

Mathematical Structures in Massive Operator Matrix Elements

Mathematical Structures in Feynman Integrals, Siegen, Germany Johannes Blümlein, DESY² | February, 13-16, 2023

DESY

Based on:

- A. Behring, J.B., and K. Schönwald, The inverse Mellin transform via analytic continuation, DESY 20–053.
- J. Ablinger et al., The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements $A_{aa}^{(3)}$ and $\Delta A_{aa}^{(3)}$, JHEP **12** (2022) 134.

In collaboration with:

J. Ablinger, A. Behring, A. De Freitas, A. Goedicke, A. von Manteuffel, C. Schneider, K. Schönwald

²Supported by Siegen University.

Outline

- Introduction
- Solutions in Mellin Space
- 3 Inverse Mellin transform via analytic continuation
 - Harmonic polylogarithms
 - Cyclotomic harmonic polylogarithms
 - Generalized harmonic polylogarithms
 - Square root valued alphabets
 - Iterative non-iterative Integrals
 - Iterating on ₂F₁ solutions
- 4 The massive OME $A_{gg,Q}^{(3)}$
 - Binomial Sums
 - Small and large x limits
 - Small and large x limits
 - Numerical results
- Conclusions

Introduction

- Massive OMEs allow to describe the massive DIS Wilson coefficients for $Q^2 \gg m_Q^2$.
- Furthermore, they form the transition elements in the variable flavor numer scheme (VFNS).
- The current state of art is 3-loop order, including two-mass corrections, because m_c/m_b is not small.
- After having calculated a series of moments in 2009 I. Bierenbaum, JB, S. Klein, Nucl. Phys B 820 (2009) 417, we started to calculate all OMEs for general values of the Mellin variable N.
- There are the following massive OMEs: $A_{qq,Q}^{NS}$, $A_{qg,Q}$, $A_{qg,Q}^{PS}$, $A_{gq,Q}$, $A_{gq,Q}^{PS}$, $A_{gg,Q}$, A_{Qg} .
- To 2-loop order $A_{qq,Q}^{NS}$, A_{Qq}^{PS} , A_{Qg} , [2007] $A_{gq,Q}$, $A_{gg,Q}$ [2009] contribute. These quantities are represented by harmonic sums resp. harmonic polylogarithms. [Older work by van Neerven, et al.]
- The 3-loop contributions of $O(N_F)$ [2010] to all OMEs and the $A_{qq,Q}^{\rm NS}$, $A_{qg,Q}$, $A_{gq,Q}$, $A_{qq,Q}^{\rm PS}$, [2014] are also given by harmonic sums only. [Also all logarithmic terms of all OMEs.]
- For A_{Qq}^{PS} [2014] also generalized harmonic sums are necessary.
- \bullet $A_{gg,Q}$ [2022] requires finite binomial sums.
- Finally, A_{Qg} depends also on ${}_{2}F_{1}$ -solutions [2017] (or modular forms).
- In the two-mass case to 3-loop order $A_{qq,Q}^{\rm NS}$, $A_{qg,Q}$, $A_{qq,Q}^{\rm PS}$, $A_{qq,Q}$, $A_{gq,Q}^{\rm PS}$, $A_{gq,Q}$, $A_{gg,Q}$ [2017-2020] can be solved analytically due to 1st order factorization of the respective differential equations. The solution for A_{Qq} is by far more involved.

Mathematical Structure of Feynman Integrals

1998: Harmonic Sums [Vermaseren; JB]. At this time Nielsen integrals were exhausted and something new had to be done for single scale quantities.

A new era in QFT started.

- 1997 More was known (or claimed to be) on numbers [zero scale quantities] [Broadhurst, Kreimer]
- 1999: Harmonic Polylogarithms [Remiddi, Vermaseren]
- 2000, 2003, 2009: Analytic continuation of harmonic sums, systematic algebraic reduction; structural relations [JB]
- 1999,2001: Generalized Harmonic Sums [Borwein, Bradley, Broadhurst, Lisonek], [Moch, Uwer, Weinzierl]
- 2004: Infinite harmonic (inverse) binomial sums [Davydychev, Kalmykov; Weinzierl]
- 2009: MZV data mine [JB, Broadhurst, Vermaseren]
- 2011: (generalized) Cyclotomic Harmonic Sums, polylogarithms and numbers [Ablinger, JB, Schneider]
- 2013: Systematic Theory of Generalized Harmonic Sums, polylogarithms and numbers [Ablinger, JB, Schneider]
- 2014: Finite nested Generalized Cyclotomic Harmonic Sums with (inverse) Binomial Weights [Ablinger, JB, Raab, Schneider]
- 2014-: Elliptic integrals with (involved) rational arguments.
- now: More-scale problem: Kummer-elliptic integrals

Particle Physics Generates NEW Mathematics & steadily needs new methods from Mathematics.

