
Open Neural Network Exchange (ONNX)
The open standard for machine learning interoperability –

Introduction

Dr. Andreas Fehlner (TRUMPF Laser GmbH, 
Heidelberg Institute for Theoretical Studies)

ONNX Steering Committee

Wiehl, 13.09.2022, Workshop: Conceptual Advances in Deep Learning for Research on Universe and Matter



Outline

9/13/202

2
2

• Motivation

• ONNX Technical Design

• Community

• Onnxruntime Technical Design

• Current topics

• Future Directions



Motivation

39/13/2022



ML Models: Research to Production

49/13/2022

Data Collection

Training

Conversion

Inferencing

Deployment

Data Scientist

Data Engineer



Reality: Fragmentation of ML frameworks

Training framework Deployment target

CPU

GPU

FPGA

NPU



Improving ML productivity

Training framework Deployment target

CPU

GPU

FPGA

NPU

ONNX

Freedom to use tool of choice
Strong performance and compatibility 

with platforms and accelerators



ONNX – Technical Design 

79/13/2022



What is Onnx

89/13/2022

Design Principles:

• Support both DNN and traditional ML 

• Interoperable standard for AI models

• Backward compatible

• Consists of a common Intermediate Representation (IR) + full

operator spec

• Compact and cross-platform representation for serialization

ONNX IS NOT ABOUT:

• Graph execution implementation

• Operator optimizations

• Framework API definition

› OPEN NEURAL NETWORK 
EXCHANGE



Community

99/13/2022



ONNX Community



ONNX is a Community Project (Open Governance)

Steering Committee 
https://github.com/onnx/steering-committee 

Prasanth Pulavarthi (Microsoft) 

Alexander Eichenberger (IBM) 

Mayank Kaushik (NVIDIA) 

Rajeev Nalawadi (Intel) 

Andreas Fehlner (TRUMPF Laser) 

Special Interest Groups (SIGs) and Working Groups 
https://github.com/onnx/sigs 

Architecture & Infra: Liqun Fu, Ke Zhang 

Operators: Michał Karzyński, Ganesan Ramalingam 

Converters: Thiago Crepaldi, Kevin Chen

Model Zoo & Tutorials: Jacky Chen

Pre-processing (WG): Joaquin Anton

119/13/2022



Tools (and companies) that support Onnx

129/13/2022

LibSVM

Creation/

Manipulation

Run/

Compile

Visualization/ 

Test Tools

NNOIR



Engagement & usage (from 10/20/21 to 06/13/2022)

139/13/2022

7.78k
PRs

225
Contributors

12.7k
Stars

2.8k
Forks

335
Papers

15% 9% 10%

28%

85
Models in Zoo

54%68%

6800
Dependent 

Repos

1.13M
Monthly 

Downloads

63%

208%



Dr. Andreas Fehlner (ONNX Steering Committee), 13.09.2022

Community

› 2 Community Meetups per Year

› Agenda:
› Steering Committee Updates

› SIG/WG Updates

› Partner and User Stories

› https://onnx.ai/meetups/june2022

Mauro Bennici, GhostWriter.AI Designed to be Optimized

Dheeraj Peri, NVIDIA INT8 Inference of Quantization-Aware trained models 

using ONNX-TensorRT

Alessandro Pappalardo, AMD QONNX: A proposal for representing arbitrary-

precision quantized NNs in ONNX

Daniel Huynh, Mithril Security How to reconcile AI and privacy

Adam Pocock, Oracle ONNX and the JVM

Rodolfo Gabe Esteves, Bhargavi Karumanchi, 

Ria Cheruvu, Rajeev Nalawadi, Intel

Responsible AI @ ONNX: Metadata, Model Cards, 

and Provenance

Qing Lan, AWS Build your high-performance model inference solution 

with DJL and ONNX Runtime

Viet Yen Nguyen, Hypefactors Billions of NLP Inferences on the JVM using ONNX 

and DJL 

Ryan Hill, Microsoft What's New in ONNX Runtime 

Jeff Boudier, Hugging Face Accelerating Machine Learning with ONNX Runtime 

and Hugging Face 

Pranav Marathe, NVIDIA ONNX Tools: Polygraphy and ONNX-GraphSurgeon

Zijian Xu, Preferred Networks PFVM - A Neural Network Compiler that uses 

ONNX as its intermediate representation

Tung D. Le, IBM Onnx-mlir: an MLIR-based Compiler for ONNX 

Models - The Latest Status 

https://onnx.ai/meetup-oct2020


History

• ONNX was originally named Toffee and was developed by the PyTorch team at Facebook.

