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Autoencoders for anomaly detection 
in particle physics



Particle collisions at the LHC

2



3

The Standard Model of Particle Physics 



4

The Standard Model of Particle Physics 
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• Particle physics anomalies: LFV in B-meson decays, (g-2)𝛍, … 


• Cosmic enigmas: dark matter, matter-antimatter asymmetry, …


• Conceptual questions: origin of EWSB, mass hierarchies, 
unification,…

There are potential anomalies and conceptual shortcomings of the SM 

Physics beyond the Standard Model? 
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Model-driven 
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Physics beyond the Standard Model? 
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Model-driven 

fit 
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• Unsupervised learning


• Autoencoders


• Autoencoders for anomaly detection


• Anomaly searches in particle physics

Outline
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The principle component analysis

Data reduction

Decorrelation of features 

12.1. Principal C01n[>OM"1 AnalJsis 561

Flgu,e12.2 P'if>cipal compooont seeks" $pace
01 !owe, dimensionality. kt"(>WIl as !he P<lno>
pal subSpace "nd denoted I:Jy the magenta "1
line. SUCh Itlet the Grthogonet [jiojectiOh 01
!he data points ('ed doIsl onto tP'Ns
"""'imizes the varia,..,., of !he proja<:ted points
(green doIs). An "It",nati"" ....finilion 01 PCA
is based on m..mizing the """,-<>I·squares
of !he projection errors. ind'cated by the bfi.>e
lines.

S'crio" 12.2 a panlcula, fonn of linear-Gau"ian latem "ariable model. This probabilistic refor-
mulation many as tl>l: use I)f EM for parameter eslimalion,
rrinciple<J 10 of PeA model" and formulat;ons that
allow tbe number of rrincipal com[>Oncnts to be detennined aUlOmatically from !be
data. Finally'. "c diSl;us< briefly ""'eral gencrali,ation, of the latent Yariable concept
that g<l tbe linear-Gaussian assumption including non·Gau"i"n I.tcnt yari-
abies .....hich lea'" to tbe fr.me....ork of indrl"'mJ.m compon.nl anal,-.;., as ....ell a,

S'di"" 12.4 models ha"ing a nonlinear rclationship bet ....een latent and oose",e<J ,'lUiable,.

____ Principal Component Analysis

Principal compooem analy,;" or rcA.;s a technique tha! is "'idely u<ed for appli.
cations such as dimensionality .-eduction, lossy data comprc"ion, feature e>tracti"".
and data v;,ualizatiOll (Jolliffe, 2(02). It;s also kno.... " as tile Karoan.n·I..,;"" tran,·

lbcrc an: t....o commonly used definitions of PeA that giye rise to the >arne
algorithm. PeA can be defined as the unhog<lnal projtttion of the data O/1tO a lo....er
dimensionallincar space. kno....n as the pri/lcip.al $uh.•p.aa. soch that the \'ariance of
the projttted data i' (1I",.lIing. 1933). Equi"alemly,;t can be defined as
tbe linear projection that minimi"'. the average projttlion cost. defined as mean
squa.-ed distance !letween the data [>Oint< and tbeir p<ojtttioo, (Pearson, 19(1). The
l"J'"OC"s< of onhogonal projection i' illustraled in FiguTe 12.2. We con,ider each of
these definitions in tum.

12,1.1 Mllximllm variance lormulation

Con,ider a dala set <If obser"\lations {x,,} where" = 1..... S, and x" i, a
Euclidean variable "'ilh dimen,ionality D. Our goal is to project If>/:: data onto a
'pace ha"ing dimen,ionalityM < D" hile Ill3Jli",i,illg the "ariallCe of the projttted
data. For the !noll..nl. we 'hall assume that tbe "alue of M is g;\·en. Latcr in this
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with minimal loss of information.

Search a mapping 

PCA: choose g(z) = Dz → f(x) = DTx  

Want to find an encoding function f(x) = z and a 
decoding function g(z) = x such that the 

reconstruction error || x - x ||2 = || x - g(z) ||2

is minimal. 

~
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Compute data covariance matrix 

562 12. CONTINUOUS LATENT VARIABLES

chapter, we shall consider techniques to determine an appropriate value of IV! from
the data.

To begin with, consider the projection onto a one-dimensional space (M = 1).
We can define the direction of this space using a D-dimensional vector Ul, which
for convenience (and without loss of generality) we shall choose to be a unit vector
so that ufUl = 1 (note that we are only interested in the direction defined by Ul,
not in the magnitude of Ul itself). Each data point X n is then projected onto a scalar
value ufX n . The mean of the projected data is ufx where x is the sample set mean
given by

(12.1)

and the variance of the projected data is given by

where S is the data covariance matrix defined by

1 N
S = - "(xn - x)(xn - x)TNLJ .

n=l

(12.2)

(12.3)

Appendix E

We now maximize the projected variance UfSUl with respect to Ul. Clearly, this has
to be a constrained maximization to prevent Ilulll ..... 00. The appropriate constraint
comes from the normalization condition ufUl = 1. To enforce this constraint,
we introduce a Lagrange multiplier that we shall denote by AI, and then make an
unconstrained maximization of

(12.4)

By setting the derivative with respect to Ul equal to zero, we see that this quantity
will have a stationary point when

(12.5)

which says that Ul must be an eigenvector of S. Ifwe left-multiply by uf and make
use of ufUl = 1, we see that the variance is given by

(12.6)

and so the variance will be a maximum when we set Ul equal to the eigenvector
having the largest eigenvalue AI. This eigenvector is known as the first principal
component.

We can define additional principal components in an incremental fashion by
choosing each new direction to be that which maximizes the projected variance

and its eigenvector decomposition. 

Vector u1 is eigenvector with largest eigenvalue, 
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Bishop: Pattern recognition and machine learning
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Casey Chang: https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d 
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Hebbian learning

171

Figure 10.1: Supervised learning finds decision boundaries for labeled data, like
in the binary classification problem shown on the left. Unsupervised learning can
find clusters in the input data (right).

