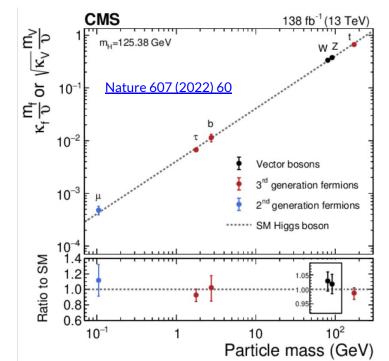


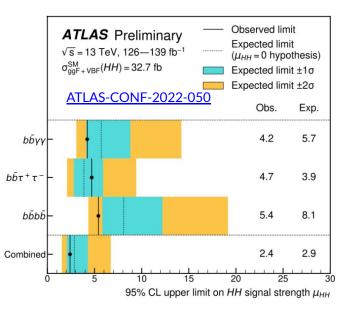
Sebastian Brommer, Xunwu Zuo, Soureek Mitra

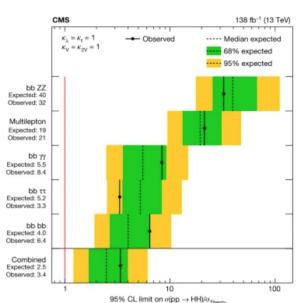
Introduction

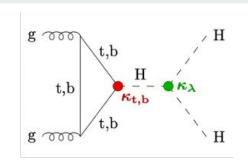
- Bologna: Capital and largest city of the Emilia-Romagna region in Italy with Significant settlements from about 9th century BCE
- *ICHEP 2022* conference:
 - Marks 10th anniversary of Higgs discovery
 - 1493 participants : 1215 (on-site)+ 278 (on-line)
 - 17 parallel sessions with ~ 900 parallel talks + 250 posters
- We will present a few interesting (mostly new) results cherry-picked based on our taste
- For more details, please refer to this <u>link</u>



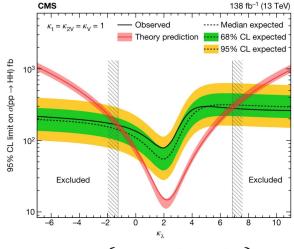

Higgs Couplings

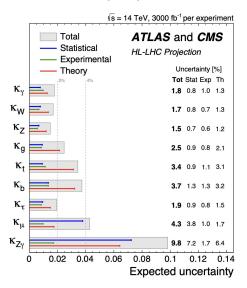

Higgs couplings with full Run2 data→good agreement with SM predictions so far

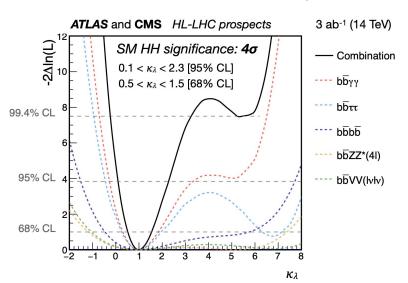




Di-Higgs production and self-coupling


- Starting to get interesting: 95% CL limits @ 2 3 times SM expectations!
- Exciting prospect for Run3 and HL-LHC (Observation ??)





$$\kappa_{\lambda} \in \{-1.24, 6.49\}$$

Higgs at HL-LHC

LHC summary report: arxiv 1902.000134 based on 2016 (or 16+17) analyses

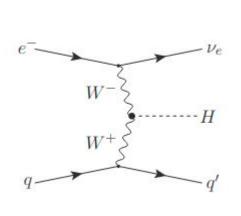
Recent updated made in individual channels in ATLAS and CMS, not combined summary yet. A. Purohit's talk

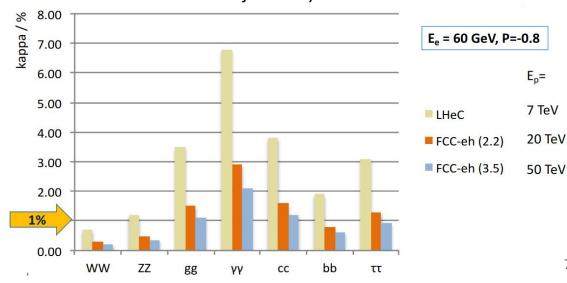
- $H \rightarrow 4I \underline{FTR-21-007} \sigma(mH) = 20 (syst) \pm 20 (stat) MeV, \sigma(\Gamma H) = 150 (syst) \pm 94 (stat) MeV$
- $H \rightarrow \gamma \gamma FTR-21-008 \sigma(mH) = 70 (syst) \pm 20 (stat) MeV$

