset. It consists of 30 active silicon layers in a tungsten absorber
stack with 20 layers of 2.1 mm and 10 layers of 4.2 mm thickness. The silicon sensors have a
cell size of 5⇥ 5 mm2.

ILD uses iLCSoft [47] for detector simulation, reconstruction, and analysis. The GEANT4 [48]

Figure 2: Illustration of the VAE-GAN architecture. The encoder and decoder form
a VAE setup, while the decoder can also be understood as a GAN generator. The
discriminator acts as a binary classifier, as in a classical GAN.
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Scaling of 
difference to 
ground truth with 
resolution again 
better for the 
generative model.
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• Good progress in various directions 

• Still many issues to be solved:

• Experimental integration of simulation for 

high-granularity calorimeters

• Multi-dimensional conditioning

• Whole calorimeter simulation

• Irregular geometries

• Benchmarking

• … 

• Statistics


• Quality of simulation 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• So far, only discussed GAN/VAE based 
approaches to calorimeter simulation 

• Can also attempt to simulate with flows 

• Issue: As the flows are bijective, dim(latent 
space) = dim(data space)


• This is bad  

• CaloFlow improves the performance on 
simple calorimeter data (1712.10321) by 
training a two-step MAF-based density 
estimator: Flow 1 learns energy/layer, Flow 
2 learns to distribute this energy


• CaloFlow II speeds up evaluation by 
training another flow type

• Student/teacher training an IAF  

(inverse autoregressive flow) on the MAF

• Sampling from the IAF


Figure 15. Distributions that are sensitive to Flow II for �
+. Top row: energy of brightest voxel

compared to the layer energy; second row: energy of second brightest voxel compared to the layer
energy; third row: di↵erence of brightest and second brightest voxel, normalized to their sum; last
row: sparsity of the showers, see text for detailed definitions.
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Two Step Approach

45

•CaloFlow method:

•Train Energy Flow 

•Generates energy 

per layer


•Train Shower Flow

•Uses Energy Flow 

as conditioning

Krause et. al. CaloFlow: Fast and Accurate 
Generation of Calorimeter Showers with 
Normalizing Flows: 2106.05285 

Further challenges when extending to higher 
dimensions..
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… but results look very promising.
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Figure 4: Histograms comparing GEANT4, the BIB-AE and multiple flows: The maxi-
mum cell energy per shower (top left), the cell distribution of all showers (top right),
the number of cells per shower in which energy was deposited (center left), the num-
ber of cells per shower in which energy was deposited for discrete incident energies
Einc 2 {20,50, 80} GeV (center right), shower profiles in x- (bottom left) and y-
direction (bottom right). The legend is the same in all histograms and is not shown
in all for space reasons. Except the center right plot, all plots are shown for the full
spectrum with 95k showers for every model (in the center right plot, 4k showers are
available for every discrete incident energy per model).

the x- and y-cells to obtain energies, these do not correspond to the training energies
that flow 1 used as input. The reason for this is that the creation of the two datasets was
done independently, where random permutations were used to create the training, val-

8
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Anomaly Detection



Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
identification & calibration

Final analysis, statistical and 
physical interpretation
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Motivation

• Theoretical and experimental 
reasons to expect new physics 
beyond the Standard Model

What is the nature of dark 
matter & dark energy?

Why is there more matter 
than anti-matter?
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-

19

Is the electroweak 
vacuum stable?

Why is there more 
matter than anti-

matter?

How can the Higgs 
boson be light when 
the mass receives 
large quantum 
corrections?

What are the details 
of cosmic inflation?

What are the origins 
of the LHCb flavour 

anomaly?

Why are neutrinos massive?
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Motivation

• Theoretical and experimental 
reasons to expect new physics 
beyond the Standard Model


• However, so far only negative 
results in direct (model driven) 
searches
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Motivation

• Theoretical and experimental 
reasons to expect new physics 
beyond the Standard Model


• However, so far only negative 
results in direct (model driven) 
searches


• Make sure that we do not miss 
potential discoveries at the LHC 
→Anomaly detection

Anomaly  
Searches

Specific 
Searches
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Types of anomalies
• Outliers/Point anomalies: Datapoints far away 

from regular distribution


• Examples:


• Detector malfunctions


• Background-free search 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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Types of anomalies
• Outliers/Point anomalies: Datapoints far away 

from regular distribution


• Examples:


• Detector malfunctions


• Background-free search 
 

• Group anomlies: Individual examples not 
interesting,  
but signal is an overdensity with respect to 
background


• Examples:


• Resonance searches


• Transient signals in time series
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Approaches
Use classical simulation to estimate backgrounds?

Yes No

• Systematically compare simulation and 
recorded data, look for differences


• Con: Relies on imperfect simulation, 
Maximally background model dependent


• Pro: Sensitive to all types of anomalies


• Estimate background from data

• Con: Need to make 

assumptions about signal model

• Pro: No reliance on simulation
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Approaches
Use classical simulation to estimate backgrounds?

Yes No

& many ideas in between! 

