Selected highlights from FCC Week 2022 ETP weekly meeting

June 20, 2022

Xunwu Zuo

91 km ring near CERN for ee and hh collision (and maybe more) experiments

xunwu.zuo@cern.ch

(Some of) current FCC collaborators

Showing EC H2020 beneficiaries

xunwu.zuo@cern.ch

Planned timeline

xunwu.zuo@cern.ch

Feasibility study

FCC week 2022

Review status on

- Infrastructure & civil engineering
- Accelerator technology & design
- Physics, experiment, and detector
 - Physics performance
 - Detector technology & design
 - Software infrastructure

Also, after two years of remotely working, for people in the community to catch up/get familiar with each other

	Version: 0.19	Date:	30.05.2022										
Day	Monday	Tuesday			Wednesday		Thursday				F		
Room	Plenary	Parallel 1	Parallel 2	Parallel 3	Parralel 4	Parallel 1	Parallel 2	Parallel 3	Parallel 1	Parallel 2	Parallel 3	Parallel 4	PI
	Campus Cordeliers		CICSU Jussieu		Campus Cordeliers Réfectoire		Campus Cordeliers Réfe			Réfectoire	Ca Co		
Time	FARABOEUF	Room 105	Room 107	Room 109	Room 116	ROUSSY	PASQUIER	Cordeliers	FARABOEUF	PASQUIER	ROUSSY	Cordeliers	FAR
09:00-09:30		FCCee	Phy	FCCIS WP4		ECC bb		ECCIS WP3	PED/ACC:	RE Points for			
09:30-10:00	Dianany cossion	accelerator FCCIS WP2	Programme/ Performance	Socio Econom		accelerator	PED: EPOL	Placement	FCCee EPOL	FCC-ee	Technology		Sun
10:00-10:30	Plenary session	T. Raubenheimer	S. Jadach			G. Apollinari	E. Gianfelice	F. Eder	F. Willeke	J. P. Tock	R. Losito		A.M.
10:30-11:00	L. Rivkin	Coffee break				Coffee break		Coffee break				Coffe	
11:00-11:30	Coffee break	FCCee accelerator	Phy Programme/	SRF Directions for		Technology	PED: Detector	Civil	PED/ACC:	Electricity	Technology		Sun
11:30-12:00	Plenary session	FCCIS WP2	Performance	R&D			Concepts	Engineering	FCCee MDI	and Cooling			
12:00-12:30	B. Heinemann	M. Minty	F. Blekman	O. Brunner			S. Eno	F. Bordry	M. Chamizo Llatas	I. Ruehl	T. Pieloni		R. /
12:30-14:00	Lunch break	Lunch break			Lunch break		Lunch break						
14:00-14:30	4:30 5:00 Plenary session	FCCee	Phy Programme/	Technology	ISC meeting	FCCee	PED:	FCCIS WP5	PED/ACC:	Transport &			
14:30-15:00		injector FEB	Performance	SRF	CLOSED	accelerator	Concepts	Collaboration	FCCee MDI	Safety			
15:00-15:30		A. Grudiev	G. Cacciapaglia	A.M. Valente	F. Gianotti	A. Faus-Golfe	F. Gaede	M. Chrzaszcz	K. Oide	C. Prasse			
15:30-16:00	J. Mnich		Coffee	break		Coffee break Coffee break		e break					
16:00-16:30	Coffee break	FCCee	Phy	Technology	ISC meeting	FCCee	TI Geodesy	50010 11/05				France,	Ī
16:30-17:00	Dianami cossian	injector FEB	Performance	SRF	CLOSED	accelerator	and survey	Communicati				session	
17:00-17:30	Plenary session	I. Chaikovska	M. Chamizo Llatas	T. Proslier	F. Gianotti	F. Carlier	A. Wieser	on					1
17:30-18:00	M. Lamont					Early Career	ICB meeting	M. Chalmers				Poster	Ī
18:00-18:30						Researchers	CLOSED					DRINK	
18:30-19:00	WELCOME					E. Rabinovici	P. Chomaz						
19:00-19:30	RECEPTION							-				Public event	
19:30-20:00													
20:00-20:30	(Réfectoire Cordeliers)					col	VFERENCE DIN	NER				VERRE DE	
20:30-21:00												L'AMITIE	

FCC Week

List of selected highlights

(Experiment setups)

- **Detector concepts**
- Beam energy calibration
- Flavor tagging
- Software framework

(Civil engineering and logistics)

N.B. the menu does not reflect the importance of these projects, but rather the structure of this talk

FCC-ee dataset

Much more than just "H-factory"

- Splendid datasets expected with a plethora of physics opportunities
 - EW precision measurement (Z, W, H, t)
 - QCD precision measurement (α_s)
 - Flavor physics (b, c, τ)
 - Rare decay searches
 - BSM particles (ALPs, dark photons, LLPs)
- Meanwhile, experimental challengesopportunities for tracking, vertexing, PID, jet tagging, etc.

