# Combining ID & AD: simultaneous particle identification and anomaly detection at collider experiments using Bayesian neural networks

Wiehl 2022

Johannes Erdmann, Burim Ramosaj, Daniel Wall



- Bayesian vs. Detern
- Our example use c
  - Multiclass classific
- Classification Perfo
- Anomaly Detection
- Conclusions









# Out

















- Which parameters w of a function f are likely to have generated Y from X?

$$p(w|X,Y) = \frac{p(X,Y|w)p(w)}{p(X,Y)} = \frac{p(Y|X,w)p(X|w)p(w)}{p(Y|X)p(X)} = \frac{p(Y|X,w)p(w)}{\int p(Y|X,w)p(w)dw}$$
  
with for example  $p(y = d|\mathbf{x}, \omega) = \frac{\exp(f_d^{\omega}(\mathbf{x}))}{\sum_{d'} \exp(f_{d'}^{\omega}(\mathbf{x}))}$ 

$$\operatorname{KL}(q_{\theta}(\boldsymbol{\omega}) \mid\mid p(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) = \int q_{\theta}(\boldsymbol{\omega}) \log \frac{q_{\theta}(\boldsymbol{\omega})}{p(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})} d\boldsymbol{\omega} = -\int q_{\theta}(\boldsymbol{\omega}) \log p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\omega}) d\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega}) \mid\mid p(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) d\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega}) \mid p(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) d\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) d\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega}) \mid p(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) d\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) d\boldsymbol{\omega} d\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) d\boldsymbol{\omega} d\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) d\boldsymbol{\omega} d\boldsymbol{\omega} d\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{Y})) d\boldsymbol{\omega} d\boldsymbol{\omega}$$

• Sampling from optimal  $q_{\theta}^*(w) \rightarrow distribution$  of predictions instead of a point estimate  $p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) \approx \int p(\mathbf{y}^*|\mathbf{x}^*, \boldsymbol{\omega}) q_{\theta}^*(\boldsymbol{\omega}) \mathrm{d}\boldsymbol{\omega}$ 

Description from Yarin Gal, Uncertainty in Deep Learning, PhD thesis, Cambridge, 2016 and arXiv:0712.4042.

• Basic idea: learn the whole distribution over the NN weights w given training data {X,Y}

• Often intractable  $\rightarrow$  approximate with simpler function  $q_{\theta}(w)$  minimizing KL divergence









- Which parameters w of a function f are likely to have generated Y from X?

$$p(w|X,Y) = \frac{p(X,Y|w)p(w)}{p(X,Y)} = \frac{p(Y)}{p(X,Y)}$$

with for example  $p(y = d | \mathbf{x}, \boldsymbol{\omega}) = \frac{\exp(f_d^{\boldsymbol{\omega}}(\mathbf{x}))}{\sum_{d'} \exp(f_{d'}^{\boldsymbol{\omega}}(\mathbf{x}))}$ 

 $\operatorname{KL}(q_{\theta}(\boldsymbol{\omega}) \mid\mid p(\boldsymbol{\omega}|\mathbf{X}, \mathbf{Y})) = \int q_{\theta}(\boldsymbol{\omega}) \log \frac{q_{\theta}(\boldsymbol{\omega})}{p(\boldsymbol{\omega}|\mathbf{X}, \mathbf{Y})} \mathrm{d}\boldsymbol{\omega} = -\int q_{\theta}(\boldsymbol{\omega}) \log p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\omega}) \mathrm{d}\boldsymbol{\omega} + \operatorname{KL}(q_{\theta}(\boldsymbol{\omega})||p(\boldsymbol{\omega}))$ 

 $p(\mathbf{y}^*|\mathbf{x}^*,\mathbf{X},\mathbf{Y}) \approx$ 

Description from Yarin Gal, Uncertainty in Deep Learning, PhD thesis, Cambridge, 2016 and arXiv:0712.4042.