Complementary between ee and pp experiments

M. Selvaggi's talk

- ee experiment is more suitable for measuring main decay mode (especially hadronic modes), and Higgs mass and width
- pp experiment is more suitable for measuring rare decays, and multi-Higgs productions

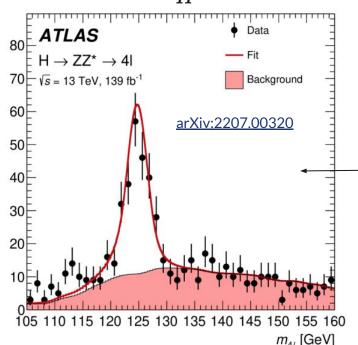

	HL-LHC	FCC-ee	FCC-hh
δΓ _H / Γ _H (%)	SM	1.3	tbd
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17	tbd
δg _{HWW} / g _{HWW} (%)	1.7	0.43	tbd
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61	tbd
δg _{Hcc} / g _{Hcc} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δднττ / днττ (%)	1.9	0.74	tbd
δд _{нμμ} / д _{нμμ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4	_	0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8	_	0.91 (*)
δдннн / дннн (%)	50	~30 (indirect)	5
BR _{exo} (95%CL)	BR _{inv} < 2.5%	< 1%	BR _{inv} < 0.025%


Higgs at lepton-proton colliders

<u>arxiv: 2007:14491</u> and <u>U. Klein's talk</u>

Expect 200k Higgs events with 1 ab^-1 of data Higgs physics is not the driving focus of lepton-proton colliders, but can be good additions

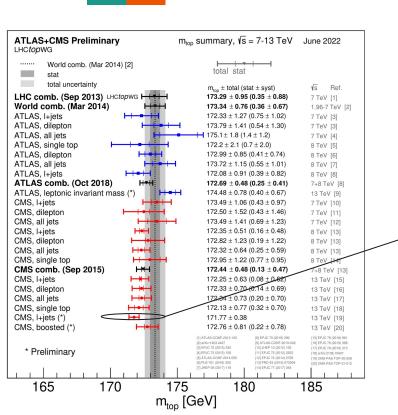
- High sensitivity in HWW coupling measurement
- Contributed to the cross-experiment combination in all major decay channels

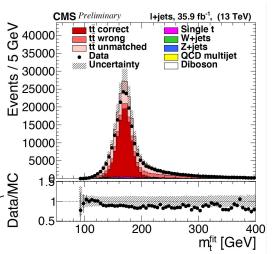


Higgs mass

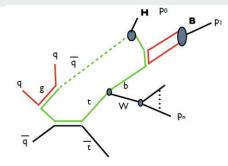
Events / 1.25 GeV

$$m_H = 124.94 \pm 0.17 \text{(stat.)} \pm 0.03 \text{(syst.)} \text{ GeV}$$

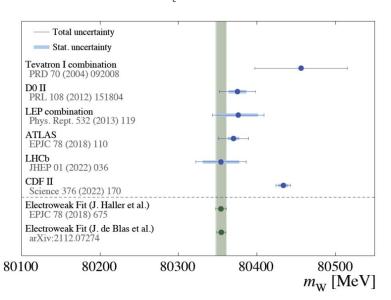

- New ATLAS measurement with full Run2 data
- Precision better than 1.5 per mil in individual channels

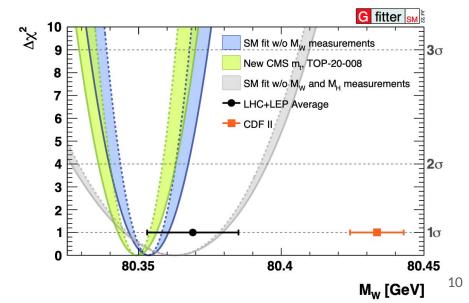

Systematic Uncertainty	Contribution (MeV)	
Muon momentum scale	±20	
Electron energy scale	±16	
Signal Theory	±13	