Detector concepts

Requirements:

- Higgs and top: lepton momentum, flavor tagging (with PID)
- Z: extremely accurate acceptance, stable B field, lepton momentum
- W: jet angular calibration
- Flavor: vertex precision, PID
- LLP: far reach of tracking capability

- Well established design
 - ILC -> CLIC detector -> CLD Cooling of Si-sensors & calorimeters
- Engineering needed to make able to operate with continous beam (no pulsing) Possible detector optimizations?
- - $\sigma_{\rm p}/\rm p, \sigma_{\rm F}/\rm E$ •
 - PID ($\mathcal{O}(10 \text{ ps})$ timing and/or RICH)?
- Robust software stack
 - Now ported (wrapped) to FCCSW

Mogens Dam at FCC Week

IDEA

- Less established design •
 - But still ~15y history: 4th Concept
- Developed by very active community
 - Prototype construction / test beam compains
 - Italy, Korea,...
- Is IDEA really two concepts? Or will it be? •
 - w, w/o crystals
- Software under active development
 - Being ported to FCCSW

Noble Liquid ECAL based

- A design in its infancy
- High granul Noble Liquid ECAL is the core
- Very active Noble Liquid R&D team •
 - Readout electrodes, feed-throughs, • electronics, light cryostat, ...
 - Software & performance studies
- Full simulation of ECAL available in FCCSW

Electroweak physics

Paradigm shift:

Before the LHC, people had a clear "plan" for discovering new physics.

After 10 years of the LHC, no hint of specific BSM models.

what kind of new physics to expect, and at what energy scale.

Unparalleled opportunity:

The "ultimate" Z dataset (5×10^{12}) in our era (likely also for the far future).

The cleanest possible way to measure W and t properties.

Bring humans' knowledge of EW physics to a completely new level.

- Instead of direct searches for various signatures, examine SM very precisely to understand:

Electroweak physics

- O(10-100) times more precise than the current best measurements
 - Expected to be sensitive to new physics described by dim 6 operators up to $\Lambda \sim 70$ TeV.
 - Clues for what to expect / not to expect at FCC-hh
- In many cases, $\sigma_{syst} \gg \sigma_{stat}$
 - Fundamental improvements to be done in experimental techniques and theoretical calculations.

Observable	present	FCC-ee	FCC-ee	Co
	value \pm error	Stat.	Syst.	leadin
$m_{\rm Z} \ (\rm keV)$	91186700 ± 2200	4	100	From Z line
				Beam energy
$\Gamma_{\rm Z} \ ({\rm keV})$	2495200 ± 2300	4	25	From Z line
				Beam energy
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{\rm F}^{\mu\mu}$
				Beam energy
$1/\alpha_{\rm QED}({\rm m}_{\rm Z}^2)(\times 10^3)$	128952 ± 14	3	small	from A
				QED&EW error
R_{ℓ}^{Z} (×10 ³)	20767 ± 25	0.06	0.2-1	ratio of hadron
				acceptance f
$\alpha_{\rm s}({\rm m}_{\rm Z}^2) \ (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic c
				luminosity m
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cr
				Luminosity m
$R_{\rm b} (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb
				stat. extrapol
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetr
				fron
$A_{\rm FB}^{{\rm pol},\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	au polarization
				au de
τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radia
$\tau \text{ mass (MeV)}$	1776.86 ± 0.12	0.004	0.04	mome
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron
$m_W (MeV)$	80350 ± 15	0.25	0.3	From WW thr
				Beam energy
$\Gamma_{\rm W} ({\rm MeV})$	2085 ± 42	1.2	0.3	From WW thr
2				Beam energy
$\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)$	1170 ± 420	3	small	
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis.
				in radiativ
$m_{top} (MeV/c^2)$	172740 ± 500	17	small	From $t\bar{t}$ thr
				QCD error
$\Gamma_{\rm top} \ ({\rm MeV/c}^2)$	1410 ± 190	45	small	From $t\bar{t}$ thr
				QCD error
$ \lambda_{ m top}/\lambda_{ m top}^{ m SM} $	1.2 ± 0.3	0.10	small	From $t\bar{t}$ thr
				QCD error
ttZ couplings	\pm 30%	0.5 - 1.5%	small	From $\sqrt{s} = 3$