Much more anomaly detection  
throughout this workshop.
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Assumptions

Rarity: Pr(anomaly) ≪ Pr(normal) 
Overlap:  
max 𝑥 𝑝(𝑥|anomaly)/𝑝 (𝑥|normal) < ∞ 
Resonance: Pr(|𝑚 −𝑚0| > 𝛿|anomaly) ≈ 0 for 
some feature 𝑚 (often a mass) and fixed 𝑚0, 
𝛿 
Smoothness: 𝑝 (𝑥|𝑚, normal) varies slowly 
with 𝑚 so that one can use data with  
|𝑚 − 𝑚0| > 𝛿 to estimate 𝑝(𝑥|𝑚,normal) for 
|𝑚 −𝑚0| < 𝛿 
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

21
01

.0
83

20



61

• Encourage development and comparison of model-
agnostic search strategies 


• Focus on group anomalies, data-driven searches

• Use for a convenient overview of space of techniques

• Complementary to 2105.14027 

• Provide a complete package, balance details vs 
accessiblity 

• Datasets:

• One R&D dataset for algorithm development

• Three black box datasets (BB1-BB3)


• Unblinded over time 

• Timeline:

• Spring 2019: Release R&D dataset (link)

• Autumn 2019: Release BB datasets (link)

• January 2020: Winter Olympics as part  

of ML4Jets, unblinding of BB1 (link)

• July 2020: (Virtual) Summer Olympics, unblinding of 

BB2 and BB3 (link)

• LHC Olympics paper (https://arxiv.org/abs/

2101.08320) public

https://lhco2020.github.io/homepage/

Introducing: LHC Olympics
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Figure 1. Feynman diagram for signals of R&D dataset and Black Box 1.

Setting R&D BB1 BB3

Tune:pp 14 3 10

PDF:pSet 13 12 5

TimeShower:alphaSvalue 0.1365 0.118 0.16

SpaceShower:alphaSvalue 0.1365 0.118 0.16

TimeShower:renormMultFac 1 0.5 2

SpaceShower:renormMultFac 1 0.5 2

TimeShower:factorMultFac 1 1.5 0.5

SpaceShower:factorMultFac 1 1.5 0.5

TimeShower:pTmaxMatch 1 2 1

SpaceShower:pTmaxMatch 0 2 1

Table 1. Pythia settings for the di↵erent datasets. For R&D the settings were the Pythia defaults
while for BB1 and BB3 they were modified. BB2 is not shown here because it was produced using
Herwig++ with default settings.

2.2 Black Box 1

This box contained the same signal topology as the R&D dataset (see Fig. 1) but with

masses mZ0 = 3.823 TeV, mX = 732 GeV and mY = 378 GeV. A total of 834 signal

events were included (out of a total of 1M events in all). This number was chosen so

that the approximate local significance inclusively is not significant. In order to emulate

reality, the background events in Black Box 1 are di↵erent to the ones from the R&D

dataset. The background still uses the same generators as for the R&D dataset, but

a number of Pythia and Delphes settings were changed from their defaults. For the

– 6 –

• For building and testing methods

• 1M background examples (Standard Model), 

100k signal examples (signal, see Feynman diagram 
on the right)


• Labels provided  

• Relatively simple signal

• Known to differ in previously mentioned 

features from background distribution

• Unrealistically high S/B

m=3.5 TeV

m=500 GeV

m=100 GeV

New Methods and Datasets for Group Anomaly Detection ANDEA ’21, Anomaly and Novelty Detection, Explanation and Accommodation

Fig. 4. A histogram of the resonant feature< in units of GeV with a parametric fit (U0 (1 �<)U1<U2+U3 log(<) ) using the SB data
overlaid. The fit Kolmogorov-Smirnov (KS) ?-value is well above 0.05 in the SB.

for the R&D dataset, but a number of P����� and D������ settings were changed from their defaults to mimic the
domain shift between simulation and experimental data.

2.3 Black Box 2

This sample of 1M events was background only. The background was produced using a di�erent publicly-available and
standard particle-physics event generation tool, H�����++ [27], instead of P�����. Also, it used a modi�ed D������
detector card that is di�erent from Black Box 1 but with similar modi�cations on top of the R&D dataset card.

2.4 Black Box 3

The signal was based on Ref. [35, 36] and consisted of a hypothetical heavy BSM particle with two di�erent decay modes
resulting in two collimated showers of particles (“dijets") or with three collimated showers of particles (“trijets") as
illustrated in Fig. 1 center and right. These signals are inspired by theories introducing extra dimensions of space-time.
1200 dijet events and 2000 trijet events were included along with Standard Model backgrounds in Black Box 3 (for
a total of 1M events). These numbers were chosen so that an analysis that found only one of the two modes would
not observe a signi�cant excess. The background events were produced with modi�ed P����� and D������ settings
(di�erent than the R&D and other Black Box datasets).