• In September 2017 it was renamed to ONNX and announced by Facebook and Microsoft.

• Later, IBM, Huawei, Intel, AMD, Arm and Qualcomm announced support for the initiative.

• In November 2019 ONNX was accepted as graduate project in Linux Foundation AI. 

• Yesterday: Pytorch announces the foundation of the Pytorch foundation and becoming
part of the Linux Foundation

159/13/2022



How to I get an ONNX model

• ONNX Model Zoo

• Model creation services such as “Azure Custom Vision” and/or AutoML

• Convert an existing models from another framework

• End to End training via systems such as Azure Machine Learning service

169/13/2022



Open Source converter for popular frameworks
• Tensorflow

• Scikit-learn

• Apple Core ML

• Spark ML

• LightGBM

• Libsvm

• XGBoost

• H2O

• CatBoost

Native export

• Pytorch

• CNTK

179/13/2022



Examples: Model Conversion

python -m tf2onnx.convert

--input frozen_model.pb

--inputs input_batch:0, lengths:0 

--outputs top_k:1

--fold_const

--opset 8 

--output deepcc.onnx

import sklearn

import skl2onnx

initial_type = [('float_input', FloatTensorType([1, 4]))]

onnx_model = skl2onnx.convert_sklearn(pipe, 
initial_types=initial_type)

with open("logreg_iris.onnx", "wb") as f:

f.write(onnx_model.SerializeToString())



Dr. Andreas Fehlner (ONNX Steering Committee), 13.09.2022

Common problems impacting ML productivity

• Inference latency is too high to put into production

• Training in Python but need to deploy into a C#/C++/Java app

• Model needs to run on edge/IoT devices

• Same model needs to run on different hardware and operating systems

• Need to support running models created in several different frameworks

• (more recently) Training very large models takes too long



ONNX Runtime
https://onnx.ai

@onnxai

ONNX
https://onnxruntime.ai

@onnxruntime

Compatible with PyTorch, TensorFlow, Keras, SciKit-Learn, and more



ONNX Runtime

219/13/2022



Using ONNX Runtime

C#

…… also available for C, C++, 

Java, and JavaScript (Node.js)



The future of ONNX is up to you



Dr. Andreas Fehlner (ONNX Steering Committee), 13.09.2022

ONNX has open governance

› Annual Steering Committee election

› Technical decisions made by SIGs and Working Groups

› All meetings open to everyone

› Calendar: https://onnx.ai/calendar

› GitHub: https://github.com/onnx

› Slack: #onnx-general on https://slack.lfai.foundation

› Mailing List: https://lists.lfai.foundation/g/onnx-announce

249/13/2022

https://onnx.ai/calendar
https://github.com/onnx
https://slack.lfai.foundation/
https://lists.lfai.foundation/g/onnx-announce


ONNX roadmap discussions

Feedback from community

Impact analysis

Cost analysis

onnx.ai/roadmap

onnx.ai/impact

Community 

discussions



Roadmap 

Requests 

Current status



ONNX Roadmap Items (Status) - 1
Topics Proposed SIG’s Current Status or Future positioning

New operators for data processing to cover ML 

pipeline – Nakaike (IBM)

Operators, Pre-processing Identified from operators group about significant overlap with 

extensions already implemented. Work continues on

processing dates (feature)

C API for C++ components of ONNX (to assist in 

wrapper for model checker functionality) – Pocock 

(Oracle)

Arch/Infra C API to wrap protobuf which python, C#, Java can interact 

to emit ONNX models continues as long term goal. 

Currently C#, Java have their own construction and validation 

code

Better support for emitting ONNX models from 

other languages beyond Python – Pocock (Oracle)

Arch/Infra “Same as above”

Add meta information in tensors – Croome

(Greenwaves)

Arch/infra, Converters, Release Identifying path to get more structured quantization 

information in onnx to match/exceed tflite's abilities.

