Conceptual Advances in Deep Learning for Research on Universe and Matter, Workshop

A Machine Learning Approach to Searching Dark Matter Subhalos in Fermi-LAT Sources Anja Butter ¹, Michael Krämer ², Silvia Manconi², Kathrin Nippel ² ¹ ITP, U. Heidelberg ² TTK RWTH Aachen

* see e.g. Zavala, Frenk (2019) 1907.1175 Springel et al. (2008) 0809.0898

 ** see e.g. Hooper, Witte (2017) 1610.07587 Coronado-Blásquez et al (2019) 1910.14429 Calore et al. (2019) 1910.13722 Di Mauro et al. (2020) 2007.08535 Gammaldi et al. (2022) 2207.09307

*** see e.g. Finke et al. (2021) 2012.05251 Butter et al. (2022) 2112.01403

14.09.2022 Kathrin Nippel

Physics Motivation

- Galaxy populated by clumps of dark matter
 - → N-body simulations*
- Assuming WIMP dark matter: $\chi\chi \rightarrow SM SM (\rightarrow \gamma)$
 - → A signal like this could already be detected among Fermi-LAT sources**

- The Fermi-LAT 4FGL source catalog can help constrain the properties of dark matter
 - 1. Create realistic set of subhalo simulations
 - 2. Assess detectability
 - 3. Look for subhalo-like spectra among unclassified sources
- Machine Learning is a powerful tool for classification tasks***
 - → We employ a neural network to effectively classify DM subhalos

Physics Motivation

svs.gsfc.nasa.gov/11342

- The Fermi-LAT 4FGL source catalog can help constrain the properties of dark matter
 - 1. Create realistic set of subhalo simulations
 - 2. Assess detectability
 - 3. Look for subhalo-like spectra among unclassified sources
- Machine Learning is a powerful tool for classification tasks
 - → We employ a neural network to effectively classify DM subhalos

Simulations Subhalo Population

PPPC 4 DM ID: Cirelli et al. (2012)

DM annihilation spectra for each mass, and primary annihilation channel, assuming WIMPs

CLUMPY V3: *Hütten et al. (2018)* J-factor and sky position of galactic subhalos

fermipy: Wood et al. (Fermi-LAT collaboration, 2017) Simulate detector effects

- Benchmark classification training set for comparing subhalos with 4FGL catalog
 - Realistic scenario with simulations as close as possible to real sources
 - Number of detectable subhalos sufficient for ML approach

14.09.2022 Kathrin Nippel

Machine Learning Approach Bayesian Neural Network Classification

- Replace individual weight of Dense NN with weight distributions
 - Shape of distribution allows for uncertainty estimation of outputs
 - BNN learns posterior distribution p(w|D) by approximating variational weight distribution $q_{\theta}(w)$ using the KL-divergence

$$\begin{split} \mathrm{KL}(q(w)||p(w|D)) &= \int \mathrm{d}w \; q(w) \log \frac{q(w)}{p(w|D)} \\ &= \int \mathrm{d}w \; q(w) \log \frac{q(w)}{p(D|w)p(w)} + \mathrm{const} \\ \mathrm{Assuming \, multivariate,} \\ \mathrm{diagonal \, Gaussians} \\ &= \sum_{i} \log \frac{\sigma_{p,i}}{\sigma_{q,i}} + \frac{\sigma_{q,i}^2 + (\mu_{p,i} - \mu_{q,i})^2}{2\sigma_{p,i}^2} - \frac{1}{2} \end{split}$$

- In practice: Use the Flipout estimator (Wen et al., 2018)
 - Performs a Monte Carlo approximation of the distribution integrating over the weight and bias to minimize the KL-divergence

INPUT

Neural Networks for γ -Ray Source Classification (Butter et al. (2022) 2112.01403)

- Classification of AGN (BLL vs FSRQ) within Fermi-LAT 4FGL-DR2 based on spectra only
- Use Bayesian Neural Network for reliable uncertainty estimates of classification
- Accuracy: 88.9%

14.09.2022 Kathrin Nippel

Preliminary Results Subhalo vs 4FGL Classification

- Classification accuracy simulated subhalos vs real 4FGL data compatible with classifications among real source types
- Limits of accuracy: Statistical fluctuation and imbalance within data

Confusion matrix

- Achieved sweet spot between realistic data set and efficient neural network
 - Trained network can give reliable estimate on which unclassified sources in 4FGL are compatible with DM subhalo model at hand

Preliminary Results Subhalo vs 4FGL Prediction Uncertainty

- Achieved sweet spot between realistic data set and efficient neural network
 - Trained network can give reliable estimate on which unclassified sources in 4FGL are compatible with DM subhalo model at hand

Preliminary Results 4FGL UnID Sources Classified as Subhalos

- k-fold cross validation approach to training and testing on AGN/PSR
- Fraction of misclassification of known sources smaller than unIDs classified as subhalo

	astro-ph-leaks @LeaksPh	
--	-----------------------------------	--

BUT I MAY BE WRONG THIS IS JUST MY OWN UNDERSTANDING AT THE MOMENT.

Conclusions & Outlook

- Using **CLUMPY**, PPPC 4 DM ID and **fermipy**, we have constructed a set of realistic DM subhalo simulations for a given model
- We have carefully evaluated the detectability using complete simulations of 12 years of Fermi-LAT data and used this to compare to the 4FGL-DR3 source catalog
- We use a Bayesian Neural Network classification approach to
 - Estimate the uncertainty of γ -ray classifier predictions
 - Conservatively gauge a number of DM subhalo candidates among unclassified 4FGL sources
- This approach can be extended to any DM model

Backup

ROI counts map

* see also Calore et al. (2017) 1611.03503

14.09.2022 Kathrin Nippel

Simulations Detector Effects

Next Step: Assess detectability and simulate flux detected by Fermi-LAT Use **fermipy** for simulating 12 years of Fermi-LAT data

Result: Realistic training set consisting of the flux of each subhalo with same systematics as astrophysical sources + detection significance