2.5 Evaluation of the Challenge

During the initial challenge phase (see [5]), only the signal contained in the R&D Dataset was known to participants.
For this, both the physical properties (decay topology, masses) and per-event labels were given. No such information
was made available for Black Box 1–3. Participants were asked to submit (separately for each Black Box): I) A p-value
associated with the dataset having no new particles (null hypothesis); II) As complete a characterization of the new
physics as possible (in text-form) (e.g. masses and decay modes of all new particles with associated uncertainties); and
III) How many signal events (central value and uncertainty) are in the dataset (before any selection criteria).

After the challenge phase, the physical properties and datasets with added per-event labels (signal or background)
were made public, rendering the initial evaluation criteria obsolete. However, as better signal identi�cation will aid
better anomaly detection, quantities such as accuracy, area under the curve (AUC), or signi�cance improvement (SIC,
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Fig. 2. A schematic diagram of a detector at the LHC to illustrate the standard coordinate system. In the top view, protons collide
into and out of the page while in the bo�om view, protons collide from the le� and right. The collision debris flies out in all directions
and for simplicity is represented by six particles. These particles register signals in a series of detector components. Their trajectories
are then reconstructed using their transverse momentum ?) and angular coordinates q and [.

high-level features are:< 91 the invariant mass of the lighter jet; �< 9 the mass di�erence of the two jets; and g21,1

and g21,2 the # -subjettiess ratios [33, 34] of the leading two jets. This feature quanti�es the degree to which a jet is
characterized by two subjets or one subjet, with smaller values indicating two-prong substructure.

Many approaches in the LHC Olympics challenge were based on these features, instead of the low-level features.
Plots of these high-level (histograms marginalized over the rest of the feature space) are shown in Fig. 3. We see that
many of them are quite useful in separating signal vs background. The resonant feature is shown in Fig. 4.

Fig. 3. Histograms of the four high-level features provided in the LHCO2020 data. The features in the right plot are dimensionless
and the features in the le� plot are given in units of TeV.

2.2 Black Box 1

This box contained the same signal topology as the R&D dataset (see Fig. 1) but with di�erent parameters for the
anomalous particles, in order that a method trained exclusively on the R&D dataset could not trivially succeed on the
Black Box dataset. A total of 834 signal events were included (out of a total of 1M events in all). This number was chosen
so that the approximate local signi�cance inclusively is not signi�cant.4 In order to emulate reality, the background
events in Black Box 1 are di�erent to the ones from the R&D dataset. The background still uses the same generators as

4It is important to keep in mind that in particle physics, the discovery threshold is conventionally taken to be 5f , corresponding to a ?-value of 3 ⇥ 10�7
under the null hypothesis.
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Fig. 2. A schematic diagram of a detector at the LHC to illustrate the standard coordinate system. In the top view, protons collide
into and out of the page while in the bo�om view, protons collide from the le� and right. The collision debris flies out in all directions
and for simplicity is represented by six particles. These particles register signals in a series of detector components. Their trajectories
are then reconstructed using their transverse momentum ?) and angular coordinates q and [.

high-level features are:< 91 the invariant mass of the lighter jet; �< 9 the mass di�erence of the two jets; and g21,1

and g21,2 the # -subjettiess ratios [33, 34] of the leading two jets. This feature quanti�es the degree to which a jet is
characterized by two subjets or one subjet, with smaller values indicating two-prong substructure.

Many approaches in the LHC Olympics challenge were based on these features, instead of the low-level features.
Plots of these high-level (histograms marginalized over the rest of the feature space) are shown in Fig. 3. We see that
many of them are quite useful in separating signal vs background. The resonant feature is shown in Fig. 4.

Fig. 3. Histograms of the four high-level features provided in the LHCO2020 data. The features in the right plot are dimensionless
and the features in the le� plot are given in units of TeV.

2.2 Black Box 1

This box contained the same signal topology as the R&D dataset (see Fig. 1) but with di�erent parameters for the
anomalous particles, in order that a method trained exclusively on the R&D dataset could not trivially succeed on the
Black Box dataset. A total of 834 signal events were included (out of a total of 1M events in all). This number was chosen
so that the approximate local signi�cance inclusively is not signi�cant.4 In order to emulate reality, the background
events in Black Box 1 are di�erent to the ones from the R&D dataset. The background still uses the same generators as

4It is important to keep in mind that in particle physics, the discovery threshold is conventionally taken to be 5f , corresponding to a ?-value of 3 ⇥ 10�7
under the null hypothesis.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Generative models 
 for anomaly detection

• 1): Choose one feature (m) in which to search for resonances

21
09

.0
05

46



64

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Generative models 
 for anomaly detection

• 1): Choose one feature (m) in which to search for resonances

• 2): Use m divide spectrum into non-overlapping regions. Designate one as 

signal region (SR), others as sidebands (SB). Repeat the following for all 
choices of SR

Train generative model 
here
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Generative models 
 for anomaly detection

• 3) Train a generative model p(x|m) on auxiliary features in SB 
(used MAF, other choices including GAN/VAE possible as well)

Train generative model 
here
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Generative models 
 for anomaly detection

• 3) Train a generative model p(x|m) on auxiliary features in SB

• 4) Sample from p(x|m) in SR. Designate as pbg,est.