Figure 10.2: Neural net for unsupervised Hebbian learning, with a single linear
output unit that has weight vector w . The network output is denoted by y in this
Chapter.

10 Unsupervised learning

10.1 Oja’s rule

A simple example for an unsupervised-learning algorithm uses a single McCulloch-
Pitts neuron with linear activation function (Figure 10.2). The neuron computes1

y =w ·x with weight vector w = [w1, . . . , wN ]T. Now consider a distribution Pdata(x )
of input patterns x = [x1, . . . , xN ]T with continuous-valued components xi . Patterns
are drawn from this distribution at random and fed one after another to the net. For
each pattern x , the weights w are adjusted as follows:

w
0 =w +�w with �w =⌘y x . (10.1)

This rule is also called Hebbian unsupervised learning rule [1], because it is reminis-
cent of Hebb’s rule (Chapter 2). As usual, ⌘ is the learning rate.

1In this Chapter we follow a common convention [1] and denote the output of unsupervised-
learning algorithms by y .

Weight update: 
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The output |y| becomes the larger, the more 

often an input feature occurs in the data.

Can write this as DGL:

we get:Writing w in terms of the eigenvectors of the covariance matrix,

<latexit sha1_base64="0tSpQD+XKIvaoTfHQ0l3AQ4dwoE=">AAACiHicbZFdaxQxFIYzU6t1rbrqpTehiyAU1hlZrV4Ipd542UK3LWyW5UzmzG5oJhmTM7bLML+l/8k7/43ZD+3ngcDL854k5yOrtPKUJH+ieOPR5uMnW087z7afv3jZffX6xNvaSRxKq607y8CjVgaHpEjjWeUQykzjaXb+feGf/kLnlTXHNK9wXMLUqEJJoIAm3StBUHNROJBNLkqgWVY0F23b5NTyb1xoMFONfM7/eZctF24Fr+2bpswtPZR9/TgXP2vIA8jsZXOhaPafLGupnK3I8vSDQIJJt5f0k2Xw+yJdix5bx+Gk+1vkVtYlGpIavB+lSUXjBhwpqbHtiNpjBfIcpjgK0kCJftwsB9nyd4HkvLAuHEN8SW/eaKD0fl5mIXPRjb/rLeBD3qim4su4UaaqCY1cfVTUmoc+F1vhuXIoSc+DAOlUqJXLGYSlUNhdJwwhvdvyfXHysZ9+7g+OBr39g/U4tthbtsPes5TtsX32gx2yIZPRZrQbDaJPcSdO4r346yo1jtZ33rBbER/8BVbCxgI=</latexit>

⌧
dw

dt
= hyxi = hx · xiw with ⌧ / 1/⌘
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w =
X

i

ci(t)ui,

<latexit sha1_base64="1uyvIkqguJKlhL+jIs8swswJF1E="></latexit>

w =
X

i

ci(0)e
�it/⌧ui, and thus w / u1 for large t � ⌧.

Hebbian learning implements the principal component analysis. 

B. Mehlig: https://arxiv.org/abs/1901.05639v4
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• Unsupervised learning


• Autoencoders


• Autoencoders for anomaly detection


• Anomaly searches in particle physics

Outline
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Autoencoders

Let us try to implement a principal component analysis with a neural network. 

Recall: we need an encoding function f(x) = DTx and a decoding function g(z) = Dz 
such that || x - g(z) ||2 is minimal. 

W(1) W(2)

z = f(x) = W(1) x 

and 


x = g(z) = W(2) z = W(2) W(1) x ~

Training the weights W(1) and W(2) to 
minimise the mean square error between 

input and output, the linear neural 
network (nearly) implements a principal 

component analysis. 
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Autoencoders

CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure of an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h. The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

503

z

x x~

An autoencoder is a neural network that tries to learn an 

approximation to the identity function x = g(f(x)) ≈ x~

Learning the identity function itself is not very useful, but by placing constraints on the 
network, such as by limiting the number of hidden units, one can discover interesting 

structures about the data:

• latent space z has lower dimension than x;

• f or g have low capacity (e.g. linear g);

• introduce regularisation, e.g. sparse autoencoders. 
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interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the
training data.

The learning process is described simply as minimizing a loss function

L(x, g(f(x))) (14.1)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-
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data x1, . . . , xn ∈ X

max
W

n

i=1

‖Wxi‖2 s.t. WW! = I. (25)

Solving this objective results in a well-known eigenvalue
problem since the optimal basis is given by the eigen-
vectors of the empirical covariance matrix where the
respective eigenvalues correspond to the componentwise
variances [364]. The d ≤ D components that explain most
of the variance—the principal components—are then given
by the d eigenvectors that have the largest eigenvalues.

Several works have adapted PCA for AD [77],
[365]–[370], which can be considered the default recon-
struction baseline. From a reconstruction perspective,
the objective to find an orthogonal projection W!W to
a d-dimensional linear subspace (which is the case for
W ∈ Rd×D with WW! = I) such that the mean squared
reconstruction error is minimized

min
W

n

i=1

‖xi − W!Wxi‖2 s.t. WW! = I (26)

yields exactly the same PCA solution. Thus, PCA opti-
mally solves the reconstruction objective (23) for a linear
encoder φe(x) = Wx = z and transposed linear decoder
φd(z) = W!z with constraint WW! = I . For linear PCA,
we can also readily identify its probabilistic interpreta-
tion [362], namely that the data distribution follows from
the linear transformation X = W!Z+ε of a d-dimensional
latent Gaussian distribution Z ∼ N (0, I), possibly with
added noise ε ∼ N (0,σ2 I) so that P ≡ N (0, W!W +

σ2 I). Maximizing the likelihood of this Gaussian over the
encoding and decoding parameter W again yields PCA
as the optimal solution [362]. Hence, PCA assumes that
the data live on a d-dimensional ellipsoid embedded in
data space X ⊆ RD. Standard PCA, therefore, provides an
illustrative example for the connections between density
estimation and reconstruction.