CMS Combination ($\gamma\gamma$ + 4I) with Run1 + partial Run2 (2016) data:


$$m_H = 125.38 \pm 0.14 \text{ GeV}$$

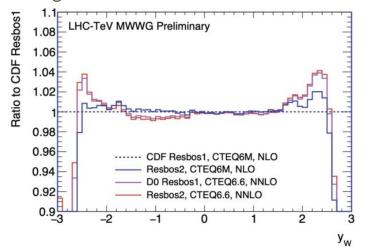
Top quark mass

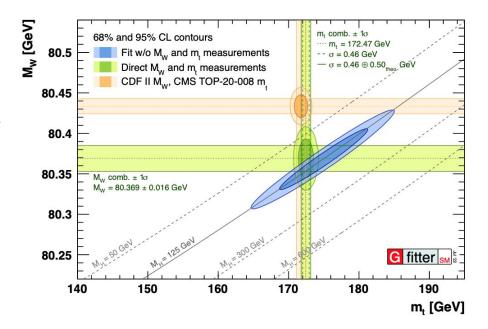

- Top quark decays before hadronizing, but the daughter(s) hadronize(s)
- Impossible to assign final state particles only to the parent top quark \rightarrow effect $O(\lambda_{OCD}) \approx 0.2 \text{ GeV}$
- Important to measure mass with different methods to reduce uncertainties
 - Reached ~ 2 permil precision with individual measurements


CMS-PAS-TOP-20-008

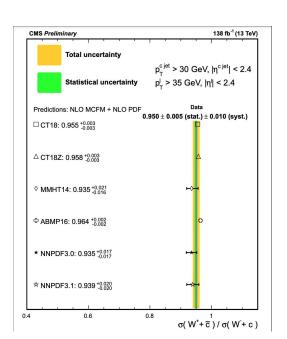
The W mass conundrum

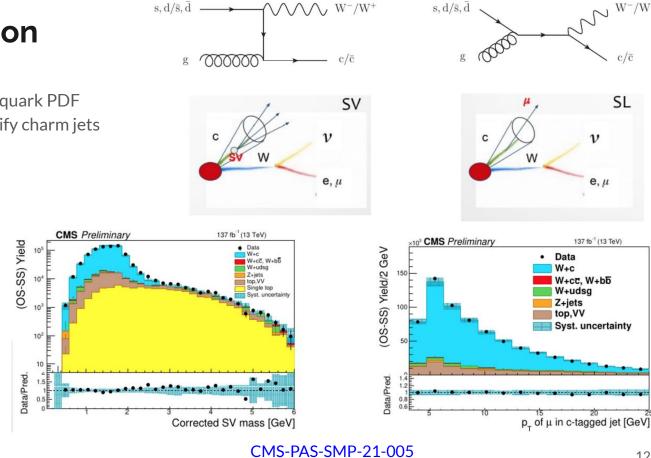
See this talk

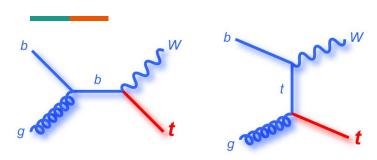

- Life becoming difficult at EW fits with the new CDF measurement
 - \rightarrow 6.8 σ deviation from prediction (Blue Band)
- Using m₊ from CMS-PAS-TOP-20-008 the deviation is even larger (Green Band)



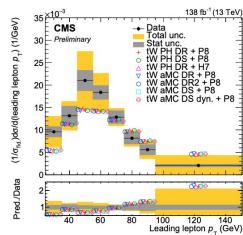
The W mass conundrum

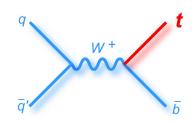

- SM predictions consistent with LEP + LHC measurements
- Need to resolve tension with new W mass result from CDF
- PDFs are key inputs → need to understand the differences and harmonize PDF+generators before combining measurements



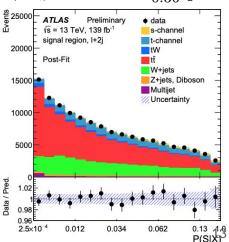

W + c production

- Measurement sensitive to s-quark PDF
- c- tagging employed to identify charm jets

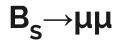



Single top (tW and s-channel production)

$$\sigma_{meas.} = 79.2 \pm 0.8 (\text{stat.})^{+7.0}_{-7.2} (\text{syst.}) \pm 1.1 (\text{lumi}) \text{ pb}$$

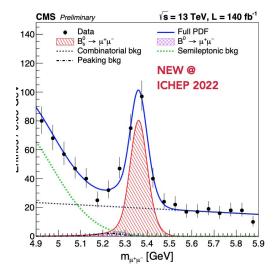


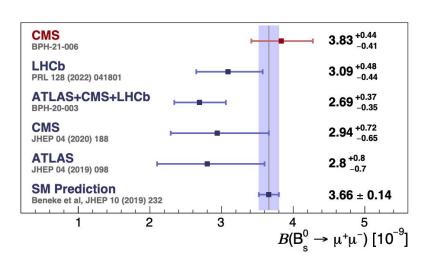
ATLAS-CONF-2022-030

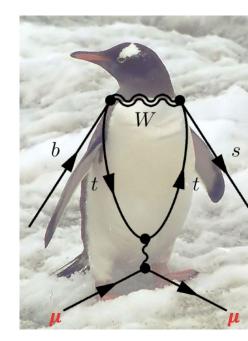


$$\sigma_{meas.} = 8.2^{+3.5}_{-2.9} \text{ pb}, \ \sigma_{SM} = 10.32^{+0.40}_{-0.36} \text{ pb}$$

