

RWTHAA

Conceptual Advances in Deep Learning for Research on Universe and Matter

Niklas Langner

RWTH Aachen University

Introduction: Why use Graph Convolutions?

Convolutions are advantageous for tasks like pattern recognition as they **incorporate the structur of the data by design**

For example:

Problem: What if the structure is irregular, non-Euclidean or changes between measurements?

¹⁾ https://github.com/vdumoulin/conv_arithmetic

²⁾<https://arxiv.org/abs/1803.02108v1>

Examples of challenging data structures

1. Spherical Data (e.g. in HEALPix format)

Challenges:

- Convolutions should incorporate spherical shape
- Should be rotational invariant
- Using a 2D projection would lead to distortions

2. Point Clouds with fixed positions (e.g. detector hits)

Challenges:

- Irregular geometries
- **Sparsity**

1)<https://arxiv.org/abs/1810.12186>

2) <https://arxiv.org/abs/1809.06166>

Examples of challenging data structures

3. Point clouds with **continuously distributed** positions (e.g. cosmic-ray arrival directions)

Challenges:

- No fixed positions / grid
- Positions change for each dataset
- **Sparsity**

4. …

What are Graphs?

A graph $\mathbf{G} = (\mathbf{\mathcal{V}}, \mathbf{\mathcal{E}})$ is an ordered pair of **nodes** $\mathbf{\mathcal{V}}$ and **edges** $\mathbf{\mathcal{E}}$

Describing a graph:

- Defined by connections / neighborhoods
- Changing order of nodes still describes the **same graph**
	- **Permutational invariance**

Describing a Graph: Adjacency Matrix

Consider graph with N nodes

- **Adjacency matrix** A of shape $(N \times N)$ represents structure of the graph
- $A_{ij} = 1$ of node *i* is connected to node *j* and otherwise 0

(For a weighted graph the entries are weighted accordingly.)

Describing a Graph: Degree Matrix

Consider graph with N nodes

- Diagonal **degree matrix D** of shape $(N \times N)$
- Counts how often edges terminate at each node: $D_{ii} = \sum_i A_{ij}$

(For a weighted graph the entries are weighted accordingly.)

Graph Convolutions

Images: [Deep Learning in Physics Research, World Scientific](https://www.worldscientific.com/worldscibooks/10.1142/12294)

Example: Zachary's Karate Club

- **Social network**: University karate club with **34 members**
- Key figures: Administrator "John A." and instructor "Mr. Hi"
- Conflict between John A. and Mr. Hi **splits club into multiple groups**
	- → Represent social network as graph and **classify groups using graph convolutions**

https://commons.wikimedia.org/wiki/File:Social_Network_Model_of_Relationships_in_the_Karate_Club.png

Graph Convolutions in the Spatial Domain

- **Nodes now have positions** that are considered, no longer only connections
- Analogous to classical CNN but in **continuous space**

<https://arxiv.org/abs/1901.00596>

EdgeConv¹ Operation

- Implement continuous filter as **function** ℎ
- One implementation: **EdgeConv**

• Node $x_i \in \mathbb{R}^F$: Calculate **edge features**

$$
e_{ij} = h_{\theta}(x_i, x_j) \qquad h_{\theta}: \mathbb{R}^F \times \mathbb{R}^F \to \mathbb{R}^{F'} \quad |
$$

for each node x_j that is connected to x_i with an edge

- h_{θ} with **trainable parameters** θ (e.g. a neural network) allows network to learn **approximation of optimal kernel function**
- Get "Feature Map" by performing channel-wise symmetric **aggregation** □ (e.g. mean)

$$
x'_i = \lim_{j:(i,j)\in\mathcal{E}} h_{\theta}(x_i,x_j)
$$

Transform graph with N nodes in F dimensions to graph with N nodes in F' dimensions → **New nearest neighbors ("dynamic")!**

1) <https://arxiv.org/abs/1801.07829>

Convolution: Classic versus Graph network

Martin Erdmann

Example: Classification of Cosmic-Ray Arrival Directions

<https://www.sciencedirect.com/science/article/pii/S0927650520300992>

Describing a Graph: Graph Laplacian

Consider graph with N nodes

- **Unnormalized graph Laplacian L** of shape $(N \times N)$
- Defined by $\bm{L} = \bm{D} \bm{A}$
- Discrete version of the Laplace operator
- (Symmetric) normalized graph Laplacian: $L^{\text{sym}} = D^{-\frac{1}{2}}$ $\frac{1}{2}LD^{-\frac{1}{2}}$ $\frac{1}{2} = I - D^{-\frac{1}{2}}$ $rac{1}{2}AD^{-1}$ 2

$$
L^{\text{sym}} = U\Lambda U^{T}
$$

 L^{sym} diagonalized by Fourier basis

$$
U = [u_0, ..., u_{N-1}] \in \mathbb{R}^{N \times N}
$$

$$
\Lambda = \text{diag}([\lambda_0, ..., \lambda_{N-1}]) \in \mathbb{R}^{N \times N}
$$

Graph Convolutions in the Spectral Domain

 $L^{\text{sym}} = U \Lambda U^{T}$

Use to define **convolution** of graph signal f :

1. Multiplication of U^T with f yields **Fourier transform**

$$
\hat{f} = \mathcal{F}_{\mathcal{G}}\{f\} = U^{\mathrm{T}}f \qquad \mathcal{F}_{\mathcal{G}}^{-1}\{\hat{f}\} = U\hat{f} = f
$$

2. Convolution theorem

 $f * g = \mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}$

3. Convolution operation of f with **kernel function** h

 $h(L^{sym})f = U(h(\Lambda)U^{T}f)$

- Convolution **depends on structure** of the graph (i.e. on L)
- Computationally demanding / challenging to implement
- **Efficient implementations** exist, e.g. using Chebyshev polynomials (see [arXiv:1606.09375\)](https://arxiv.org/abs/1606.09375)

Using Spectral Graph Convolutions

- **Graph structure does not change** by convolution itself \rightarrow can be followed by pooling
- Can assign **properties** to each node and interpret the node itself as corresponding to one **position** (thus incorporating spatial relations)
- **Edges** chosen depending on the task, e.g. by calculating **nearest neighbors**
- Convolution defined **based on the graph** → graph **has to stay the same** between different datasets

Suited for:

- Detector hits with a detector layout that does not change \rightarrow
- \rightarrow Spherical data in the HEALPix format (example: **DeepSphere**¹)

1) <https://arxiv.org/abs/1810.12186>

Example: MNIST

Images can also be treated as graphs with 1 pixel \triangleq 1 node.

Graph Neural Networks Overview