Linear PCA, of course, is limited to data encodings that
can only exploit linear feature correlations. kPCA [3] intro-
duced a nonlinear generalization of component analysis
by extending the PCA objective to nonlinear kernel feature
maps and taking advantage of the “kernel trick.” For a PSD
kernel k(x, x̃) with feature map φk : X → Fk, kPCA solves
the reconstruction objective (26) in feature space Fk :

min
W

n

i=1

‖φk(xi) − W!Wφk(xi)‖2 s.t. WW! = I (27)

which results in an eigenvalue problem of the kernel
matrix [3]. For kPCA, the reconstruction error can again
serve as an anomaly score. It can be computed implicitly
via the dual [4]. This reconstruction from linear prin-
cipal components in feature space Fk corresponds to a

Fig. 8. Reconstruction models on the Big Moon, Small Moon toy

example (see Fig. 4). PCA finds the linear subspace with the lowest

reconstruction error under an orthogonal projection of the data.

kPCA solves (linear) component analysis in kernel feature space,

which enables an optimal reconstruction from (kernel-induced)

nonlinear components in input space. An AE with 1-D latent code

learns a 1-D, nonlinear manifold in input space having minimal

reconstruction error.

reconstruction from some nonlinear subspace or manifold
in input space X [371]. Replacing the reconstruction
W!Wφk(x) in (27) with a prototype c ∈ Fk yields a
reconstruction model that considers the squared error to
the kernel mean since the prototype is optimally solved by
c = (1/n) n

i=1 φ(xi) for the L2-distance. For RBF kernels,
this prototype model is (up to a multiplicative constant)
equivalent to KDE [4], which provides a link between ker-
nel reconstruction and nonparametric density estimation
methods. Finally, rPCA variants have been introduced as
well [372]–[375], which account for data contamination
or noise (see Section II-C2).

C. Autoencoders

AEs are reconstruction models that use neural networks
for the encoding and decoding of data. They were
originally introduced during the 1980s [376]–[379]
primarily as methods to perform nonlinear dimensionality
reduction [380], [381], yet they have also been studied
early on for AD [351], [352]. Today, deep AEs are among
the most widely adopted methods for deep AD in the
literature [44], [51], [54], [125]–[135] likely due to
their long history and easy-to-use standard variants. The
standard AE objective is given by

min
ω

1
n

n

i=1

‖xi − (φd ◦ φe)ω(xi)‖2 + R (28)

which is a realization of the general reconstruction
objective (23) with θ = ω, that is, the optimization is
carried out over the weights ω of the neural network
encoder and decoder. A common way to regularize
AEs is by mapping to a lower dimensional “bottleneck”
representation φe(x) = z ∈ Z through the encoder
network, which enforces data compression and effectively
limits the dimensionality of the manifold or subspace to be
learned. If linear networks are used, such an AE, in fact,
recovers the same optimal subspace as spanned by the PCA
eigenvectors [382], [383]. In Fig. 8, we show a comparison
of three canonical reconstruction models (PCA, kPCA, and
AE) trained on the Big Moon, Small Moon toy data set, each
using a different feature representation (raw input, kernel,
and neural network), resulting in different manifolds.
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Variational autoencoders

One can combine the idea of an autoencoder with the concept of generative modeling.

Bayesian view:
<latexit sha1_base64="GQmBzS5i9Sij1WAomhoE+skRuDo=">AAACLnicbVDLSsNAFJ3UV62vqEs3g0VoNyWRom6EogguK9gHtKFMJpN26OTBzESsMV/kxl/RhaAibv0MJ22gtfXAwOGcc5l7jx0yKqRhvGu5peWV1bX8emFjc2t7R9/da4og4pg0cMAC3raRIIz6pCGpZKQdcoI8m5GWPbxM/dYd4YIG/q0chcTyUN+nLsVIKqmnX4WlrofkwHbj+6QMz2GX+hJOxYekPJt4nNGdKe/pRaNijAEXiZmRIshQ7+mvXSfAkUd8iRkSomMaobRixCXFjCSFbiRIiPAQ9UlHUR95RFjx+NwEHinFgW7A1VPLjtXZiRh5Qow8WyXTDcW8l4r/eZ1IumdWTP0wksTHk4/ciEEZwLQ76FBOsGQjRRDmVO0K8QBxhKVquKBKMOdPXiTN44p5UqneVIu1i6yOPDgAh6AETHAKauAa1EEDYPAEXsAH+NSetTftS/ueRHNaNrMP/kD7+QVXDKoJ</latexit>

p(x) =

Z
p(z)p(x|z)dz

evidence latent prior likelihood 

Goal: maximise p𝜃(x) by learning p𝜃(z) and p𝜃(x|z):   
<latexit sha1_base64="IJmAn4+EmnmRinMcglvkqttdhz0=">AAACY3icbVBda9RAFJ1ErXWrNq2+iTC4CFvBJZFShVIoiuBjBbct7KzLZHKzO3Q+wsyNuIb8Sd9888X/4WSzoLZeGDice+69Z05eKekxTX9E8a3bd7bubt8b7Nx/8HA32ds/97Z2AibCKusuc+5BSQMTlKjgsnLAda7gIr961/UvvoDz0ppPuKpgpvnCyFIKjoGaJ98YLgH55xf0hLLaFEEK2PRk2zBbgeNoneEaGu4WWpq2ZceUaY7LPG/et/Omx2XztaXMS02rQDlNCx42tKOXTJlA9RtHf7QHB/NkmI7TddGbINuAIdnU2Tz5zgorag0GheLeT7O0wlmwhVIoaAes9lBxccUXMA2w8+xnzTqjlj4PTEFL68IzSNfs3xMN196vdB6UnUd/vdeR/+tNayzfzBppqhrBiP5QWSuKlnaB00I6EKhWAXDhZPBKxZI7LjBkPQghZNe/fBOcvxpnR+PDj4fD07ebOLbJE/KMjEhGXpNT8oGckQkR5Ge0Fe1GSfQr3on348e9NI42M4/IPxU//Q0ZELmV</latexit>

✓⇤ = argmin
✓

Ex⇠pdata(� ln p✓(x))

Difficult to evaluate in practice → introduce recognition model q𝜃(z|x) as an approximation 
to true posterior p(z|x) 

AE terminology: 
p𝜃(x|z) → decoder

q𝜃(z|x) → encoder

In a variational autoencoder, q𝜃(z|x) is a multivariate Gaussian, parametrised by a 
neural network. 
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Variational autoencoders
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maximize likelihood ?
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Variational autoencoders
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Variational autoencoders

Variational auto encoder
:

minimize bound to negative log likelihood :

②
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by neural network :
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win we train the VAE using bad propagation ?
Need to calculate gradient of an expectation value .