Introduction 0 • 0 0 0

Function Spaces

Sums

Harmonic Sums

$$\sum_{k=1}^{N} \frac{1}{k} \sum_{l=1}^{k} \frac{(-1)^{l}}{l^{3}}$$

gen. Harmonic Sums

$$\sum_{k=1}^{N} \frac{(1/2)^k}{k} \sum_{l=1}^{k} \frac{(-1)^l}{l^3} \qquad \int_0^x \frac{dy}{y} \int_0^y \frac{dz}{z-3}$$

Cycl. Harmonic Sums

$$\sum_{k=1}^{N} \frac{1}{(2k+1)} \sum_{l=1}^{k} \frac{(-1)^{l}}{l^{3}}$$

Binomial Sums

$$\sum_{k=1}^{N} \frac{1}{k^2} {2k \choose k} (-1)^k$$

Integrals

Harmonic Polylogarithms

$$\int_0^x \frac{dy}{y} \int_0^y \frac{dz}{1+z}$$

gen. Harmonic Polylogarithms

$$\int_0^x \frac{dy}{y} \int_0^y \frac{dz}{z-3}$$

Cycl. Harmonic Polylogarithms

$$\sum_{i=1}^{N} \frac{1}{(2k+1)} \sum_{i=1}^{k} \frac{(-1)^{i}}{i^{3}} \int_{0}^{x} \frac{dy}{1+y^{2}} \int_{0}^{y} \frac{dz}{1-z+z^{2}}$$

root-valued iterated integrals

$$\int_0^x \frac{dy}{y} \int_0^y \frac{dz}{z\sqrt{1+z}}$$

iterated integrals on ₂F₁ functions

$$\int_0^z dx \frac{\ln(x)}{1+x} {}_2F_1\left[\frac{\frac{4}{3},\frac{5}{3}}{2};\frac{x^2(x^2-9)^2}{(x^2+3)^3}\right] \qquad \int_0^1 dx \, {}_2F_1\left[\frac{\frac{4}{3},\frac{5}{3}}{2};\frac{x^2(x^2-9)^2}{(x^2+3)^3}\right]$$

Special Numbers

multiple zeta values

$$\int_0^1 dx \frac{\text{Li}_3(x)}{1+x} = -2\text{Li}_4(1/2) + \dots$$

gen. multiple zeta values

$$\int_0^1 dx \frac{\ln(x+2)}{x-3/2} = \text{Li}_2(1/3) + \dots$$

cycl. multiple zeta values

$$\mathbf{C} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}$$

associated numbers

$$\mathrm{H}_{8,w_3}=2\mathrm{arccot}(\sqrt{7})^2$$

associated numbers

$$\int_0^1 dx \, {}_2F_1 \left[\begin{array}{c} \frac{4}{3}, \frac{5}{3} \\ 2 \end{array}; \frac{x^2(x^2 - 9)^2}{(x^2 + 3)^3} \right]$$

shuffle, stuffle, and various structural relations \implies algebras

Except the last line integrals, all other ones stem from 1st order factorizable equations \Longrightarrow modular forms.

Introduction

Also the corresponding quantities in the polarized case were calculated.

A very long tale:

42 physics and 26 algorithmic and mathematical journal/book publications so far.

