Super-resolution of photon calorimeter images using generative adversarial networks

Florian Mausolf

Work in progress by J. Erdmann^a, A. van der Graaf^b, F. Mausolf^a and O. Nackenhorst^b

14th September 2022

^aRWTH Aachen University, ^bTU Dortmund University

Photons are important physics objects at collider experiments

- H $\rightarrow \gamma \gamma$: clean channel to study the Higgs boson
- Investigation of electroweak interactions
- Searches for new physics with photons, ...
- Signature: cluster of energy deposition in the EM calorimeter

 ${
m H}
ightarrow \gamma \gamma$ candicate event at CMS cds.cern.ch/record/2736135/

Introduction

wikimedia.org/wiki/File: Pion_Decay_Two_Photons_CMS/

Photons are important physics objects at collider experiments

- H $\rightarrow \gamma \gamma$: clean channel to study the Higgs boson
- Investigation of electroweak interactions
- Searches for new physics with photons, ...
- Signature: cluster of energy deposition in the EM calorimeter
- Rejection of fake photons is a crucial and challenging task
 - Main source: highly collimated photons from high-energy $\pi^0 \to \gamma\gamma$ decays
 - High granularity calorimeter needed to resolve collimated photons

- Single-image super-resolution (SR): estimation of a high resolution (HR) image from a single low resolution (LR) image
- Intensively studied in the field of image processing
- Has been applied to jet physics (arXiv: 2012.11944)
- State-of-the-art models based on deep CNNs
 - Trained on LR-HR image pairs
- GAN-based training setups particularly successfull in producing realistic SR images

Super-resolution

arXiv: 1609.04802

- Single-image super-resolution (SR): estimation of a high resolution (HR) image from a single low resolution (LR) image
- Intensively studied in the field of image processing
- Has been applied to jet physics (arXiv: 2012.11944)
- State-of-the-art models based on deep CNNs
 - Trained on LR-HR image pairs
- GAN-based training setups particularly successfull in producing realistic SR images

Photon calorimetry

Can we improve photon reconstruction by learning from a better calorimeter?

Super-resolution

original

arXiv: 1609.04802

Florian Mausolf

Photon super resolution

 \blacksquare Geant 4 simulation of γ and $\pi^0 \to \gamma\gamma$ at $20\,{\rm GeV}$

• Remove $\pi^0 \rightarrow \gamma \gamma$ without strongly collimated photons (angle > 2°)

■ Simplified PbWO₄ electromagnetic calorimeter

- LR granularity adapted from CMS barrel ECAL
- LR: 24×24 crystals, 2.2 cm \times 2.2 cm \times 23 cm each
- HR: 96×96 crystals, 0.55 cm \times 0.55 cm \times 23 cm each
- Simulation of LR-HR image pairs
- Cut shower images to 6×6 (LR) and 24×24 (HR) crystals

PbWO₄ crystal of CMS ECAL http://cds.cern.ch/record/1101276

Example photons:

Example pions:

- Model architecture inspired by Enhanced Super-Resolution GAN (ESRGAN), arXiv:1809.00219
- Generator consists of very deep CNN
- Most calculations done in LR feature space before upsampling

$$\underbrace{\mathbb{R}}_{LR} \rightarrow \overset{}{\mathfrak{g}}_{T} \rightarrow \overset{}\mathfrak{g}_{T} \rightarrow \overset{}\mathfrak{g}_{T}$$

Basic block: Residual-in-residual dense block (RRDB)

• We use 5 RRDBs, convolutional layers with 32 (3×3) kernels

Discriminator inspired by SRGAN/ESRGAN

arXiv: 1609.04802

- Here: 6 convolutional layers, 2 dense layers
- Training strategy adapted to Wasserstein-GAN with gradient penalty (WGAN-GP, arXiv: 1704.00028)
 - Sigmoid output function removed
 - Batch Normalisation replaced by Layer Normalisation