Evidence with $3.3(3.9)\sigma$ observed (expected) significance

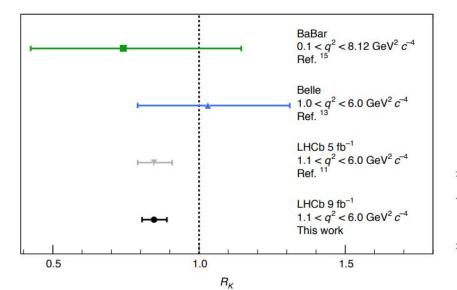


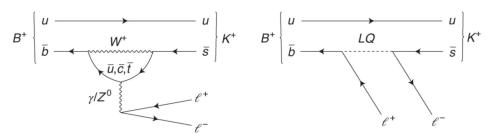

CMS-BPH-21-006



- Highly suppressed in SM, however enhancement predicted in several BSM scenario
- Theoretically pristine as well as experimentally accessible → ultimate tool to test new physics

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left[3.83^{+0.38}_{-0.36} \text{ (stat)} ^{+0.19}_{-0.16} \text{ (syst)} ^{+0.14}_{-0.13} (f_s/f_u) \right] \times 10^{-9}$$



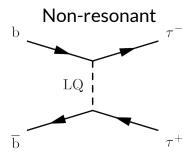


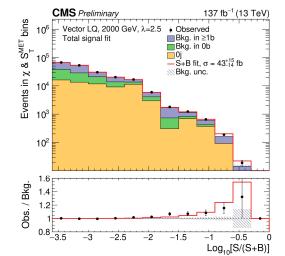
LFU using B-decays

$$R_K = \frac{\mathcal{B} \ (B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B} \ (B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)} / \frac{\mathcal{B} \ (B^+ \to K^+ e^+ e^-)}{\mathcal{B} \ (B^+ \to J/\psi(\to e^+ e^-)K^+)}$$

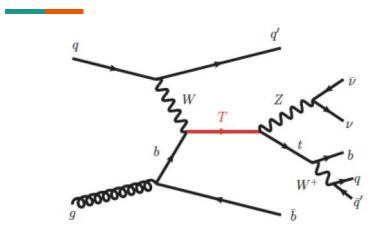
- Measurement deviates from SM by 3.1σ
- New Belle2 results for control channels, preparing for R_K

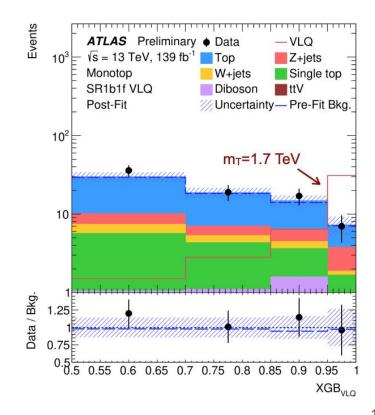
Observable	Belle II	Belle (2021)
$R_{K^+}(J/\psi)$	$1.009 \pm 0.022 \pm 0.008$	$0.994 \pm 0.011 \pm 0.010$
$R_{K^0_{ m S}}(J/\psi)$	$1.042 \pm 0.042 \pm 0.008$	$0.993 \pm 0.015 \pm 0.010$


Nature Physics, 18, 277-282 (2022)

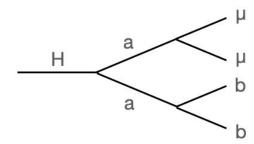

CMS-PAS-EXO-19-016

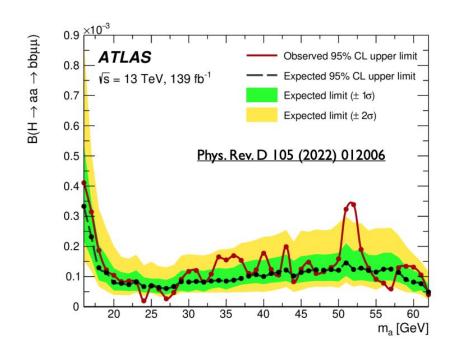
LQ searches at LHC


- Limits obtained for Scalar and Vector LQs with varied couplings in the bT-LQ search
- 3.4 σ excess above SM expectation for LQ mass of 2 TeV and coupling strength (λ) = 2.5 observed by CMS!
- Mostly compatible with H→TT result driven by non-resonant categories



Search for Vector Like Quarks (VLQ)


ATLAS-CONF-2022-036


- New search from ATLAS in the monotop final state
- Benchmark scenario: $k_T = 0.5$ and BR $(T \rightarrow tZ) = 25\%$
- m_T > 2.2 TeV @ 95% CL (Gain by 500 GeV!)