omment and g exp. error shape scan calibration shape scan calibration $_{\rm B}^{\mu}$ at Z peak calibration ${}_{\rm FB}^{\mu\mu}$ off peak rs dominate is to leptons for leptons m $\mathbf{R}^{\mathbf{Z}}_{\ell}$ above cross section neasurement coss sections neasurement to hadrons l. from SLD ry at Z pole n jet charge asymmetry ecay physics l alignment entum scale n separation reshold scan calibration reshold scan calibration from $\mathbf{R}^{\mathbf{W}}_{\ell}$ to leptonic ve Z returns reshold scan rs dominate reshold scan rs dominate reshold scan rs dominate $65\,{
m GeV}$ run

Electroweak case - m_W

Scan production threshold

Clean and robust measurement

Note: can also be measured from the reconstruction side at FCC-ee and used backward to examine the complex techniques developed in hadron experiments

xunwu.zuo@cern.ch

- SM $\sigma(m_W)$ = 6 MeV, CDF $\sigma(m_W)$ = 9 MeV
- Expect $\sigma(m_W) \sim 0.25$ MeV at FCC-ee

Beam energy calibration

Calibration by resonant depolarization

- Precession frequency for polarized electrons is directly related to beam energy.
- Spin tune, the number of precession per tunnel-cycle defined as.

$$\nu = \frac{g_e - 2}{2} \frac{E_b}{m_e} = \frac{E_b}{0.4406486(1)}$$

• The RF kicker synchronized with the precession frequency would gradually tilt the spin direction to the horizontal plane (vertical depolarization)

Flavor physics

- With 5×10^{12} Z bosons
 - $10^{12} b$ quarks
 - about 13x as many B^0/B^+ as Belle II (50
 - All species of b-hadrons are produced
 - $10^{12} c$ quarks, $3.3 \times 10^{11} \tau$ leptons

 - about 10x as many c-hadrons as Belle II (50 ab^{-1}) <u>Belle II physics book</u> • about 8x as many τ as Super tau-charm factory STCF slides
 - Decay products significantly boosted
 - LFV $Z \rightarrow \tau \mu, Z \rightarrow \mu e, Z \rightarrow \tau e$ decays
- More opportunities in H-dataset (LFV decay) and WW-dataset (CKM measurements).

Next-generation machine for all flavor physics

	Attribute	$\Upsilon(4S)$	pp	2
	All hadron species		1	
	High boost		1	
$\mathbf{O} = \mathbf{I} = \mathbf{I}$	Enormous production cross-section		1	
$0 ab^{-1})$	Negligible trigger losses	1		
	Low backgrounds	1		
	Initial energy constraint	1		(

Flavor case - $B^0 \rightarrow K^* \tau^+ \tau^-$

- Compare with current LFV in $b \rightarrow s\ell\ell$ between e and μ
- Super rare decay $BR_{SM} \sim O(10^{-7})$
 - Current limit at 10^{-3} (from BaBar)
- Highly sensitive to BSM enhancements
- Strong case to study/demand detector performance
- Backgrounds are overwhelming, but the signal is still visible
 - (WIP) significance ~ 3
 - To further reduce backgrounds

 B^0

- Efficient background rejection and little cross-contamination
- **BSM** models

xunwu.zuo@cern.ch

Flavor tagging

- Crucial to all studies with hadronic final states
- Benefit from excellent vertexing and PID performances.
- Additional (novel) opportunities for measurements in the strange sector
- Irreplaceable opportunities to study light q-jet vs g-jet properties with standard candles of $Z \rightarrow qq$ and $H \rightarrow gg$ samples

 10^{-2}

 10^{-3}

QCD

- α_s measurement matters for all decays
 - Many ways to measure α_s at FCC-ee
- Clean and abundant data events to study jet substructure, parton shower, and hadronization.
- High demands for QCD calculation
 - QCD syst is the leading uncertainty for some EW measurements
 - Improvements needed in high order calculation and resummation, and color reconnection