Simple example :
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Fig. 2. Illustration of the types of anomalies: a point anomaly is a

single anomalous point. A contextual point anomaly occurs if a point

deviates in its local context, here a spike in an otherwise normal

time series. A group anomaly can be a cluster of anomalies or some

series of related points that are anomalous under the joint series

distribution (contextual group anomaly). Note that both contextual

anomalies have values that fall into the global (time-integrated)

range of normal values. A low-level sensory anomaly deviates from

the low-level features, here a cut in the fabric texture of a carpet

[190]. A semantic anomaly deviates in high-level factors of variation

or semantic concepts, here a dog among the normal class of cats.

Note that the white cat is more similar to the dog than to the other

cats in low-level pixel space.

background statistics can also result in a high similarity
in raw pixel space even when objects in the foreground
are completely different [200]. Detecting semantic anom-
alies is, thus, innately tied to finding a semantic feature
representation (e.g., extracting the semantic features of
cats, such as whiskers, slit pupils, and triangular snout),
which is an inherently difficult task in an unsupervised
setting [210].

3) Anomaly, Outlier, or Novelty?: Some studies make a
concrete (albeit subtle) distinction between what is an
anomaly, an outlier, or a novelty. While all three refer
to instances from low probability regions under P+ (i.e.,
are elements of A), an anomaly is often characterized as
being an instance from a distinct distribution other than P+

(e.g., when anomalies are generated by a different process
than the normal points), an outlier as being a rare or
low-probability instance from P+, and a novelty as being
an instance from some new region or mode of an evolving,
nonstationary P+. Under the distribution P+ of cats, for
instance, a dog would be an anomaly, a rare breed of cats,
such as the LaPerm, would be an outlier, and a new breed
of cats would be a novelty. Such a distinction between
anomaly, outlier, and novelty may reflect slightly different
objectives in an application: while anomalies are often
the data points of interest (e.g., a long-term survivor of
a disease), outliers are frequently regarded as “noise” or
“measurement error” that should be removed in a data

preprocessing step (“outlier removal”), and novelties are
new observations that require models to be updated to the
“new normal.” The methods for detecting points from low
probability regions, whether termed “anomaly,” “outlier,”
or “novelty,” are essentially the same, however. For this
reason, we make no distinction between these terms and
call any instance x ∈ A an “anomaly.”

4) Concentration Assumption: While, in most situations,
the data space X ⊆ RD is unbounded, a fundamental
assumption in AD is that the region where the normal data
lives can be bounded. That is, there exists some threshold
τ ≥ 0 such that

X \ A = {x ∈ X | p+(x) > τ} (2)

is nonempty and small (typically, in the Lebesgue-measure
sense, which is the ordinary notion of volume in
D-dimensional space). This is known as the so-called con-
centration or cluster assumption [211]–[213]. Note that
the concentration assumption does not imply that the full
support supp(p+) = {x ∈ X | p+(x) > 0} of the normal law
P+ must be bounded; only that some high-density subset of
the support is bounded. A standard univariate Gaussian’s
support is the full real axis, for example, but approximately
95% of its probability mass is contained in the interval
[−1.96, 1.96]. In contrast, the set of anomalies A need not
be concentrated and can be unbounded.

5) Density Level Set Estimation: A law of normality P+

is only known in a few application settings, such as for
certain laws of physics. Sometimes, a concept of normality
might also be user-specified (as in juridical laws). In most
cases, however, the ground-truth law of normality P+ is
unknown because the underlying process is too complex.
For this reason, we must estimate P+ from data.

Let P be the ground-truth data-generating distribution
on data space X ⊆ RD with corresponding density p(x),
that is, the distribution that generates the observed data.
For now, we assume that this data-generating distribu-
tion exactly matches the normal data distribution, that is,
P ≡ P+ and p ≡ p+. This assumption is often invalid in
practice, of course, as the data-generating process might
be subject to noise or contamination, as we will discuss in
Section II-C.

Given data points x1, . . . , xn ∈ X generated by P
(usually assumed to be drawn from i.i.d. random variables
following P), the goal of AD is to learn a model that
allows us to predict whether a new test instance x̃ ∈ X
is an anomaly or not, that is, whether x̃ ∈ A. Thus,
the AD objective is to (explicitly or implicitly) estimate the
low-density regions (or equivalently high-density regions)
in data space X under the normal law P+. We can formally
express this objective as the problem of density level set
estimation [214]–[217], which is equivalent to minimum
volume set estimation [218]–[220] for the special case
of density-based sets. The density level set of P for some
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Jets at the LHC
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Convolutional neural networks for jet images
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Figure 2. An illustration of the deep convolutional neural network architecture. The first layer is
the input jet image, followed by three convolutional layers, a dense layer and an output layer.

Only moderate optimization of the network architecture and minimal hyperparameter-

tuning were performed in this study. This optimization included exploration of different

optimizers (Adam, Adadelta, RMSprop), filter sizes, number of filters, activation functions

(ReLU, tanh), and regularization (dropout, L2-regularization), though this exploration was

not exhaustive. Further systematic exploration of the space of architectures and hyperpa-

rameter values, such as with Bayesian optimization using Spearmint [51], might increase

the performance of the deep neural network.