Train generative model 
here

and sample here
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Generative models 
 for anomaly detection

• 3) Train a generative model p(x|m) on auxiliary features in SB

• 4) Sample from p(x|m) in SR. Designate as pbg,est


• 5) Train binary classifer between pdata and pbg,est.

21
09

.0
05

46

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Generative models 
 for anomaly detection

• 3) Train a generative model p(x|m) on auxiliary features in SB

• 4) Sample from p(x|m) in SR. Designate as pbg,est.


• 5) Train binary classifer between pdata and pbg,est. (mixed sample classifer)

• 6) Cut on high classifier scores to enrich sample with anomalies  

(and perform statistical analysis)
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 sigma significance values.

and the simulation-dependent methods. The fact
that Cathode is only marginally worse than the
idealized anomaly detector (in fact, they are over-
lapping within their respective error bands al-
most everywhere) is truly striking. The idealized
anomaly detector is meant to provide an upper
bound on the performance of any data vs. back-
ground anomaly detection method. The fact that
the Cathode method is nearly saturating it in-
dicates that Cathode is achieving close to opti-
mal performance on the LHCO R&D dataset. Evi-

dently, the background in the SR is being extremely
well modeled by the interpolated conditional den-
sity estimator.

• Finally, we see from Fig. 6 that while Cathode and
the idealized anomaly detector are outperformed
by the supervised classifier at higher signal e�cien-
cies, at lower signal e�ciencies their performances
are all increasingly comparable. The behavior at
high signal e�ciency may be explained by the fact
that there is simply too much background to find
the signal; meanwhile, at low signal e�ciency, the

ours 
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Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)
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Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)


• However, still can be sensitive to choice of input features
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Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)


• However, still can be sensitive to choice of input features


• Need also consider 

• Shaping of distributions under tigher anomaly detection cuts

• Cost of signal-injection in training on data

• How to efficiently estimate / compare / communicate sensitive 

regions of different anomaly detection algorithms

• Make data-based anomaly detection more flexible




Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
identification & calibration

Final analysis, statistical and 
physical interpretation

SciPost Physics Submission

1 Introduction

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) produce data rates
around 40 terabytes per second and per experiment [1,2], a number that will increase further
for the high-luminosity upgrades [3, 4]. These rates are far too large to record all events, so
these experiments use triggers to quickly select potentially interesting collisions, while discard-
ing the rest [5–8]. The first two trigger stages are a hardware-based low-level trigger, selecting
events with µs-level latency, and a software-based high-level trigger with 100 ms-level latency.
After these two trigger stages, some interesting event classes, such as events with one highly-
energetic jet, still have too high rates to be stored. They are recorded using prescale factors,
essentially a random selection of events to be saved. An additional strategy to exploit events
which cannot be triggered on systematically is data scouting, or trigger-level analysis [9–12].
Through fast online algorithms, parts of the reconstruction are performed at trigger level, and
significantly smaller, reconstructed physics objects are stored instead of the entire raw event.
This physics-inspired compression increases the number of available events dramatically, with
the caveat that the raw events will not be available for offline analyses.

Using machine learning (ML) to increase the trigger efficiency is a long-established idea [13],
and simple neural networks for jet tagging have been used, for example, in the CMS high-
level trigger [14]. The advent of ML-compatible field-programmable gate arrays (FPGAs) has
opened new possibilities for employing such classification networks even at the low-level trig-
ger [15–21]. ML-inference on FPGAs is making rapid progress, but the training of e.g. graph-
based networks on such devices is still an active area of research. At the same time, the
available resources limit the size and therefor complexity of possible ML models.
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Figure 1: Illustration of data compression at the LHC. Most analyses are performed
offline, based on entire events and lossless compression (left). Data scouting employs
lossy compression per event (center). Our method compresses an entire data set by
learning a generative model for events x in terms of network parameters ✓ (right).

We propose a new strategy, complementary to current trigger strategies and related meth-
ods, where instead of saving individual events, an online-trained generative ML-model learns
the underlying structure of the data. The advantage of our strategy, illustrated in Fig. 1, is its
fixed memory and storage footprint. While in a traditional trigger setup more events always
require more storage, the size of the generative model is determined by the number of param-
eters. Additional data increases the accuracy of these parameters at fixed memory size, until
the capacity of the model is reached. In practice, we envision an online generative model to
augment data taking at the HLT level† and act as a scouting tool in regions currently swamped
by background. However, a sufficiently optimized version of this approach could transform

†as training (as opposed to inference) models on FPGA hardware deployed at earlier trigger stages is currently
not possible
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Emphemeral Learning
• Remember triggering:


• Only able to store a subset (<1 in 10.000) of events


• Possible (wild) alternative: 


• Train a generative model online during data taking
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1 Introduction

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) produce data rates
around 40 terabytes per second and per experiment [1,2], a number that will increase further
for the high-luminosity upgrades [3, 4]. These rates are far too large to record all events, so
these experiments use triggers to quickly select potentially interesting collisions, while discard-
ing the rest [5–8]. The first two trigger stages are a hardware-based low-level trigger, selecting
events with µs-level latency, and a software-based high-level trigger with 100 ms-level latency.
After these two trigger stages, some interesting event classes, such as events with one highly-
energetic jet, still have too high rates to be stored. They are recorded using prescale factors,
essentially a random selection of events to be saved. An additional strategy to exploit events
which cannot be triggered on systematically is data scouting, or trigger-level analysis [9–12].
Through fast online algorithms, parts of the reconstruction are performed at trigger level, and
significantly smaller, reconstructed physics objects are stored instead of the entire raw event.
This physics-inspired compression increases the number of available events dramatically, with
the caveat that the raw events will not be available for offline analyses.