E2E pipeline with ONNX operators (include Keras, 

TF, Scikit-learn/Spark pipeline preprocessing flows) 

using single graph – Sica (IBM)

Arch/Infra, Model Tutorial, 

Operators, Pre-processing

Identified as long term intercept, further refining the proposal

Converters improvement suggestions (tensorflow-

onnx, Keras2Onnx) for better graph optimizations 

– Sica (IBM)

Converters, Operators Higher functioning ops specifically targeting (LSTM/GRU in 

particular) have gotten support in tfonnx (converters). Efforts 

will continue as new opportunities rise



ONNX Roadmap Items (Status) - 2

Topics Proposed SIGs Current Status or Future Positioning

Address gaps with Opset conversions across broad 

set of models – Sabharwal (Intel)

Arch/Infra, Converters, 

Release

Past two ONNX releases have fixed subset of issues with 

Opset conversions/compatibility. Efforts to continue in future 

as newer Opsets get introduced

ONNX model zoo example for E2E distributed 

training scenario of large models – Esteves (Intel)

Model Tutorial Identified as long term intercept

Define concept of federated learning for ONNX –

Esteves (Intel)

Operators Identified no new ONNX operators required, exploring 

further on solutions that are Framework/runtime agnostic 

Improvements to shape inference implementation –

McCarter (Lighmatter)

Arch/Infra Submitter analyzing further on the Shape inference 

improvements to be targeted for future

Introduce ONNX model provenance & security to 

safeguard against manipulations – Karumanchi (Intel)

Arch/Infra, Model Tutorial, 

Pre-processing

Initial metadata fields defined to establish machine readable 

ONNX model provenance 

https://github.com/onnx/onnx/issues/3958

ONNX model zoo support for quantized and mixed 

precision models.– Karumanchi (Intel)

Model Tutorial, Operators Related to ONNX model metadata field definition, will target 

couple of mixed precision models in zoo once Issue #3958

finalized

https://github.com/onnx/onnx/issues/3958
https://github.com/onnx/onnx/issues/3958


Thank You!

Q & A

Resources

https://onnx.ai

https://onnxruntime.ai



Backups



Release Update



ONNX 1.11 Released

Release v1.11.0 · onnx/onnx (github.com)
ONNX v1.11.0 comes with following updates:
• Opset 16 introduced with new and updated operators

• Added Model hub (to pull pre-trained models from zoo)

• Compose utilities to create combined model with preprocessing & inference

• Functionbuilder utility to help create function ops

• Bugfixes and infrastructure improvements

• Documentation updates

Visit the release page on GitHub for more details

Thank you everyone for your countless hours of work!

https://github.com/onnx/onnx/releases/tag/v1.11.0
https://github.com/onnx/onnx/releases/tag/v1.11.0


ONNX 1.12 Released

Release v1.12.0 · onnx/onnx (github.com)
ONNX v1.12 comes with following updates:

• Opset 17 introduced with new and updated operators

• Shape inference enhancements

• Bugfixes and infrastructure improvements

• Documentation updates

• Add Python 3.10 and drop Python 3.6 support

• Drop support for x86 (32-bit) Linux due to low usage

Visit the release page on GitHub for more details

Thank you everyone for your countless hours of work!

https://github.com/onnx/onnx/releases/tag/v1.12.0
https://github.com/onnx/onnx/releases/tag/v1.12.0


ONNX – Model File Format

Model

• Version info

• Metadata

• Acyclic computation dataflow graph

Graph

• Inputs and outputs

• List of computation nodes

• Graph name

Computation Node

• Zero or more inputs of defined types

• One or more outputs of defined types

• Operators

• Operator parameters



ONNX – Operators

• An operator is identified by <name, domain, version>

• Core ops (ONNX and ONNX-ML)

• Should be supported by ONNX-compatible products

• Generally cannot be meaninfully further decomposed

• Currently 124 in ai.onnx domain and 18 in ai.onnx.ml

• Support many scenaries/problems areas including image classification, recomendation, 

natural language processing, etc.

• Custom ops

• Ops specific to framework or runtime

• Indicated by a custom domain name



ONNX – Versioning

Versioning in ONNX is done at 3 levesl

• IR version (file format): currently at version 5 (p.ex. Protobuf format is changing)

• Opset version: ONNX models declare which operator sets they require as a list of two-part 

operator ids (domain, opset_version)

• Operator version: A given operator is identified by a three-tuple: (domain, op_type, and op_version)



ONNX Runtime – Design Principles

• Provide complete implementation of the ONNX standard – implement all versions of the operators (since opset 7)

• Backward compatibility

• High performance

• Cross plattform

• Leverage custom accelerators and runtimes to enable maximum performance (execution providers)

• Support hybrid execution of the models

• Extensible through pluggable modules



389/13/2022