- All solved cases up to now could be calculated in the single mass case in Mellin space.
- In the two-mass PS-case one has to refer to x space, because in Mellin space there is no 1st order factorization.
- Massless 3-loop calculations: anomalous dimensions and Wilson coefficients (unpolarized/polarized), JB, P. Marquard, C. Schneider, K. Schönwald, Nucl. Phys B 971 (2021) 115542, JHEP 01 (2022) 193, Nucl. Phys. B 980 (2022) 115794, JHEP 11 (2022) 156 (extending and confirming earlier work by Moch, Vermaseren and Vogt, [2004,2005,2014])
- massive QED applications: JB, A. De Freitas, C. Raab, K. Schönwald, W.L. van Neerven, 2011, 2019/21.
- \bullet $A_{gg,Q}$: Also here one diagram is better computed in *x*-space first.
- A_{Qg} : ongoing: ${}_2F_1$ contributions; not yet implemented in N-space algorithms.
- Very large recurrences can be computed. However, their factorization beyond the first order factors is still not possible.
- Therefore, we will deal with the ${}_{2}F_{1}$ -dependent master integrals in x space first.
- How to go from N-space to x-space analytically ?

Principal computation steps

Chains of packages are used to perform the calculation:

- QGRAF, Nogueira, 1993 Diagram generation
- FORM, Vermaseren, 2001; Tentyukov, Vermaseren, 2010 Lorentz algebra
- Color, van Ritbergen, Schellekens and Vermaseren, 1999 Color algebra
- Reduze 2 Studerus, von Manteuffel, 2009/12, Crusher, Marquard, Seidel IBPs
- Method of arbitrary high moments, JB, Schneider, 2017 Computing large numbers of Mellin moments
- Guess, Kauers et al. 2009/2015; JB, Kauers, Schneider, 2009 Computing the recurrences
- Sigma, EvaluateMultiSums, SolveCoupledSystems, Schneider, 2007/14 Solving the recurrences
- OreSys, Zürcher, 1994; Gerhold, 2002; Bostan et al., 2013 Decoupling differential and difference equations
- Diffeq, Ablinger et al, 2015, JB, Marquard, Rana, Schneider, 2018 Solving differential equations
- HarmoncisSums, Ablinger and Ablinger et al. 2010-2019 Simplifying nested sums and iterated integrals to basic building blocks, performing series and asymptotic expansions, Almkvist-Zeilberger algorithm etc.

Solutions in Mellin Space

- Use IBP relations to obtain large sets of Mellin moments JB, Schneider, 2017
- lacktriangle Compute the corresponding recurrences for all color- ζ factors.
- Solve all 1st order factorizing cases by using the package Sigma.
- Inverse Mellin transform by using the tools of the package HarmonicSums.
- Numerical implementations in N- and x space.
- Remaining: Non-first order factorizable cases.
 - $A_{Qg}^{(3)}$: color coefficients $\propto T_F^2$: 8000 moments allow to get all recurrences.
 - $A_{Qq}^{(3)}$: color coefficients $\propto T_F \zeta_3$: 15000 moments allow to get all recurrences.
 - lacktriangle Many more moments needed to obtain the recurrences for the rational terms $\propto T_F$.
 - the solutions for $\propto T_F^2$ and $\propto T_F^2 \zeta_3$ each do diverge for $N \to \infty$, while their sum converges to 0.
 - Observe the dynamical creation of a ζ_3 term in the large N limit.
- One may try to compute the asymptotic behaviour of these recurrences, but this needs much more work.
- Usually it is important here to know the associated x space solution.
- More work is needed here.

Conjugation

$$f_2(N,\varepsilon) \equiv f_1^C(N,\varepsilon) = -\sum_{k=0}^N (-1)^k \binom{N}{k} f_1(k,\varepsilon)$$
$$\tilde{f}_1^C(x,\varepsilon) = -\tilde{f}_1(1-x), x \in]0,1[.$$

Example: Vermaseren, 1998

$$S_1^C(N) = \frac{1}{N}$$
$$\left(-\frac{1}{1-x}\right)^C = \frac{1}{x}$$

- Relates many master integrals, which need not to be calculated individually.
- Can be easily traced by inspecting their (known) Mellin moments.
- Holds for general ε .
- Saves us one ₂F₁ dependent 3 × 3 system, since conjugation holds irrespectively of 1st order factorization.