Using machine learning (ML) to increase the trigger efficiency is a long-established idea [13],
and simple neural networks for jet tagging have been used, for example, in the CMS high-
level trigger [14]. The advent of ML-compatible field-programmable gate arrays (FPGAs) has
opened new possibilities for employing such classification networks even at the low-level trig-
ger [15–21]. ML-inference on FPGAs is making rapid progress, but the training of e.g. graph-
based networks on such devices is still an active area of research. At the same time, the
available resources limit the size and therefor complexity of possible ML models.
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Figure 1: Illustration of data compression at the LHC. Most analyses are performed
offline, based on entire events and lossless compression (left). Data scouting employs
lossy compression per event (center). Our method compresses an entire data set by
learning a generative model for events x in terms of network parameters ✓ (right).

We propose a new strategy, complementary to current trigger strategies and related meth-
ods, where instead of saving individual events, an online-trained generative ML-model learns
the underlying structure of the data. The advantage of our strategy, illustrated in Fig. 1, is its
fixed memory and storage footprint. While in a traditional trigger setup more events always
require more storage, the size of the generative model is determined by the number of param-
eters. Additional data increases the accuracy of these parameters at fixed memory size, until
the capacity of the model is reached. In practice, we envision an online generative model to
augment data taking at the HLT level† and act as a scouting tool in regions currently swamped
by background. However, a sufficiently optimized version of this approach could transform

†as training (as opposed to inference) models on FPGA hardware deployed at earlier trigger stages is currently
not possible

2

• Fixed size, independent of training data amount


• Radically different format from usual way of storing data, but 
might open up new approaches

22
02

.0
93

7 



75

OnlineFlows

22
02

.0
93

7 

SciPost Physics Submission

Measurement

HL Trigger

ONLINEFLOW generate  
synthetic 
events

Analysis

save
few 

 events

Analysis

Update

Online Offline

LVL1 Trigger

Figure 2: Illustration of the proposed workflow. First, we train a generative model on
all incoming events (online). Then, we use the trained model to generate data and
analyze the generated data for signs of new physics (offline). If necessary, we adjust
the trigger to take new data accordingly (online) and analyze that data (offline).

While our idea is not tied to specific generative models, normalizing flows (NF) [28–31]
are especially well suited due to their stable training. This allows us to train our ONLINEFLOW

without stopping criterion, a property well suited for training online. Furthermore, NFs have
been shown to precisely learn complex distributions in particle physics [32–42]. The statistical
benefits of using generative models are discussed in Ref. [43], for a discussion of training-
related uncertainties using Bayesian normalizing flows see Refs. [44,45].

The properties of online training, specifically seeing every event independently and only
once, are in tension with training generative models. Such models perform best when they
have the option to look at data points more than once. Additionally, processing several events
at the same time should allow the model to train significantly faster through the use of GPU-
based parallelization and stochastic gradient descent. This is why we follow a hybrid approach:
incoming events are collected in a buffer with size Nbuff. Once this buffer is full, it is passed
to the network, which processes the information in batches of size Nbatch. This process is
iterated over Niter times. After this, the buffer is discarded and replaced by the next buffer. We
visualize this scheme in Fig. 3. In addition to aiding the network training, this hybrid training
also decouples the network training rate from the data rate, as we can continuously adapt Niter
to ensure the network is done with the current buffer by the time the next is filled. Additional
technical details, including the estimation of uncertainties, of our approach are discussed in
the context of the examples presented below.

3 Parametric example

We first illustrate our strategy for a 1-dimensional parametric example. While in practice it
would be straightforward to store at least a histogram for any given 1-dimensional observ-
able, this scenario still allows us to explore how generative training and subsequent statistical
analysis approaches need to be modified for the ephemeral learning task.

4

Schematic of proposed 
approach.


Focus on HLT, more 
technical challenges 
for use in hardware

Trigger.


Main problem:

How to make training 
work if each event is  
only available for short 
time?
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Figure 8: Observables for the LHCO data set, as listed in Eq.(9). We show the original
training data, with 1% signal contamination, and the data generated by the flow. The
signal region in mj j is indicated by dotted lines.

particles, which in turn decay into quarks,

W 0 ! X (! qq)Y (! qq) . (8)

The respective particle masses are mW 0 = 3.5 TeV, mX = 500 GeV, and mY = 100 GeV. All
events are generated using PYTHIA8 [58] and DELPHES3.4.1 [59–61]. The jets are clustered
using FASTJET [62]with the anti-kT algorithm [63] using R= 1. Finally, all events are required
to have at least one jet with pT > 1.2 TeV.