3.3 Jet images in color

All implementations of the jet images machine learning approach that we know of take as

the input image a grid where the input layer contains the pre-processed energy or transverse

momentum in a particular angular region. This can be thought of as a grayscale image,

with only intensity in each pixel and all color information discarded. In computer vision

– 8 –
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Kasieczka et al., SciPost Phys. 7, 014 (2019)

SciPost Physics Submission

a new set of questions related to training data, benchmarking, calibration, systematics, etc.

2 Data set

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26] with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking e�ciency and momen-
tum smearing changes with ⌘. The fat jet is then defined through the anti-kT algorithm [27]
in FastJet [28] with R = 0.8. We only consider the leading jet in each event and require

pT,j = 550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within �R = 0.8,
and all top decay partons to be within �R = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |⌘j | < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

Particle information or additional tracking information is not included in this format.
For instance, we do not record charge information or the expected displaced vertex from the
b-decay. Therefore, the quoted performance should not be considered the last word for the
LHC. On the other hand, limiting ourselves to essentially calorimeter information allows us
to compare many di↵erent techniques and tools on an equal footing.

Our public data set consists of 1 million signal and 1 million background jets and can be
obtained from the authors upon request [29]. They are divided into three samples: training
with 600k signal and background jets each, validation with 200k signal and background jets
each, and testing with 200k signal and 200k background jets. For proper comparison, all
algorithms are optimized using the training and validation samples and all results reported
are obtained using the test sample. For each algorithm, the classification result for each jet

Figure 1: Left: typical single jet image in the rapidity vs azimuthal angle plane for the top
signal after pre-processing. Center and right: signal and background images averaged over
10,000 individual images.

4

Typical single top-jet Average top-jet Average QCD-jet 

Jet images
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Figure 3. Reconstruction of an exemplary image (1st column) after 1, 5, 10, 25, 100, 250 (top
to bottom) epochs of training. We also show the squared error per pixel between input and re-
constructed image (2nd column) and its di↵erence w.r.t. the previous row (3rd column). The 4th
column shows the intensity of the 20 brightest input pixels (blue) together with the reconstructed
intensity (orange) and the corresponding squared error (purple crosses).
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Figure 3. Reconstruction of an exemplary image (1st column) after 1, 5, 10, 25, 100, 250 (top
to bottom) epochs of training. We also show the squared error per pixel between input and re-
constructed image (2nd column) and its di↵erence w.r.t. the previous row (3rd column). The 4th
column shows the intensity of the 20 brightest input pixels (blue) together with the reconstructed
intensity (orange) and the corresponding squared error (purple crosses).
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Anomaly detection with autoencoders

Figure 2. Architecture of our autoencoder, see also Ref. [30].

in the central pixels. For top jets, there is a clearly visible three-prong structure (as

expected for top-quark decays after preprocessing). Of course, individual jets are harder

to distinguish than their average images may indicate.

As our anomaly detection algorithm, we use a convolutional autoencoder with an

architecture similar to the one in Ref. [30]. We implement our AE with Tensorflow

2.4.1 [47], relying on the built in version of Keras [48]. Several convolution layers with

4 ⇥ 4 kernel and average pooling layers with 2 ⇥ 2 kernel are applied before the image is

flattened and a fully connected network reduces the input further into the bottleneck latent

space with 32 nodes. The Parametric ReLU activation function is used in all layers. The

described encoder structure is inverted to form the corresponding decoder which is used to

reconstruct the original image from its latent space description. Our architecture is defined

in Fig. 2; the hyperparameter settings are described in more detail in Appendix A.

Following Ref. [30], to evaluate the reconstruction of the input picture we use the mean

squared error (MSE), i.e. the average of the squared error of each reconstructed pixel with

respect to its input value, as a loss function. During testing the value of the loss function

is also used as the discriminator between signal and background. An event is tagged as

signal/anomaly if the value of the loss function is larger than a given threshold. Changing

the threshold value, one obtains the usual receiver operating characteristic (ROC) curve.

2.2 Limited reconstruction

We first investigate what the AE is actually learning, as it is trained for the reconstruction of

the input and not as an anomaly tagger. Fig. 3 shows the learning history of an exemplary

top jet in terms of its reconstruction after training on top jets for a given number of epochs.

To guide the eye, we also show the evolution of the squared error per pixel and highlight

the reconstruction of the intensity of the brightest pixels in detail. Moreover, the MSE of

the reconstruction, i.e. the loss function of the AE, is given as a measure for the overall

reconstruction improvement.

During the first epoch, the AE learns to reconstruct the average top jet image, as can

be seen by comparing the reconstructed image to the average image in Fig. 1. (Note that

the images in Fig. 1 are shown on a logarithmic scale.) In the following epochs, the squared

error is dominated by the brightest pixels. The AE improves the loss by improving their

reconstruction, so its trainable weights are updated accordingly. After 10 epochs, the AE

recovers a smeared reconstruction of the brightest pixels. After roughly 25 epochs, the

weights are learned to reconstruct the brightest pixels so well that the corresponding error

becomes small compared to the error of the remaining pixels. However, the AE further

– 5 –
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Figure 2. Architecture of our autoencoder, see also Ref. [30].

in the central pixels. For top jets, there is a clearly visible three-prong structure (as

expected for top-quark decays after preprocessing). Of course, individual jets are harder

to distinguish than their average images may indicate.

As our anomaly detection algorithm, we use a convolutional autoencoder with an

architecture similar to the one in Ref. [30]. We implement our AE with Tensorflow

2.4.1 [47], relying on the built in version of Keras [48]. Several convolution layers with

4 ⇥ 4 kernel and average pooling layers with 2 ⇥ 2 kernel are applied before the image is

flattened and a fully connected network reduces the input further into the bottleneck latent

space with 32 nodes. The Parametric ReLU activation function is used in all layers. The

described encoder structure is inverted to form the corresponding decoder which is used to

reconstruct the original image from its latent space description. Our architecture is defined

in Fig. 2; the hyperparameter settings are described in more detail in Appendix A.

Following Ref. [30], to evaluate the reconstruction of the input picture we use the mean

squared error (MSE), i.e. the average of the squared error of each reconstructed pixel with

respect to its input value, as a loss function. During testing the value of the loss function

is also used as the discriminator between signal and background. An event is tagged as

signal/anomaly if the value of the loss function is larger than a given threshold. Changing

the threshold value, one obtains the usual receiver operating characteristic (ROC) curve.