Inverse Mellin transform via analytic continuation

Resumming Mellin N into a continuous variable t, observing crossing relations. Ablinger et al. 2014

$$\sum_{k=0}^{\infty} t^k (\Delta.p)^k \frac{1}{2} [1 \pm (-1)^k] = \frac{1}{2} \left[\frac{1}{1 - t\Delta.p} \pm \frac{1}{1 + t\Delta.p} \right].$$

$$\mathfrak{A} = \{f_1(t), ..., f_m(t)\}$$

$$G(b, \vec{a}; t) = \int_0^t dx_1 f_b(x_1) G(\vec{a}; x_1).$$

Regularization for $t \to 0$ needed.

$$\left[\frac{d}{dt}\frac{1}{f_{a_{k-1}}(t)}\frac{d}{dt}...\frac{1}{f_{a_{k}}(t)}\frac{d}{dt}\right]G(\vec{a};t)=f_{a_{k}}(t).$$

$$F(x) = \frac{1}{\pi} \text{Im} \tilde{F} \left(t = \frac{1}{x} \right). \tag{1}$$

t-space is still Mellin space. One needs closed expressions to perform the analytic continuation (1).

Continuation is needed to calculate the small x behaviour analytically.

00000

Solutions in Me

Inverse Me

Inverse Mellin transform via analytic continuation

The massive OME $A_{gg,Q}^{(3)}$

Conclusion

Harmonic polylogarithms

$$\mathfrak{A}_{\mathrm{HPL}} = \{f_0, f_1, f_{-1}\} \left\{ \frac{1}{t}, \frac{1}{1-t}, \frac{1}{1+t} \right\}$$

$$\mathrm{H}_{b,\vec{a}}(x) = \int_0^x dy f_b(y) \mathrm{H}_{\vec{a}}(y), \ f_c \in \mathfrak{A}_{\mathrm{HPL}}, \ \mathrm{H}_{\underbrace{0,\ldots,0}_{t}}(x) := \frac{1}{k!} \ln^k(x).$$

A finite monodromy at x = 1 requires at least one letter $f_1(t)$.

Example:

$$\tilde{F}_1(t) = \mathrm{H}_{0,0,1}(t)$$
 $F_1(x) = \frac{1}{2} \mathrm{H}_0^2(x)$

$$\mathbf{M}[F_1(x)](n-1) = \frac{1}{n^3}$$

$$\tilde{F}_1(t) = t + \frac{t^2}{8} + \frac{t^3}{27} + \frac{t^4}{64} + \frac{t^5}{125} + \frac{t^6}{216} + \frac{t^7}{343} + \frac{t^8}{512} + \frac{t^9}{729} + \frac{t^{10}}{1000} + O(t^{11})$$

Cyclotomic harmonic polylogarithms

Also here the index set has to contain $f_1(t)$.

$$\mathfrak{A}_{\text{cycl}} = \left\{ \frac{1}{x} \right\} \cup \left\{ \frac{1}{1-x}, \frac{1}{1+x}, \frac{1}{1+x}, \frac{x}{1+x+x^2}, \frac{x}{1+x+x^2}, \frac{x}{1+x^2}, \frac{x}{1+x^2}, \frac{1}{1-x+x^2}, \frac{x}{1-x+x^2}, \dots \right\}.$$

Example:

$$\tilde{F}_2(t) = \mathcal{H}_{\{2,0\},\{1,0\},\{1,0\},\{6,0\}}(t)$$

$$\begin{split} F_2(x) &= -\frac{1}{3} \ln^2(2) \pi \frac{1}{\sqrt{3}} - \frac{1}{9} \pi^3 \frac{1}{\sqrt{3}} + \frac{1}{3} \left[-\psi^{(1)} \left(\frac{1}{3} \right) + 4 \zeta_2 \right] H_0 + \frac{\pi}{3\sqrt{3}} H_0^2 \\ &+ \left[-\frac{2}{3\sqrt{3}} \pi H_0 - \frac{4}{3} \zeta_2 + \frac{1}{3} \psi^{(1)} \left(\frac{1}{3} \right) \right] H_{-1} + \frac{2}{3\sqrt{3}} \pi \left[H_{0,1} + H_{0,-1} - H_{-1,1} \right] + \frac{4}{3} \ln(2) \zeta_2 \\ &- \frac{1}{3} \ln(2) \psi^{(1)} \left(\frac{1}{3} \right). \end{split}$$

