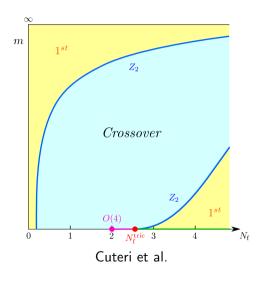
An ML approach to the classification of phase transitions in many flavor QCD

F. Karsch, A. Lahiri, M. Neumann, C. Schmidt September 14th, 2022

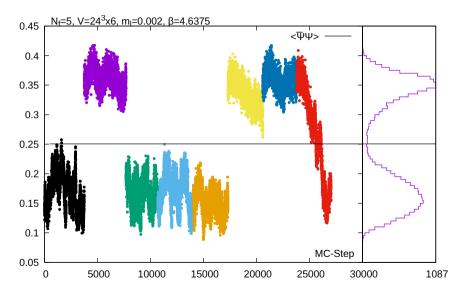
Pisarski and Wilczek

Remarks on the chiral phase transition in chromodynamics


Robert D. Pisarski and Frank Wilczek

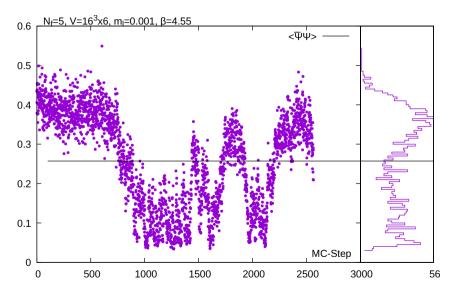
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

(Received 27 October 1983)

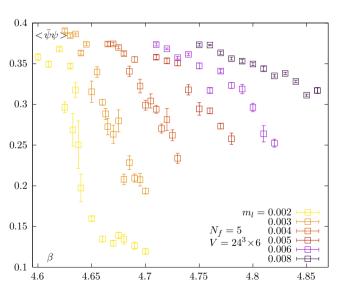

The phase transition restoring chiral symmetry at finite temperatures is considered in a linear σ model. For three or more massless flavors, the perturbative ϵ expansion predicts the phase transition is of first order. At high temperatures, the $U_A(1)$ symmetry will also be effectively restored.

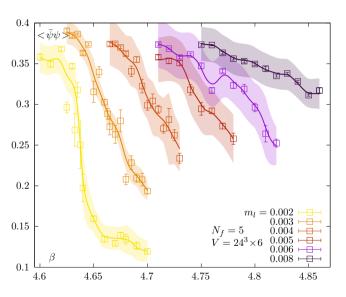
The setup

- ✓ plan: look at regions, where a 1st order signal is expected
 - ★ small masses
 - \vdash large N_f
- \times $N_f = 5$
- $m_l = 0.001 0.016$
- $V = 16^3 24^3 \times 6$
- $\beta = 4.50 5.35$


Time histories

Time histories


Time histories


β -reweighting

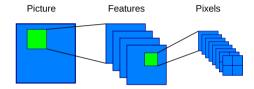
- \Join way to interpolate any observable between β s
 - this includes histogram bins
- reweighting in volume or mass not possible
- \times fine sampling in β required

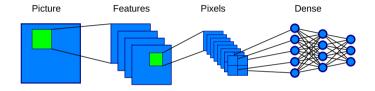
β -reweighting

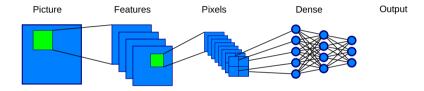
β -reweighting

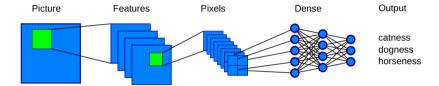
Number of measurements per volume and mass

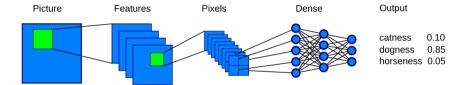
n_s	0.001	0.002	0.003	0.0035	0.004	0.0045	0.005
16	17601	19167	11526	0	18866	0	0
			149135				15212
			0.010				
			61456				
24	24756	40237	23648	13380	25574	25499	

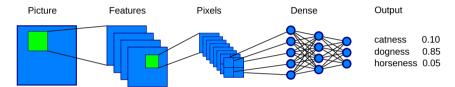

Number of measurements per volume and mass

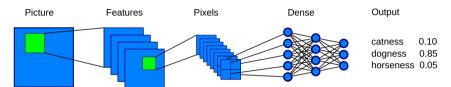

n_s	0.001	0.002	0.003	0.0035	0.004	0.0045	0.005
16	17601	19167	11526	0	18866	0	0
24	5294	87176	149135	24278	29821	14904	15212
n _s	0.006	0.008	0.010	0.012	0.014	0.016	
			61456				
24	24756	40237	23648	13380	25574	25499	