2.2 Limited reconstruction

We first investigate what the AE is actually learning, as it is trained for the reconstruction of

the input and not as an anomaly tagger. Fig. 3 shows the learning history of an exemplary

top jet in terms of its reconstruction after training on top jets for a given number of epochs.

To guide the eye, we also show the evolution of the squared error per pixel and highlight

the reconstruction of the intensity of the brightest pixels in detail. Moreover, the MSE of

the reconstruction, i.e. the loss function of the AE, is given as a measure for the overall

reconstruction improvement.

During the first epoch, the AE learns to reconstruct the average top jet image, as can

be seen by comparing the reconstructed image to the average image in Fig. 1. (Note that

the images in Fig. 1 are shown on a logarithmic scale.) In the following epochs, the squared

error is dominated by the brightest pixels. The AE improves the loss by improving their

reconstruction, so its trainable weights are updated accordingly. After 10 epochs, the AE

recovers a smeared reconstruction of the brightest pixels. After roughly 25 epochs, the

weights are learned to reconstruct the brightest pixels so well that the corresponding error

becomes small compared to the error of the remaining pixels. However, the AE further
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6 ANOMALY DETECTION 6.4 Unsupervised Training

tamination ratios in figure 6.8. The contamination ratio is defined as the number
of signal jets divided by the number of background jets during training. We train
three di↵erent initializations of the AE for each contamination rate to estimate the
uncertainty of the network.

Figure 6.8: Comparison of ROC curves (left) and performance measures (right) for
di↵erent signal contamination rates during training. The background rejection is
taken at a signal e�ciency of 0.3. The dashed line left indicates ✏B = ✏S and the
dashed lines on the right give the values of 1/0.3 (blue), 0.5 (orange), 0.1 (green)
and 0.01 (red), which correspond to the case ✏B = ✏S for the di↵erent measures.

We see that the performance decreases for increasing contamination ratio, as
expected. However, the ROC curve for a contamination rate of 1.0, i.e. training
only on top jets, is still above the line where ✏B = ✏S. This shows that top jets
remain signal like for the AE. The right side of figure 6.8 also shows that other
relevant performance measures are still in favor of top jets as signal. Only the E100
value drops below the value for ✏b = ✏S. This means that the ROC curve drops
below the dashed line in the left plot for signal e�ciencies close to zero. Still, it is
very close to this line and QCD jets can hardly be seen as signal, even in this region.
An AE that is working as intended should find light QCD jets as anomaly as soon
as the training set contains more top jet images than light QCD jet images.

The observed behavior contradicts the basic idea of anomaly detection with an
autoencoder. When training only on top jet images, light QCD jet images are the
anomaly and should be reproduced with higher loss. The behavior originates from
the simplicity of QCD jets compared to top jets. Top jet images have more active
pixels, as can be seen on the right of figure 5.4. Additionally, they have more
structure, since subjets are formed from the initial top decay. Thus, as the AE
learns to reproduce the top jet images, it becomes able to reproduce the simpler
QCD jets as well.

In section 6.2, we show that our DM jets cannot be identified as anomaly, when
compared to QCD. The same problem occurs. The signal images contain less in-
formation, i.e. less active pixels and structures, which can be seen on the right of
figure 5.4.

Since the jet images are sparsely filled, the mean squared error loss seems like a
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Top tagging: increase the fraction of top events (anomalies) in the training sample:

Training on top-jets only, the AE still identifies top-jets as anomalous 

Fraction of top events 

in training sample 

What does the autoencoder learn?
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Vanilla autoencoder shows a very limited reconstruction 
capability.

Figure 3. Reconstruction of an exemplary image (1st column) after 1, 5, 10, 25, 100, 250 (top
to bottom) epochs of training. We also show the squared error per pixel between input and re-
constructed image (2nd column) and its di↵erence w.r.t. the previous row (3rd column). The 4th
column shows the intensity of the 20 brightest input pixels (blue) together with the reconstructed
intensity (orange) and the corresponding squared error (purple crosses).
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column shows the intensity of the 20 brightest input pixels (blue) together with the reconstructed
intensity (orange) and the corresponding squared error (purple crosses).
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What does the autoencoder learn?

Vanilla autoencoder shows a complexity bias, it tends to better 
reconstruct ``simpler” images. 
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• Regularise the latent space? [Cerri et al., JHEP 05 (2019) 036, Cheng et al., e-Print: 
2007.01850 [hep-ph], Dillon et al., SciPost Phys. 11 (2021) 061, …]SciPost Physics Submission
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Figure 6: Architecture for the Dirichlet VAE. The approximate Dirichlet prior is indicated by
the softmax step and the bi-modal distribution shown above it.

This R-dimensional Dirichlet is parameterised by R hyper-parameters ↵i > 0, while the func-
tion itself is defined on an R-dimensional simplex. The Dirichlet distribution is conjugate
to the multinomial distribution and is commonly used in Bayesian statistics as a prior in
multinomial mixture models. The expectation values for the sampled vector components are
hrii = ↵i/

P
j ↵j , so as a prior it will create a hierarchy among di↵erent mixture compo-

nents. In our application, it imposes a compact latent space, whose latent dimensions can be
interpreted as mixture weights in a multinomial mixture model [49, 50].

Loss and network

For a Dirichlet structure in the latent space, the re-parametrization trick requires some at-
tention. We opt to use a softmax Gaussian approximation to the Dirichlet distribution [49],
because the re-parametrization of Gaussian sampling is straightforward and stable,

r ⇠ softmax N (z; µ̃, �̃) ⇡ D↵(r)

with µ̃i = log↵i � 1

R

X

i

log↵i

�̃i =
1

↵i

✓
1 � 2

R

◆
+

1

R2

X

i

1

↵i
. (15)

With this approximation the encoder network q�(r|x) plays the same role as in the VAE
and the GMVAE, with the encoder outputs corresponding to the means and variances of the
Gaussians in the softmax approximation.