Generalized harmonic polylogarithms

$$\mathfrak{A}_{gHPL} = \left\{ \frac{1}{x - a} \right\}, \ a \in \mathbb{C}.$$

$$F_3(x) = \frac{1}{\pi} ImG\left(\left\{ \frac{1}{2 - y} \right\}; \frac{1}{t} \right) = \theta\left(\frac{1}{2} - x \right)$$

$$\gamma_1 = 1/(1 - 2x)$$

$$F_5(x) = \frac{1}{\pi} \operatorname{Im} \frac{t}{t-1} \left[\operatorname{H}_{0,0,0,1} \left(\frac{1}{t} \right) + 2\operatorname{G} \left(\gamma_1, 0, 0, 1; \frac{1}{t} \right) \right] = \frac{1}{1-x} \left\{ \theta(1-x) \left[\frac{1}{24} \left(4 \ln^3(2) - 2 \ln(2) \pi^2 + 21 \zeta_3 \right) - \operatorname{H}_{2,0,0}(x) \right] - \theta(2-x) \left(4 \ln^3(2) - 2 \ln(2) \pi^2 + 21 \zeta_3 \right) \right\},$$

In intermediary steps Heaviside functions occur and the support of the x-space functions is here [0,2].

$$\tilde{\mathbf{M}}_{a}^{+,b}[g(x)](N) = \int_{0}^{a} dx (x^{N} - b^{N}) f(x), \ a, b \in \mathbb{R},$$

Introduction

Solutions in Mellin Space

Inverse Mellin transform via analytic continuation

The massive OME $A_{gg}^{(3)}$, Q

Conclusion

Square root valued alphabets

$$\mathfrak{A}_{\text{sqrt}} = \left\{ f_4, f_5, f_6 \dots \right\}$$

$$= \left\{ \frac{\sqrt{1-x}}{x}, \sqrt{x(1-x)}, \frac{1}{\sqrt{1-x}}, \frac{1}{\sqrt{x}\sqrt{1\pm x}}, \frac{1}{x\sqrt{1\pm x}}, \frac{1}{\sqrt{1\pm x}\sqrt{2\pm x}}, \frac{1}{x\sqrt{1\pm x/4}}, \dots \right\},$$

Monodromy also through:

$$(1-t)^{\alpha}, \quad \alpha \in \mathbb{R},$$

$$F_{7}(x) = \frac{1}{\pi} \operatorname{Im} \frac{1}{t} G\left(4; \frac{1}{t}\right) = 1 - \frac{2(1-x)(1+2x)}{\pi} \sqrt{\frac{1-x}{x}} - \frac{8}{\pi} G(5; x),$$

$$F_{8}(x) = \frac{1}{\pi} \operatorname{Im} \frac{1}{t} G\left(4, 2; \frac{1}{t}\right) = -\frac{1}{\pi} \left[4 \frac{(1-x)^{3/2}}{\sqrt{x}} + 2(1-x)(1+2x)\sqrt{\frac{1-x}{x}} \left[H_{0}(x) + H_{1}(x)\right] + 8\left[G(5, 2; x) + G(5, 1; x)\right]\right],$$

- Master integrals, solving differential equations not factorizing to 1st order
- ₂F₁ solutions Ablinger et al. [2017]
- Mapping to complete elliptic integrals: duplication of the higher transcendental letters.
- Complete elliptic integrals, modular forms Sabry, Broadhurst, Weinzierl, Remiddi, Duhr, Broedel et al. and many more
- Abel integrals
- K3 surfaces Brown, Schnetz [2012]
- Calabi-Yau motives Klemm, Duhr, Weinzierl et al. [2022]

Refer to as few as possible higher transcendental functions, the properties of which are known in full detail.

- $A_{Qq}^{(3)}$: effectively only one 3 × 3 system of this kind.
- The system is connected to that occurring in the case of ρ parameter. Ablinger et al. [2017], JB et al. [2018], Abreu et al. [2019]
- Most simple solution: two ${}_{2}F_{1}$ functions.