While this dataset features high mass resonances that are not perfectly in line with the
intended application range of ONLINEFLOW, we feel that the proven and well known nature of
the LHCO data, as well as its availability make up for this shortcoming.

The same input format used for the anomaly detection [32, 40, 64] is also used for the
ONLINEFLOW. Specifically, there are five input features, the dijet mass, the mass of the leading
jet, the mass difference between the leading and sub-leading jets, and the two n-subjettiness
ratios [65,66],

¶
mj j , m1, m2 �m1,⌧(1)21 ,⌧(2)21

©
. (9)

All observables except for mj j are subjet observables and at most weakly correlated with mj j .
We show distributions of all observables in Fig. 8, for the training data and the ONLINEFLOW

output. We also show a 10-fold enhanced signal, relative to the 1% signal rate we will use for
our actual analysis, to illustrate the narrow kinematic patterns of the W 0 resonance.

The LHCO version of the ONLINEFLOW network is slightly modified compared to the para-
metric setup to accommodate a 10-dimensional input. These comprise five features and five
additional noise dimensions, the additional noise was found to increase the performance, al-
though no systematic scan over this hyperparameter was performed. The number of MADE
blocks is now 10, and the number of nodes in the fully connected layers is quadrupled to 128.

10
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Figure 9: ROC (left) and significance improvement (right) for the CWoLa benchmark
approach, based on a decreasing amount of data, compared with the ONLINEFLOW.
The signal fraction is 1%. Vertical order of the Data lines corresponds to their order
in the legend.

merit, namely the ROC curve and the signal improvement ✏S/
p
✏B, are shown in Fig. 9. For

the standard CWoLa approach, trained on the LHCO data, the smaller training samples cor-
respond to prescale factors of 2, 5, 10, and 20. The shaded regions indicate the one-sigma
range from repeating the CWoLa analysis ten times. We see that, for instance for a constant
signal efficiency, the background rejection drops increasingly rapidly for smaller training sam-
ples. This illustrates how larger prescale factors seriously inhibit the reach of searches for new
physics in non-trivial kinematic regions.

To determine the power of the ONLINEFLOW we then train the CWoLa network on 500k
events generated from the ONLINEFLOW, with an additional 62500 ONLINEFLOW events serv-
ing as the validation set. This mirrors the split into training-validation-test data of the LHCO
data. In both panels of Fig. 9 we can now compare the ONLINEFLOW results to the differ-
ent prescalings and find that it performs similarly to 10% of the training data. In a setting
where one has to work with a trigger fraction of less then 10%, one could benefit from the
ONLINEFLOW setup.

While the CWoLa results show that the ONLINEFLOW does not only encode features repre-
sented in the input variables, but also describes correlations directly, it remains to be shown
that its performance is stable when we decouple the main features more and more from the
input variables. This happens when we train the generative networks on low-level event rep-
resentation, challenging the network both in expressivity and reliability. In line with the con-
clusions from Fig. 6 this might, for instance, require a larger network and adjustments to the
building blocks of the normalizing flow and the bijectional training.

5 Conclusions

Data rates of modern particle colliders are a serious challenge for analysis pipelines. In terms
of data compression, triggered offline analyses use lossless data recording per event, but at the
price of a huge loss in deciding which event should be recorded. Trigger-level analyses accept
losses in the individual event information, to be able to analyze significantly more events. Our
strategy is inspired by the statistical nature of LHC measurements and aims at analyzing as
many events as possible, but accepting a potential loss of information on the event sample level.

12
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1 Introduction

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) produce data rates
around 40 terabytes per second and per experiment [1,2], a number that will increase further
for the high-luminosity upgrades [3, 4]. These rates are far too large to record all events, so
these experiments use triggers to quickly select potentially interesting collisions, while discard-
ing the rest [5–8]. The first two trigger stages are a hardware-based low-level trigger, selecting
events with µs-level latency, and a software-based high-level trigger with 100 ms-level latency.
After these two trigger stages, some interesting event classes, such as events with one highly-
energetic jet, still have too high rates to be stored. They are recorded using prescale factors,
essentially a random selection of events to be saved. An additional strategy to exploit events
which cannot be triggered on systematically is data scouting, or trigger-level analysis [9–12].
Through fast online algorithms, parts of the reconstruction are performed at trigger level, and
significantly smaller, reconstructed physics objects are stored instead of the entire raw event.
This physics-inspired compression increases the number of available events dramatically, with
the caveat that the raw events will not be available for offline analyses.