The loss function of the Dirichlet-VAE (DVAE) includes the usual reconstruction loss
and latent loss. For the reconstruction loss we use the cross-entropy between the inputs and
the outputs [49]. The latent loss is given by the KL-divergence between the per-jet latent
space representation and the Dirichlet prior, with a pre-factor �KL. It is easily calculated for
the Gaussians in the softmax approximation of the Dirichlet distribution and the Gaussians
defined by the encoder output [49],

L =
D

�
⌦
log p✓(x|r)

↵
q�(r|x)

+ �KLDKL(q�(r|x),D↵(r))
E

pdata(x)
,

DKL(q�(r|x),D↵(r)) =
1

2
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i=1
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�̃2
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�2
i

+
(µ̃i � µi)2

�2
i

� R � log
�2
i

�̃2
i

◆
. (16)

Unlike with the GMVAE, we do not make the parameters of the prior learnable. We
employ a very simple DVAE architecture, shown in Fig. 6. The encoder is a fully connected

10

Anomaly detection with autoencoders: outlook

https://arxiv.org/abs/2007.01850


38

• Regularise the latent space? [Cerri et al., JHEP 05 (2019) 036, Cheng et al., e-Print: 
2007.01850 [hep-ph], Dillon et al., SciPost Phys. 11 (2021) 061, …]
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Figure 9: DVAE results for various amounts of anomalous top (upper) and QCD (lower) jets
in the sample, where the mixture weights (left) and the reconstruction loss (middle) are used
for classification. In the small panels we show the distributions of the top and QCD jets in
the latent space.

decrease t/Q, since the network will typically reconstruct an under-represented class poorly.
This is why we find a reasonably good performance for anomalous top-tagging at t/Q = 0.01,
as reported in Ref. [1,2,66,67]. The picture changes when the QCD jets are the signal. While
the latent space tagging with appropriate latent spaces is stable, the reconstruction error fails
as a classifier. This reflects the motivation of this study, discussed in Sec. 2, as well as the
power of our new approach.

The latent space distributions in Fig. 9 confirm that when one class is anomalous, the
Dirichlet prior helps in assigning the dominant class to the mixtures r1 = 0. One outlier
here is the case Q/t = 0.25, where QCD jets are, accidentally, assigned to r1 = 0. This can
happen because also top jets have a strong central prong and copy the typical QCD jet feature.
Because the unsupervised DVAE does not know the truth label and only assigns features to
classes, the dominant feature even when Q/t = 0.25 turns out QCD-like.

As before, we can use the visualisation of the decoder weights to study what the DVAE
has learned. In Fig. 10 we show this visualisation for the top-tagging runs in Fig. 9. As t/Q in
the training data is decreased, the p✓(x|r1=1) mixture transforms from the 3-prong top-like
structure to a 2-prong structure that is quite prevalent already in the QCD jet sample.

Enlarging the latent space

Clearly, there will be applications where a 1D latent space or R=2 is not enough to construct
a su�cient representation of the data for anomaly detection. With this in mind we enlarge
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• Improve the performance of the AE through preprocessing: smearing 
and re-weighting of pixels? [Finke et al., JHEP 06 (2021) 161, Buss et al., e-Print: 
2202.00686 [hep-ph], …]

Figure 16. ROC curves of the direct (solid) and inverse (dashed) taggers using the di↵erent
intensity mappings R0 to R4 for the KMSE and R0 for the MSE loss function. The dotted lines
represent the ROC curves of the two taggers based on the number of the non-zero pixels in the
image.

4 Conclusion

In this work we have investigated a specific autoencoder architecture, based on a con-

volutional neural network, for tagging top jets in a background of QCD jets - and vice

versa - using the reconstruction loss as the anomaly score. We observe a rather limited

performance of the autoencoder with respect to its image reconstruction capabilities, see

Section 2.2. Nevertheless, we confirm findings from the literature [30, 31] that such an

autoencoder is a powerful top tagger. These apparently contradicting observations are a

consequence of a strong complexity bias of the autoencoder-based tagger as discussed in

Section 2.3. The sparsity of the jet images in combination with the underlying physics of

QCD and top jets allow for a more successful reconstruction of the QCD jet images with

respect to the mean squared error of all pixels, no matter which training data (i.e. QCD

jets or top jets) are used.

Having made this observation in a very specific benchmark scenario, it is nevertheless

quite obvious that it might generalize to other autoencoder architectures and most probably

also to some applications with completely di↵erent data. Similar observations have been

recently made for anomaly detection in natural images [33–38]. A poor autoencoder can

be a good anomaly tagger if there is a strong bias which favours the reconstruction of the

background data for a given anomaly example. Hence, a good tagging performance for

a specific example does not imply a functional model-independent unsupervised tagger.

On the other hand, a perfect autoencoder is useless as a tagger if it can also interpolate

to reconstruct anomalies which have not (in the semi-supervised case) or rarely (in the
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• Introduce normalising condition to prevent outlier reconstruction? [Yoon et 
al., arXiv:2105.05735 [cs.LG], Dillon et al., arXiv:2206.14225 [hep-ph], …]

Autoencoding Under Normalization Constraints

Sangwoong Yoon 1 Yung-Kyun Noh 2 3 Frank C. Park 1 4

Abstract
Likelihood is a standard estimate for outlier de-
tection. The specific role of the normalization
constraint is to ensure that the out-of-distribution
(OOD) regime has a small likelihood when sam-
ples are learned using maximum likelihood. Be-
cause autoencoders do not possess such a pro-
cess of normalization, they often fail to recognize
outliers even when they are obviously OOD. We
propose the Normalized Autoencoder (NAE), a
normalized probabilistic model constructed from
an autoencoder. The probability density of NAE
is defined using the reconstruction error of an
autoencoder, which is differently defined in the
conventional energy-based model. In our model,
normalization is enforced by suppressing the re-
construction of negative samples, significantly im-
proving the outlier detection performance. Our
experimental results confirm the efficacy of NAE,
both in detecting outliers and in generating in-
distribution samples.