$$\frac{d}{dt} \left[\begin{array}{c} F_1(t) \\ F_2(t) \\ F_3(t) \end{array} \right] = \left[\begin{array}{ccc} -\frac{1}{t} & -\frac{1}{1-t} & 0 \\ 0 & -\frac{1}{t(1-t)} & -\frac{2}{1-t} \\ 0 & \frac{2}{t(8+t)} & \frac{1}{8+t} \end{array} \right] \left[\begin{array}{c} F_1(t) \\ F_2(t) \\ F_3(t) \end{array} \right] + \left[\begin{array}{c} R_1(t,\varepsilon) \\ R_2(t,\varepsilon) \\ R_3(t,\varepsilon) \end{array} \right] + O(\varepsilon),$$

$$R_{1}(t,\varepsilon) = \frac{1}{t(1-t)\varepsilon^{3}} \left[16 - \frac{68}{3}\varepsilon + \left(\frac{59}{3} + 6\zeta_{2}\right)\varepsilon^{2} + \left(-\frac{65}{12} - \frac{17}{2}\zeta_{2} + 2\zeta_{3}\right)\varepsilon^{3} \right] + O(\varepsilon),$$

$$R_{2}(t,\varepsilon) = \frac{1}{t(1-t)\varepsilon^{3}} \left[8 - \frac{16}{3}\varepsilon + \left(\frac{4}{3} + 3\zeta_{2}\right)\varepsilon^{2} + \left(\frac{14}{3} - 2\zeta_{2} + \zeta_{3}\right)\varepsilon^{3} \right] + O(\varepsilon),$$

$$R_{3}(t,\varepsilon) = \frac{1}{12t(8+t)\varepsilon^{3}} \left[-192 + 8\varepsilon - 8(4+9\zeta_{2})\varepsilon^{2} + \left(68 + 3\zeta_{2} - 24\zeta_{3}\right)\varepsilon^{3} \right] + O(\varepsilon).$$

It is very important to which function $F_i(t)$ the system is decoupled.

- Decoupling for F_1 first leads to a very involved solution: ${}_2F_1$ -terms seemingly enter at $O(1/\varepsilon)$ already.
- However, these terms are actually not there.
- Furthermore, there is also a singularity at x = 1/4.
- All this can be seen, when decoupling for F₃ first.

Homogeneous solutions:

$$F_3'(t) + \frac{1}{t}F_3(t) = 0, \quad g_0 = \frac{1}{t}$$

$$F_1''(t) + \frac{(2-t)}{(1-t)t}F_1'(t) + \frac{2+t}{(1-t)t(8+t)}F_1(t) = 0,$$

with

$$g_{1}(t) = \frac{2}{(1-t)^{2/3}(8+t)^{1/3}} {}_{2}F_{1}\left[\frac{\frac{1}{3},\frac{4}{3}}{2}; -\frac{27t}{(1-t)^{2}(8+t)}\right],$$

$$g_{2}(t) = \frac{2}{(1-t)^{2/3}(8+t)^{1/3}} {}_{2}F_{1}\left[\frac{\frac{1}{3},\frac{4}{3}}{2}; 1+\frac{27t}{(1-t)^{2}(8+t)}\right],$$

Inverse Mellin transform via analytic continuation

Alphabet:

$$\mathfrak{A}_{2} = \left\{ \frac{1}{t}, \frac{1}{1-t}, \frac{1}{8+t}, g_{1}, g_{2}, \frac{g_{1}}{t}, \frac{g_{1}}{1-t}, \frac{g_{1}}{8+t}, \frac{g'_{1}}{t}, \frac{g'_{1}}{1-t}, \frac{g'_{1}}{8+t}, \frac{g_{2}}{t}, \frac{g_{2}}{1-t}, \frac{g_{2}}{8+t}, \frac{g'_{2}}{t}, \frac{g'_{2}}{1-t}, \frac{g'_{2}}{1-t}, \frac{g'_{2}}{8+t}, \frac{g'_{2}}{t}, \frac{g'_{2}}{1-t}, \frac$$

$$F_{1}(t) = \frac{8}{\varepsilon^{3}} \left[1 + \frac{1}{t} H_{1}(t) \right] - \frac{1}{\varepsilon^{2}} \left[\frac{1}{6} (106 + t) + \frac{(9 + 2t)}{t} H_{1}(t) + \frac{4}{t} H_{0,1}(t) \right]$$

$$+ \frac{1}{\varepsilon} \left\{ \frac{1}{12} (271 + 9t) + \left[\frac{71 + 32t + 2t^{2}}{12t} + \frac{3\zeta_{2}}{t} \right] H_{1}(t) + \frac{(9 + 2t)}{2t} H_{0,1}(t) + \frac{2}{t} H_{0,0,1}(t) \right.$$