- SRGAN is trained on 100k photon and 100k neutral pion examples
- As ESRGAN, we use the concept of perceptual loss (arXiv: 1603.08155)
 - Additional loss term for generator
 - Intead of a per-pixel loss, perceptual loss uses high-level features Φ extracted from pretrained CNNs

$$\mathcal{L}_{\rm p} \propto \left| \Phi({\rm HR}) - \Phi({\rm SR}) \right|^2$$

- ESRGAN: VGG-19 network (very deep CNN for image classification, arXiv: 1409.1556)
- We use simple CNN trained on HR images to separate photons from pions

Generator:

$$\mathcal{L}_{\text{gen}} = 10^{-4} \cdot \mathcal{L}_{\text{WGAN}} + 10^{-9} \cdot \mathcal{L}_{\text{perceptual}}$$

Discriminator

 $\mathcal{L}_{\text{dis}} = 10 \cdot \mathcal{L}_{\text{WGAN}} + 10 \cdot \mathcal{L}_{\text{GP}}$

Monitoring of physics-metrics during training:

- Width of the shower
- Pion rejection: how well can a CNN trained on HR images separate photons and pions?

Florian Mausolf

 Generator network implicitly learns to treat the two classes separately

III. Physikalisches Institut A

■ SR images are very close to HR truth

- Barycentres of SR images are closer to truth than barycentres of LR images
- Improvement in order of one HR crystal width $(\approx 0.5 \text{ cm})$
- Improved spatial resolution → e.g. better mass resolution for diphoton events

- SR as image preprocessing can help for training classifiers
- Here: simple CNNs with same depth and width for LR and SR
- Improved pion rejection over LR given limited training statistics
- In LHC experiments: typically low training statistics since only very small fraction of simulated jets passes photon preselection

 Work in progress! Here: preliminary studies from previous detector simulation, less close to LHC experiment conditions

- Super-resolution applied to photon calorimeter images
- Generator incorporates knowledge about shower development from HR calorimeter
- SR images are realistic estimations how a shower might look in a better calorimeter
- Spatial resolution is improved in SR
- Classifiers learn faster from SR images than from LR images

■ Ongoing work... Stay tuned!

BACKUP

Algorithm 1 WGAN with gradient penalty. We use default values of $\lambda = 10$, $n_{\text{critic}} = 5$, $\alpha = 0.0001$, $\beta_1 = 0$, $\beta_2 = 0.9$.

Require: The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α, β_1, β_2 . **Require:** initial critic parameters w_0 , initial generator parameters θ_0 . 1: while θ has not converged do 2: for $t = 1, ..., n_{\text{critic}}$ do 3: for i = 1, ..., m do Sample real data $\boldsymbol{x} \sim \mathbb{P}_r$, latent variable $\boldsymbol{z} \sim p(\boldsymbol{z})$, a random number $\epsilon \sim U[0, 1]$. 4: 5: $\tilde{x} \leftarrow G_{\theta}(z)$ $\hat{\boldsymbol{x}} \leftarrow \epsilon \boldsymbol{x} + (1-\epsilon)\tilde{\boldsymbol{x}}$ 6: $L^{(i)} \leftarrow D_w(\tilde{\boldsymbol{x}}) - D_w(\boldsymbol{x}) + \lambda (\|\nabla_{\hat{\boldsymbol{x}}} D_w(\hat{\boldsymbol{x}})\|_2 - 1)^2$ 7: 8: end for $w \leftarrow \operatorname{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)$ 9: 10: end for Sample a batch of latent variables $\{z^{(i)}\}_{i=1}^m \sim p(z)$. 11: $\theta \leftarrow \operatorname{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_w(G_{\theta}(\boldsymbol{z})), \theta, \alpha, \beta_1, \beta_2)$ 12: 13 end while

Perceptual loss ESRGAN

Without perceptual loss

With perceptual loss