1. Introduction
An autoencoder (Rumelhart et al., 1986) is a neural network
trained to reconstruct samples from a training data distri-
bution. Since in principle the quality of reconstruction is
expected to be poor for inputs that deviate significantly from
the training data, autoencoders are widely used in outlier
detection (Japkowicz et al., 1995), in which an input with a
large reconstruction error is classified as out-of-distribution
(OOD). Autoencoders for outlier detection have been ap-
plied in domains ranging from video surveillance (Zhao
et al., 2017) to medical diagnosis (Lu & Xu, 2018).

However, autoencoders have been known to reconstruct
1Department of Mechanical Engineering, Seoul National

University, Seoul, Republic of Korea 2Department of Com-
puter Science, Hanyang University, Seoul, Republic of Korea
3Korea Institute of Advanced Studies, Seoul, Republic of Ko-
rea 4Saige Research, Seoul, Republic of Korea. Correspondence
to: Yung-Kyun Noh <nohyung@hanyang.ac.kr>, Frank C. Park
<fcp@snu.ac.kr>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Examples of reconstructed outliers. The last two rows
show the reconstructions from a conventional autoencoder (AE)
and NAE. Both autoencoders are trained on MNIST, and other
inputs are outliers. The architecture of the two autoencoders is
identical. Successful detection of an outlier is highlighted with blue
solid rectangles, while detection failures due to the reconstruction
of outliers are denoted with an orange dotted rectangle. Note that
AE is not the identity mapping, as it fails to reconstruct the shirt.

outliers consistently across a wide range of experimental
settings (Lyudchik, 2016; Tong et al., 2019; Zong et al.,
2018; Gong et al., 2019). We name this phenomenon outlier
reconstruction. Figure 1 shows examples of some outliers
reconstructed by an autoencoder trained with MNIST data;
the autoencoder is able to reconstruct a wide range of OOD
inputs, including constant black pixels, Omniglot charac-
ters, and fragments of MNIST digits. The early works on
regularized autoencoders (Vincent et al., 2008; Rifai et al.,
2011; Ng et al., 2011) focus for the most part on preventing
the autoencoder from turning into the identity mapping that
reconstructs every input. Nonetheless, outlier reconstruc-
tion can still occur even when the autoencoder is not the
identity as shown by the non-identity autoencoder in Figure
1. Not surprisingly, outlier reconstruction is a leading cause
of autoencoder’s detection failure.

On the other hand, in a normalized probabilistic model, it
is known that maximum likelihood learning suppresses the
assignment of probability mass in OOD regions in order to
keep the model normalized. Thus, the likelihood is widely
used as a predictor for outlier detection (Bishop, 1994).
Meanwhile, an autoencoder is not a probabilistic model
of the data and does not have a suppression mechanism
corresponding to the normalization in other probabilistic
models. As a result, the reconstruction of outliers are not
inhibited during training of an autoencoder.

This paper formulates an autoencoder as a normalized prob-

ar
X

iv
:2

10
5.

05
73

5v
2 

 [c
s.L

G
]  

23
 Ju

n 
20

21

Anomaly detection with autoencoders: outlook



41

• Introduce normalising condition to prevent outlier reconstruction? [Yoon et 
al., arXiv:2105.05735 [cs.LG], Dillon et al., arXiv:2206.14225 [hep-ph], …]
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Figure 9: ROC curve for dark jets tagging with different reweightings n, shown for
the Aachen signal (left) and the Heidelberg signal (right). The table is based on the
same information and shows the mean and the standard deviation of five different
runs.

different reweightings in Fig. 9. First, we see that the AUCs for the Aachen and Heidelberg
datasets are roughly similar. For the sparse Aachen jets we already know that smaller values
of n benefit the tagging performance, but we also see that for n< 0.3 the AUC reaches values
above 0.72, and for n = 0.2 ... 0.01 the performance essentially plateaus at a high level. In
contrast, for the Heidelberg signal we expect a better tagging performance around ✏S ⇠ 0.2 for
larger n-values. However, already looking at the AUC as a performance measure this changes,
because the performance ordering as a function of n changes towards larger signal efficiencies.

From Fig.7 we know that the different reweightings mostly change the ordering of the
two signal tails at high energies and leave the bulks of the distributions unchanged. The
corresponding ROC curves in Fig. 9 confirm that the remaining n-dependence is connected
to a behavioral change in the model in the region n ⇠ 0.2. While the choice n = 0.2 is not
optimal for each of the signals, it can be used as a working compromise between sparse dark
jets and dark jets related to a mass drop.

5 Outlook

Autoencoders are ML-analysis tools which ideally represent the idea behind LHC searches.
Unsupervised training can conceptually enrich many aspects of LHC physics, from trigger to
analysis techniques. Standard autoencoders identify out-of-distribution jets or events based
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Anomaly detection with autoencoders: outlook



42

Collisions Level 1 trigger

40M events/sec

High-level trigger 
100k events/sec

1k events/sec

Data analysis

Model independence: searching for anomalies at the LHC
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Collisions Level 1 trigger

40M events/sec

High-level trigger 
100k events/sec

1k events/sec

Data analysis
New physics?

Anomaly detection data challenge: https://mpp-hep.github.io/ADC2021/

Model independence: searching for anomalies at the LHC
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• Regularise the latent space? [Cerri et al., JHEP 05 (2019) 036, Cheng et al., e-Print: 
2007.01850 [hep-ph], Dillon et al., SciPost Phys. 11 (2021) 061, …]


• Improve the performance of the AE through preprocessing: smearing 
and re-weighting of pixels? [Finke et al., JHEP 06 (2021) 161, Buss et al., e-Print: 
2202.00686 [hep-ph], …]


• Introduce normalising condition to prevent outlier reconstruction? [Yoon et 
al., arXiv:2105.05735 [cs.LG], Dillon et al., arXiv:2206.14225 [hep-ph], …]


• Can we construct a fast autoencoder to detect anomalies in real time? 

Anomaly detection with autoencoders: outlook
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