$$+ 3\zeta_{2} \right\} + \frac{1}{t} \left\{ \frac{6696 - 22680t - 16278t^{2} - 255t^{3} - 62t^{4}}{864t} + (9 + 9t + t^{2})g_{1}(t) \left[\frac{31 \ln(2)}{16} + \frac{1}{144} (265 + 31\pi(-3i + \sqrt{3})) + \frac{3}{8} \ln(2)\zeta_{2} + \frac{1}{24} (10 + \pi(-3i + \sqrt{3}))\zeta_{2} - \frac{7}{4}\zeta_{3} \right]$$

$$\begin{split} &+\mathrm{G}(18,t)\Bigg[-\frac{93\ln(2)}{16}+\frac{1}{48}\big(-265-31\pi(-3i+\sqrt{3})\big)+\Bigg(-\frac{9\ln(2)}{8}\\ &+\frac{1}{8}\big(-10-\pi\big(-3i+\sqrt{3}\big)\big)\Bigg)\zeta_2+\frac{21}{4}\zeta_3\Bigg]\dots\\ &+\frac{5}{2}[\mathrm{G}(4,14,1,2;t)-\mathrm{G}(5,8,1,2;t)]+\frac{1}{4}[\mathrm{G}(13,8,1,2;t)-\mathrm{G}(7,14,1,2;t)]\\ &+\frac{9}{4}[\mathrm{G}(10,14,1,2;t)-\mathrm{G}(16,8,1,2;t)]+\frac{3}{4}[\mathrm{G}(19,14,1,2;t)-\mathrm{G}(19,8,1,2;t)]\Bigg\}+O(\varepsilon),\\ F_2(t)&=&\frac{8}{\varepsilon^3}+\frac{1}{\varepsilon^2}\Bigg[-\frac{1}{3}(34+t)+\frac{2(1-t)}{t}\mathrm{H}_1(t)\Bigg]+\frac{1}{\varepsilon}\Bigg[\frac{116+15t}{12}+3\zeta_2-\frac{(1-t)(8+t)}{3t}\mathrm{H}_1(t)\\ &-\frac{1-t}{t}\mathrm{H}_{0,1}(t)\Bigg]+\frac{992-368t+75t^2-27t^3}{144t}+(1-t)\Bigg(\frac{(43+10t+t^2)}{12t}\mathrm{H}_1(t)+\frac{(4-t)}{4t}\Big)\Big],\end{split}$$

 $\times \mathrm{H}_{0,1}(t) + \frac{3\zeta_2}{4t}\mathrm{H}_1(t) + (1-t)g_1(t)\left(\frac{31\ln(2)}{16} + \frac{1}{144}(265 + 31\pi(-3i + \sqrt{3}))\dots\right)$

 $MEA_{gg,Q}^{(3)}$

$$+ \frac{1}{4} [g_2(t)G(8,1,2;t) - g_1(t)G(14,1,2;t)] \right\} + \zeta_3 + O(\varepsilon),$$

$$F_3(t) = \frac{1}{\varepsilon^2} \left[\frac{10}{3} - \frac{t}{6} \right] + \frac{1}{\varepsilon} \left[-\frac{31}{6} + \frac{3t}{8} - \left(\frac{1}{3} - \frac{1}{6t} - \frac{t}{6} \right) H_1(t) \right] + \left[\frac{3}{4} \ln(2)g_1(t) + \frac{1}{12} (10 + \pi(-3i + \sqrt{3}))g_1(t) - \frac{g_2(t)}{3} + \frac{25}{54} [g_1(t)G(13;t) - g_2(t)G(7;t)] + \frac{28}{27} [g_2(t)G(8;t) - g_1(t)G(14;t)] + \frac{1}{3} [g_1(t)G(16;t) - g_2(t)G(10;t)] \zeta_2 + \frac{31}{8} \ln(2)g_1(t) + \frac{1}{72} (265 + 31\pi(-3i + \sqrt{3}))g_1(t) - \frac{7}{2}\zeta_3g_1(t) - \frac{31g_2(t)}{18} + \frac{31}{18} [g_1(t)G(16;t) - g_2(t)G(10;t)] + \frac{7}{12} [g_1(t)G(5;t) - g_2(t)G(4;t)] + \frac{655}{324} [g_1(t)G(13;t) - g_2(t)G(7;t)] + \frac{518}{81} [g_2(t)G(8;t) - g_1(t)G(14;t)] + \frac{1}{3} [g_1(t)G(5,2;t) - g_2(t)G(4,2;t)] + \frac{1}{12} [g_2(t)G(6,2;t) - g_1(t)G(12,2;t)] + \frac{7}{4} [g_2(t)G(8,2;t) - g_1(t)G(14,2;t)] + \frac{1}{2} [g_2(t)G(8,1,2;t) - g_1(t)G(14,1,2;t)] + O(\varepsilon).$$
The massive CME of the latter of the l