# **Bayesian Neural Networks**

# • Basic idea: learn the whole distribution over the NN weights w given training data {X,Y}

 $\frac{|X,w)p(X|w)p(w)}{p(Y|X)p(X)} = \frac{p(Y|X,w)p(w)}{\int p(Y|X,w)p(w)dw}$ 

• Often intractable  $\rightarrow$  approximate with simpler function  $q_{\theta}(w)$  minimizing KL divergence

• Sampling from optimal  $q_{\theta}^*(w) \rightarrow distribution$  of predictions instead of a point estimate

$$\int p(\mathbf{y}^*|\mathbf{x}^*, \boldsymbol{\omega}) q_{\theta}^*(\boldsymbol{\omega}) \mathrm{d}\boldsymbol{\omega}$$





 Small training datasets lead to larger uncertainties in the BNN predictions (example from top-tagging in 1904.10004)

 BNNs predictions for out-of-distribution test samples can have large uncertainties



(a) Standard deep learning model

### Y. Gal, PhD thesis, Cambridge

# **Bayesian Neural Networks**

1904.10004







- Classification of images in EM calorimeters = photon identification
- Main background:
  - High-energy  $\pi^0 \rightarrow \gamma\gamma$
- Toy EM calorimeter à la 1712.10321
  - ATLAS-like: 3 layers of LAr+Pb
  - I m from Geant4 particle gun



# **Our Example Use Case**











- Classification of images in EM calorimeters = photon identification
- Main background:
  - High-energy  $\pi^0 \rightarrow \gamma\gamma$
- Toy EM calorimeter à la 1712.10321
  - ATLAS-like: 3 layers of LAr+Pb
  - I m from Geant4 particle gun



# **Our Example Use Case**









Particle gun kinetic energy: 20 GeV

- Single photon (signal)
- 8 physical background classes:
  - Different purely EM decays of mesons with different masses  $\rightarrow$  different opening angles
- + noise background class (noise burst in 2nd layer with 1% cross talk to neighbouring cells)

 Photon ID algorithm at LHC would be trained on effective mixture via parton shower programs

# **Our Example Use Case**









- Setup: 2D CNN with 8 filters and 3x3 kernel size for each calorimeter layer
  - + 10 output nodes all using Flipout (1803.04386)
- Assume weights to be Gaussian distributed, uncorrelated and with Gaussian priors Very similar performance to deterministic NN

**Deterministic NN** 







# • For each image, sample from the weight distributions $\rightarrow$ mean & variance per image













# • For each image, sample from the weight distributions $\rightarrow$ mean & variance per image



## Std. Dev.











# • Now: remove one class at a time during training = anomaly (here: $J/\psi \rightarrow e^+e^-$ )

Mean



Results

### Std. Dev.







- In general, larger uncertainty than before
- Stems from three different cases:
  - A) Examples with ~0 variance
  - B) Examples with >1 active output node
  - Examples with "jumpy decisions" **C**)





- In general, larger uncertainty than before
- Stems from three different cases:
  - A) Examples with ~0 variance
  - B) Examples with >1 active output node
  - Examples with "jumpy decisions" **C**)





- In general, larger uncertainty than before
- Stems from three different cases:
  - A) Examples with ~0 variance

  - Examples with "jumpy decisions"





- In general, larger uncertainty than before
- Stems from three different cases:
  - A) Examples with ~0 variance



# Another example: noise burst as anomaly

### Mean

Removed class: Noiseburst



Results

#Events

### Std. Dev.

### Removed class: Noiseburst







# Standard deviations when each class is removed one-by-one

# • Some anomalies are easier to identify than others











- Bayesian network's uncertainty estimate may help to identify anomalies
- Semisupervised approach (LHC Olympics 2020,
- We don't know, yet, if it can compete with specialized AD algorithms

• One advantage:

Provides AD capabilities as a sanitiy/DQ cross check

for standard classification tasks (such as ID)

At some additional training and prediction costs

# Conclusions

2101.08320)

| Section | Short Name            | Method Type    |
|---------|-----------------------|----------------|
| 3.1     | VRNN                  | Unsupervised   |
| 3.2     | ANODE                 | Unsupervised   |
| 3.3     | BuHuLaSpa             | Unsupervised   |
| 3.4     | GAN-AE                | Unsupervised   |
| 3.5     | GIS                   | Unsupervised   |
| 3.6     | LDA                   | Unsupervised   |
| 3.7     | PGA                   | Unsupervised   |
| 3.8     | Reg. Likelihoods      | Unsupervised   |
| 3.9     | UCluster              | Unsupervised   |
| 4.1     | CWoLa                 | Weakly Supervi |
| 4.2     | CWoLa AE Compare      | Weakly/Unsuper |
| 4.3     | Tag N' Train          | Weakly Supervi |
| 4.4     | SALAD                 | Weakly Supervi |
| 4.5     | SA-CWoLa              | Weakly Supervi |
| 5.1     | Deep Ensemble         | Semisupervise  |
| 5.2     | Factorized Topics     | Semisupervise  |
| 5.3     | QUAK                  | Semisupervise  |
| 5.4     | $\operatorname{LSTM}$ | Semisupervise  |