about 300.000 GPUh

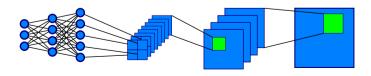






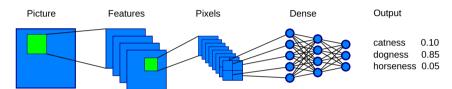


encoder

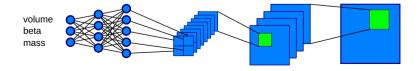


Transposed CNNs

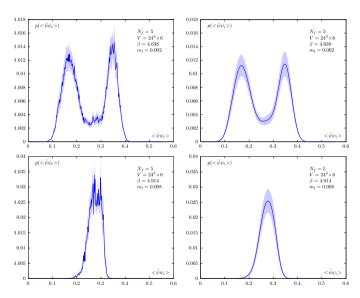
encoder



decoder

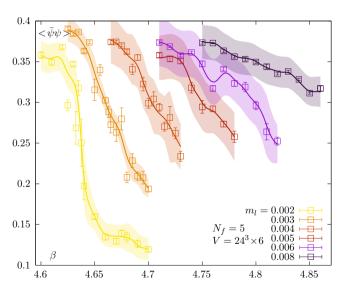


Transposed CNNs

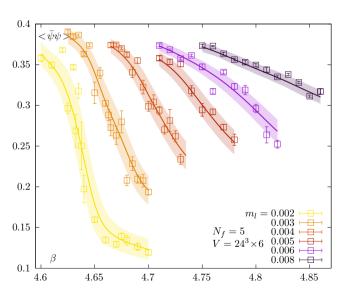

encoder

decoder

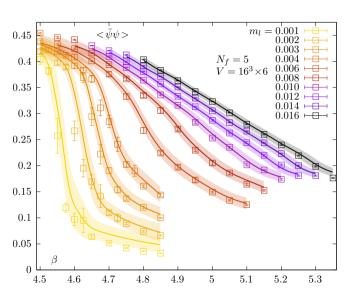
Model Output: p ($<\bar{\psi}\psi_i>$)

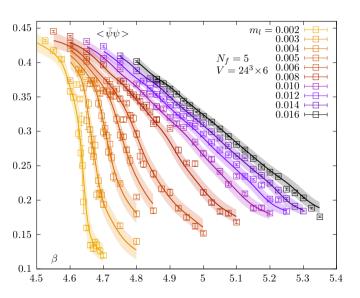


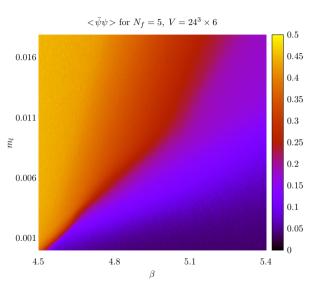
Decoder only Model Summary

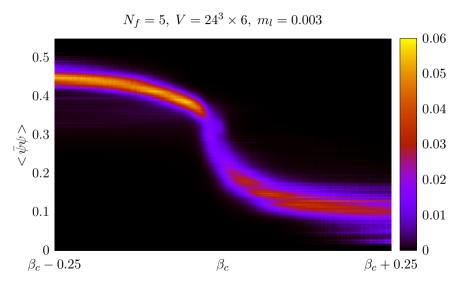

layer	shape		
input	units = 3		
Dense	units = 64		
Dense	units = 265		
Dense	units = 1024		
Reshape	shape = (32, 32)		
Conv1DTranspose	filters = 64, kernel $size = 2$		
Conv1DTranspose	filters = 128, kernel size = 5		
Conv1DTranspose	filters = 275, kernel size = 10, activation = softmax		
output	GlobalAveragePooling1D		

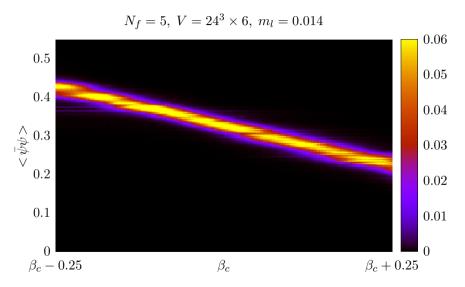
- ➤ Dropout (rate = 0.2) between all layers
- ➤ loss: categorical crossentropy
- implemented in Tensorflow Keras
- model maps 3 parameters $(N_{\sigma}, \beta, m_{l})$ to 275 histogram bins

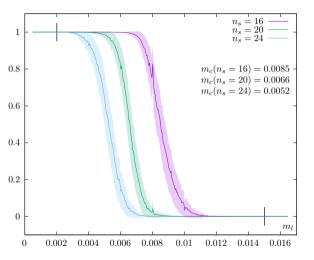

reweighted chiral condensate


ML-reweighted chiral condensate

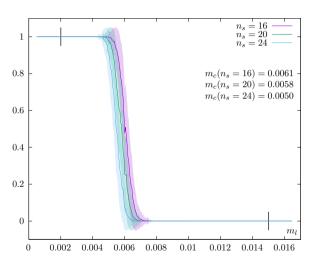

ML-reweighted chiral condensate


ML-reweighted chiral condensate


five flavor phase diagram


An equation-of-state-meter

An equation-of-state-meter



An equation-of-state-meter

H. Petersen et al., 2016: An equation-of-state-meter of QCD transition from deep learning, arXiv:1612.04262

An equation-of-state-meter with Transformers

Encoder only Model Summary

layer	shape
input	units $= (500, 275)$
Conv2D	$filters = 50, \; kernel \; size = 10,$
CONVZD	strides = (5, 10)
Conv2D	$filters = 10, \; kernel \; size = 3,$
CONVZD	strides = (2,2)
Pooling	GlobalAveragePooling2D
Dense	units = 32
Dense	units = 16
output	units $= 2$, activation $= sigmoid$

- ➤ activation = relu for all layers
- ➤ Dropout (rate = 0.2) between all layers
- ➤ loss: binary crossentropy
- implemented in Tensorflow Keras
- model maps (500 × 275) pixels to firstordernes / crossoverness

Conclusion

- $\stackrel{>}{\sim} 1^{\rm st}$ order chiral phase transition observed for small m_l , $N_f=5$, $N_{\tau}=6$ in HISQ
- \bowtie good interpolation of p ($\langle \bar{\psi}\psi_i \rangle$) in N_{σ} , m_i and β
- "phase transition of the phase transition" described by decoder-only CNN ML model
- \bowtie Work in progress: m_c extraction via "EOS-meter"
 - \times add N_{σ} dependence (done now)
- \vdash next: add N_f and N_τ dependence to ML model