H→aa

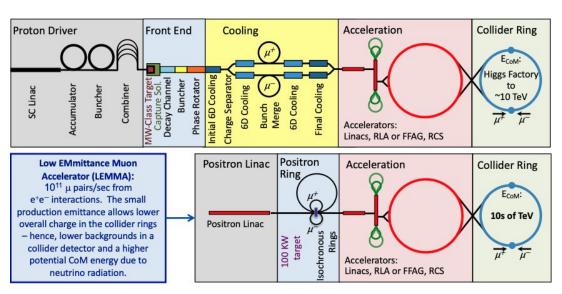
- SM Higgs decays to light pseudoscalar particles predicted by nMSSM models
- ATLAS reports intriguing 3.1σ(1.7σ) local (global) excess at m_a ≈ 52 GeV (a→μμ) in the bbμμ final state

Conclusion

- The first large scale HEP conference post pandemic
- Significant excesses and deviations from SM reported by various experiments →Exciting times ahead
- Precision measurements could indicate the nature of new physics
- ICHEP 2024 to be held in Prague. Check out the <u>video invitation</u>

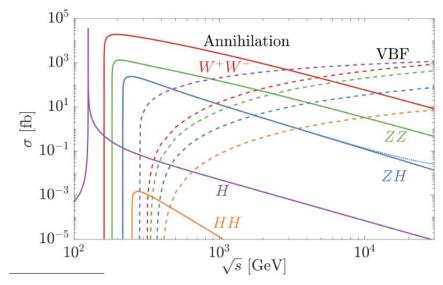
Backup

Future collider possibility - muon collider D. Calzolari's talk


Clean and kinematically-constrained collisions at O(10 TeV).

- Not limited by synchrotron radiation, O(10 TeV) with 10 km rings.
- If high luminosity can be achieved, ideal for precision measurement of physics at TeV level.

\sqrt{s}	$\int \mathcal{L}dt$	
3 TeV	$1 { m ab}^{-1}$	
10 TeV	$10 {\rm \ ab^{-1}}$	
14 TeV	20 ab^{-1}	


Challenge: Muon lifetime ~ 2.2 µs

- Electrons heat up accelerator magnets
- Intense neutrino flux around beam rings

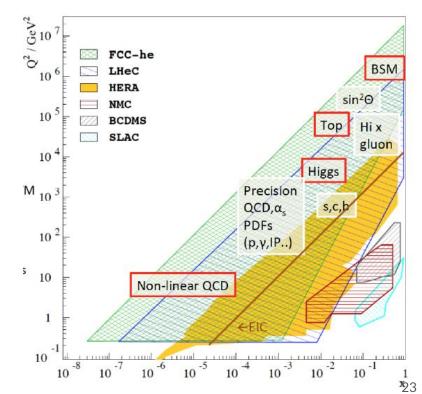
Higgs at muon colliders

With 1 ab^-1 data at 3 TeV, expect 500k Higgs events With 10 ab^-1 data at 10 TeV, expect > 5M Higgs events (Compared to 1M~2M Higgs at FCC-ee)

(Why not 125 GeV collision?)

L. Sestini's talk and J. Reuter's talk

Channel	$\Delta\sigma/\sigma$ (%)	
Channel	3 TeV	10 TeV
bb	0.76	0.21
cc	13	4.0
gg	3.3	0.89
$ au^+ au^-$	4.0	1.1
$WW^*(jj\ell\nu)$	1.7	0.45
$WW^*(4j)$	5.7	1.3
$ZZ^*(4\ell)$	45	12
$ZZ^*(jj\ell\ell)$	11	3.2
$ZZ^*(4j)$	65	14
$\gamma\gamma$	6.1	1.6
$Z(jj)\gamma$	47	13
$\mu^+\mu^-$	40	9.8
ttH(bb)	61	53


Future collider possibility - LHeC

B.J. Holzer's talk

With an extra electron ring, the LHeC can operate at concurrently with HL-LHC (replacing ALICE)

• DIS experiments with rich physics cases Similarly, an FCC-eh program is also planned.

Ichep dinner

florence