Using machine learning (ML) to increase the trigger efficiency is a long-established idea [13],
and simple neural networks for jet tagging have been used, for example, in the CMS high-
level trigger [14]. The advent of ML-compatible field-programmable gate arrays (FPGAs) has
opened new possibilities for employing such classification networks even at the low-level trig-
ger [15–21]. ML-inference on FPGAs is making rapid progress, but the training of e.g. graph-
based networks on such devices is still an active area of research. At the same time, the
available resources limit the size and therefor complexity of possible ML models.
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Figure 1: Illustration of data compression at the LHC. Most analyses are performed
offline, based on entire events and lossless compression (left). Data scouting employs
lossy compression per event (center). Our method compresses an entire data set by
learning a generative model for events x in terms of network parameters ✓ (right).

We propose a new strategy, complementary to current trigger strategies and related meth-
ods, where instead of saving individual events, an online-trained generative ML-model learns
the underlying structure of the data. The advantage of our strategy, illustrated in Fig. 1, is its
fixed memory and storage footprint. While in a traditional trigger setup more events always
require more storage, the size of the generative model is determined by the number of param-
eters. Additional data increases the accuracy of these parameters at fixed memory size, until
the capacity of the model is reached. In practice, we envision an online generative model to
augment data taking at the HLT level† and act as a scouting tool in regions currently swamped
by background. However, a sufficiently optimized version of this approach could transform

†as training (as opposed to inference) models on FPGA hardware deployed at earlier trigger stages is currently
not possible
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Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed 7

Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center
right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.

a WGAN with additional energy constrainer (Sec. 3.2),
and a BIB-AE with energy-MMD and post processing
(Secs. 3.3, 3.4 and 3.5). A detailed discussion of the ar-
chitectures and training hyper parameters can be found
in Appendix A. All architectures are trained on the
same sample of 950k Geant4 showers. Tests are either
shown for the full momentum range (labeled full spec-
trum) or for specific shower energies (labeled with the
incident photon energy in GeV).

4.1 Physics Performance

We first verify in Fig. 5 that the showers generated by
all network architectures visually appear to be accept-
able compared to Geant4. Were we attempting to gen-
erate cute cat pictures, our work would be done already
at this point. Alas, these shower images are eventually
to be used as realistic substitutes in physics analyses so
we need to pay careful attention to relevant di↵erential
distributions and correlations.

In Figure 6 a comparison between two di↵erential
distributions for all studied architectures and Geant4
is shown. The left plot compares the per-cell hit-energy
spectrum averaged over showers for the full spectrum
of photon energies. We observe that while the high-
energy hits are well described by all generative models,
both GAN and WGAN fail to capture the bump around
0.2 MeV. The BIB-AE is able to replicate this feature
thanks to the Post Processor Network.4 This energy
corresponds to the most probable energy loss of a MIP
passing a silicon sensor of the ILD Si-W ECal at per-
pendicular incident angle. Since this is a well-defined
energy, it can be used in highly granular calorimeters
for the equalisation of the cell response as well as for
setting an absolute energy scale. It also leads to a sharp
rise in the spectrum, as lower energies can only be de-
posited by ionizing particles that pass only a fraction of

4 We studied applying post processing to the WGAN ar-
chitecture as well. This is discussed in Section 4.2.

the thickness at the edges of sensitive cells or that are
stopped. The region below half a MIP, corresponding
to around 0.1 MeV, is shaded in dark grey. These cell
energies are very small and therefore will be discarded
in a realistic calorimeter, as their signal to noise ratio is
too low. For the following discussion cell energies below
0.1 MeV will therefore not be considered and only cells
above this cut-o↵ are included in all other performance
plots and distributions.

Next, the plot on the right shows the number of hits
for three discrete photon energies (20 GeV, 50 GeV, and
80 GeV). Here, the GAN andWGAN setups slightly un-
derestimate the total number of hits, while the BIB-AE
accurately models the mean and width of the distribu-
tion. This behavior can be traced back to the left plot.
Since we apply a cuto↵ removing hits below 0.1 MeV, a
model that does not correctly reproduce the hit-energy
spectrum around the cut-o↵ will have di�culties cor-
rectly describing the number of hits.

Additional distributions are shown in Fig. 7. The
top left depicts the visible energy distribution for the
same three discrete photon energies. Both, the shape,
center and width of the peak are well reproduced for all
models. Due to the sampling nature of the calorimeter
under study, the visible energy is of course much lower
than the incoming photons’ energy.

In the top right and bottom two plots we compare
the spatial properties of the generated showers. First,
on the top right, the position of the center of gravity
along the z axis is shown. The Geant4 distribution is
well modelled by the GANs, however there are slight
deviations for the BIB-AE. A detailed investigation of
this discrepancy showed that the z axis center of gravity
is largely encoded in a single latent space variable. A
mismatch between the observed latent distribution for
real samples and the normal distribution drawn from
when generating new samples directly translates into
the observed di↵erence. Sampling from a modified dis-
tribution would remove the problem.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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• Notice something?


• All examples of flows use the fact that flows are good and easily 
trainable generative models


• But none use the fact that we can access a per-example 
likelihood


• Might have useful applications by itself?