Higgs physics

Christophe Grojean at FCC week

Electricity bill per Higgs boson FCC Q&A

Collider	ILC_{250}	$\operatorname{CLIC}_{380}$
Cost (Euros/Higgs)	7,000 to 12,000	2,000

xunwu.zuo@cern.ch

- Complementary to Higgs programs at HL-LHC (4×10^8) and FCC-hh (> 10^{10})
 - Higgs mass and width
 - Higgs to light quarks and gluons decay.
 - Higgs to invisible decay
 - H e coupling from direct production.
- Most cost-effective e^+e^- Higgs factory
 - Linear colliders are limited by luminosity

Higgs physics - experimental coverage

- Unique opportunities in FCC-ee are under study
- Many more essential measurements to be covered

Ongoing activities

[performance meetings: Nov, March and May] [more details in J. Eysermans' talk]

- *ZH* cross section and m_h (recoil of $Z \rightarrow \mu^+ \mu^-$ and hadrons)
- $H \rightarrow b\bar{b}, c\bar{c}, gg$ and $s\bar{s} (Z \rightarrow \ell^+ \ell^-, \nu\bar{\nu}, jj)$
- $H \rightarrow \tau \tau$ (+ CPV + light scalars at Z pole)
- $H \rightarrow \text{invisible} (Z \rightarrow e^+e^-, \mu^+\mu^-, b\bar{b}, q\bar{q})$
- self-coupling through loops
 - recoil with $Z
 ightarrow \mu^+ \mu^-, q ar q$ at 240 & 365 GeV
 - VFB $\nu \bar{\nu} H(b\bar{b})$ and $e^+e^-H(b\bar{b})$ at 365 GeV
 - combination with di-Higgs at FCC-hh
- differential $ZH \rightarrow 4f$ for anomalous couplings

[Beneke, Boito, Wang '14] [Craig, Gu, Liu, Wang '15]

 $\cdot e^+e^- \rightarrow H$

Gauthier Durieux – FCC Week – 31 May 2022

xunwu.zuo@cern.ch

Gauthier Durieux at FCC week

Higgs case- Higgs self-coupling

xunwu.zuo@cern.ch

 $\kappa_{\lambda} \equiv$

 $\lambda_2^{\rm SM}$

- Direct production of HH is very rare at FCC-ee
- Self-coupling indirectly probed through loop correction to ZH and VBF processes

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} (1 + \kappa_{\lambda} C_1)$$

Higgs case - Higgs mass

• With ZH events, measure Higgs mass from the recoil of Z

$$m_H^2 \triangleq m_{recoil}^2 = (\sqrt{s} - E_Z)^2 - p_Z^2$$

- With $Z \rightarrow \mu\mu$ channel, $\sigma(m_H) = 6 - 9 \text{ MeV},$ depending on detector resolution
- Compared to current LHC results, $\sigma_{tot}(m_H) > 100$ MeV, in which $\sigma_{syst}(m_H) \lesssim 100 \text{ MeV}$
 - Possible to reach ~20 MeV at HL-LHC with significant amount of work

Jan Eysermans at FCC week

Higgs physics

- Higgs programs at lepton collisions and had collisions are complementary.
- Sub-percent precision for most measureme at FCC
 - Challenges for theory to match this precise

What theory precision?

[Freitas, Heinemeye

- · 2-loop ZH needed for < 1% unc. and possibly achievable off-shell Z effects?
- Partial 2-loop VBF possibly achievable and sufficient
- · Off-shell WW production at 2-loop requiring significant effor
- Factorisable NNLO QCD to $H \rightarrow VV^* \rightarrow 4f$ decay achievable
- · N⁴LO $H \rightarrow gg$ and m_b dependence at N³LO needed for $< 1^{6}$ unc. and possibly reachable
- · One-loop SMEFT automation ongoing