• Can also use examples where 
an invertable network does not 
invert onto the physics quantities, 
but is parametrised by them 
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What else

SciPost Physics Submission

INN

{x̃p, r̃p}

{x̃d, r̃d}{xp, rp}

parton

LMMD, MSE

{xd, rd}

detector

LMMD, MSE

ḡ(xd, rd)

g(xp, rp)

Figure 2: Structure of INN. The {xd,p} denote detector-level and parton-level events, {rd,p}
are random numbers to match the phase space dimensionality. A tilde indicates the INN
generation.

3 Unfolding detector e↵ects

We introduce the conditional INN in two steps, starting with the non-conditional, standard
setup. The construction of the INN we use in our analysis combines two goals [11]:

1. the mapping from input to output is invertible and the Jacobians for both directions are
tractable;

2. both directions can be evaluated e�ciently. This second property goes beyond some other
implementations of normalizing flow [38,40].

While the final aim is not actually to evaluate our INN in both directions, we will see that
these networks can be extremely useful to invert a Markov process like detector smearing.
Their bi-directional training makes them especially stable.

In Sec. 3.3 we will show how the conditional INN retains a proper statistical notion of the
inversion to parton level phase space. This avoids a major weakness of standard unfolding
methods, namely that they only work on large enough event samples condensed to one-
dimensional or two-dimensional kinematic distributions. This could be a missing transverse
energy distribution in mono-jet searches or the rapidities and transverse momenta in top
pair production. To avoid systematics or biases in the full phase space coverage required
by the matrix element method, the unfolding needs to construct probability distributions in
parton-level phase space, including small numbers of events in tails of kinematic distributions.

3.1 Naive INN

While it is clear from our discussion in Ref. [48] that a standard INN will not serve our
purpose, we still describe it in some detail before we extend it to a conditional network.
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• Notice something?


• All examples of flows use the fact that flows are good and easily 
trainable generative models


• But none use the fact that we can access a per-example 
likelihood


• Might have useful applications by itself?


• Can also use examples where 
an invertable network does not 
invert onto the physics quantities, 
but is parametrised by them 


• Also uses in other domains, e.g. lattice QCD
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What else

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121601


• Unsupersvised learning in the form of density 
estimators is quickly becoming a key instrument in 
our toolbox


• Learning of actual densitities not yet widely 
exploited


• Advances in the power of these models and 
the quality of learned distributions opens  
new doors for physics analysis


• Excited for the future:


• What can we do with fully differentiable 
surrogate models with tractable probabilities for 
all (ErUM) physics?
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Closing

Thank you!
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Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)


• However, still can be sensitive to choice of input features


• Need also consider 

• Shaping of distributions under tigher anomaly detection cuts

• Cost of signal-injection in training on data

• How to efficiently estimate / compare / communicate sensitive 

regions of different anomaly detection algorithms

• Make data-based anomaly detection more flexible
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• Introduction 

• Applications of generative models
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• Anomaly detection
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• Current challenges 

• Synthesis
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• Problems / opportunities 

• Closing
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Challenge datasets
• All contain total of 1M examples; might contain signal;  

no labels provided during ‘content’ phase (labels available no)

• All used different simulation parameters for background (to avoid 

unrealistic exploits)

q

q

X

Y

q

q

q

q

Z 0

Figure 1. Feynman diagram for signals of R&D dataset and Black Box 1.

Setting R&D BB1 BB3

Tune:pp 14 3 10

PDF:pSet 13 12 5

TimeShower:alphaSvalue 0.1365 0.118 0.16

SpaceShower:alphaSvalue 0.1365 0.118 0.16

TimeShower:renormMultFac 1 0.5 2

SpaceShower:renormMultFac 1 0.5 2

TimeShower:factorMultFac 1 1.5 0.5

SpaceShower:factorMultFac 1 1.5 0.5

TimeShower:pTmaxMatch 1 2 1

SpaceShower:pTmaxMatch 0 2 1

Table 1. Pythia settings for the di↵erent datasets. For R&D the settings were the Pythia defaults
while for BB1 and BB3 they were modified. BB2 is not shown here because it was produced using
Herwig++ with default settings.

2.2 Black Box 1

This box contained the same signal topology as the R&D dataset (see Fig. 1) but with

masses mZ0 = 3.823 TeV, mX = 732 GeV and mY = 378 GeV. A total of 834 signal

events were included (out of a total of 1M events in all). This number was chosen so

that the approximate local significance inclusively is not significant. In order to emulate

reality, the background events in Black Box 1 are di↵erent to the ones from the R&D

dataset. The background still uses the same generators as for the R&D dataset, but

a number of Pythia and Delphes settings were changed from their defaults. For the

– 6 –

m=3.823 TeV

m=732 GeV

m=378 GeV

BB1: 834 signal examples 
Same event topology as R&D 

dataset, different masses 
 

might be easy?  

BB2: empty 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Figure 2. Feynman diagrams for signal of Black Box 3.
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Dijet signature

Trijet signature

BB3: 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🐨 & Friends
• Situation seems better for density ratio based techniques (CWola, ANODE, 

CATHODE,..)

• However…