[Degrande, GD, Maltoni, Mimasu, Vryonidou, Zhang '20] Gauthier Durieux at FCC week Gauthier Durieux – FCC Week – 31 Mav 2022

xunwu.zuo@cern.ch

Mainly constrained by FCC-ee

dron	Collider	HL-LHC	$\text{FCC-ee}_{240 \rightarrow 365}$	FCC-IN
	Lumi (ab^{-1})	3	5 + 0.2 + 1.5	30
nto	Years	10	3 + 1 + 4	25
1115	$g_{ m HZZ}~(\%)$	1.5	0.18 / 0.17	0.17/0.
	$\mid g_{ m HWW}$ (%)	1.7	0.44 / 0.41	0.20/0.
sion	$\mid g_{ m Hbb} \; (\%)$	5.1	0.69 / 0.64	0.48/0.
51011	$\mid g_{ m Hcc} \ (\%)$	\mathbf{SM}	1.3 / 1.3	0.96/0.
r, et al. '19]	$\mid g_{ m Hgg} \; (\%)$	2.5	1.0 / 0.89	0.52/0
	$\mid g_{\mathrm{H} au au}$ (%)	1.9	0.74 / 0.66	0.49/0.
	$\mid g_{\mathrm{H}\mu\mu} \ (\%)$	4.4	8.9 / 3.9	0.43/0.
	$\mid g_{\mathrm{H}\gamma\gamma} \ (\%)$	1.8	$3.9 \ / \ 1.2$	0.32/0.
	$\mid g_{\mathrm{HZ}\gamma} \ (\%)$	11.	- / 10.	0.71/0
<i>.</i> +	$g_{ m Htt}$ (%)	3.4	10. / 3.1	1.0/0.9
	(07)	50	44./33.	3 /
le	9HHH (70)	50.	27./24.	J-4
%	$\Gamma_{ m H}$ (%)	SM	1.1	0.91
	BR_{inv} (%)	1.9	0.19	0.024
	BR _{EXO} (%)	SM(0.0)	1.1	1

arxiv:2106.13885

Software tools - key4hep

and data format for generic HEP experiments

- Complete set of tools for all steps in **HEP** experiments
- Ready to use, straightforward to learn, centrally maintained
- Synergy and unification across all major future collider experiments
 - FCC, CLIC, ILC, CEPC, and EIC
 - Led by a small core group at CERN

* Software and computing co-convened by our own Clement Helsens

Goal: create a software ecosystem integrating various tools and providing a standard workflow

<u>Gerardo Ganis at FCC week</u>

Software tools - analysis workflow

Common framework for all FCC analyses

Data processing: <u>https://github.com/HEP-FCC/FCCAnalyses</u>

With common utilities for object reconstruction and kinematic calculation

xunwu.zuo@cern.ch

<u>Clement Helsens at FCC week</u>

Civil engineering

- Horizontal coordinate: set coordinate
 reference
 - Fluid field of the land
 - Many different coordinate systems
 - Coordinate precision at mm level

xunwu.zuo@cern.ch

- Vertical coordinate: gravity field and Geoid measurements
 - Definition of "vertical" varies point-bypoint
 - Affects height measurement at cm level

Civil engineering

- ϕ 5.5m ring as both the collider ring and the transportation tunnel
 - Both booster ring and collider ring include ~10000 magnets
 - Electric vehicles for transporting both people and material

- About 9M cubic meters of excavated material
 - Re-use for construction
 - Assess pollution risk

Cristiana Colloca at FCC week

Cost estimate

Construction cost <u>CERN-ACC-2019-0007</u>

Domain	Cost in MCHF
Stage 1 - Civil Engineering	5,400
Stage 1 - Technical Infrastructure	2,200
Stage 1 - FCC-ee Machine and Injector Complex	4,000
Stage 2 - Civil Engineering complement	600
Stage 2 - Technical Infrastructure adaptation	2,800
Stage 2 - FCC-hh Machine and Injector complex	13,600
TOTAL construction cost for integral FCC project	28,600

Operational cost 1.5 - 2 times the power consumption of LHC LHC operational cost in 2018 is ~250 MCHF (CERN budget 2018)

xunwu.zuo@cern.ch

CERN Meyrin, SPS, FCC	Z	W	н	TT
Beam energy (GeV)	45.6	80	120	182.5
Energy consumption (TWh/y)	1.82	1.92	2.09	2.54

Jean-Paul Burnet at FCC Week

KIT contributions

Group members: Markus Klute, Clement Helsens, Xunwu Zuo **Projects**:

- Software and computing
 - Key4hep, EDM4hep, analysis framework Clement in Software & Computing coordination
 - Sample generation and management
- Physics performance
 - $B^+/B_c^+ \rightarrow \tau^+ \nu_{\tau}$ searches
 - (Planned) $H \rightarrow \tau \tau$ measurements
 - (Planned) Search for new scalars (h) in Zh production
 - (Planned) τ -ID algorithm and performance
- Technical support
 - FCC conference webpage

Management roles:

• Markus in FCC conference committee