$$\begin{split} F_1(x) &= \frac{8x}{\varepsilon^3} - \frac{1}{\varepsilon^2} (2 + 9x - 4xH_0) + \frac{1}{\varepsilon} \left[\frac{1}{12x} [2 + 32x + (71 + 36\zeta_2)x^2] - \frac{1}{2} (2 + 9x)H_0 + xH_0^2 \right] \\ &+ F_1^{(0)}(x) + O(\varepsilon), \\ F_2(x) &= -\frac{1}{\varepsilon^2} 2(1 - x) + \frac{1}{\varepsilon} (1 - x) \left[\frac{(1 + 8x)}{3x} - H_0(x) \right] + F_2^{(0)}(x) + O(\varepsilon), \\ F_3(x) &= \frac{1}{\varepsilon} \frac{(1 - x)^2}{6x} + F_3^{(0)}(x) + O(\varepsilon). \end{split}$$

It is very essential to have no singularities in $x \in]0, 1[$ because of the analytic continuation.

This would have not been the case using the elliptic integral representations [Ablinger et al., (2017)]: discontinuity at x = 1/3.

Here: pole at x = -1/8; \Longrightarrow convergence radius $r \le 1/8$ around x = 0.

- The alphabet in x is obtained by $t \to 1/x$ and subsequent partial fractioning.
- Three regions: $x \in [0, 1/10], x \in [1/10, 8/10], x \in [8/10, 1],$ (overlapping choice).

Johannes Blümlein, DESY²² - Mathematical Structures in Massive Operator Matrix Elements

Structure in x space

Expansion around x = 1:

$$\sum_{k=0}^{\infty} \sum_{l=0}^{L} \hat{a}_{k,l} (1-x)^k \ln^l (1-x).$$

Expansion around x = 0:

$$\frac{1}{x}\sum_{k=0}^{\infty}\sum_{l=0}^{S}\hat{b}_{k,l}x^{k}\ln^{l}(x).$$

Expansion around x = 1/2:

$$\sum_{k=0}^{\infty} \hat{c}_k \left(x - \frac{1}{2} \right)^k.$$

The occurring constants G(...; 1) are calculated numerically. [At most double integrals.]

One example:

Expansion around x = 1:

$$F_3^{(0),1}(x) = \sum_{k=2}^{\infty} c_{3,k}^1 (1-x)^k$$

Expansion around x = 0:

$$F_3^{(0),0}(x) = -\frac{1}{6} \frac{\ln(x)}{x} - \frac{3}{8x} + \left(\frac{1}{2} - \frac{7}{6} \ln(x)\right) + x \left(\frac{9}{8} + \frac{7}{12} \ln(x) - \frac{3}{2} \ln^2(x)\right) \\ + \frac{1}{3} x^2 \left[-13 + 18 \ln(x) + 9 \ln^2(x)\right] + \frac{1}{24} x^3 \left[259 - 720 \ln(x) - 252 \ln^2(x)\right] \\ + \frac{1}{15} x^4 \left[-451 + 2295 \ln(x) + 720 \ln^2(x)\right] + \frac{3}{80} x^5 \left[2339 - 22460 \ln(x) - 6640 \ln^2(x)\right] \\ + O(x^6) \quad \text{At higher orders also non-rational terms contribute.}$$

$$a_{Qg}^{(3)} = \frac{64}{243} C_A^2 T_F (1312 + 135\zeta_2 - 189\zeta_3) \frac{\ln(x)}{x} \quad \text{[rescaled from PS]},$$

[Ablinger et al. Nucl. Phys. B 890 (2014) 48]; [Catani et al., Nucl. Phys. B 366 (1991) 135].

se Mellin transform via analytic continuation 0000000000000000

Expansion around x = 1/2:

$$F_3^{(0),1/2}(x) = \sum_{k=0}^{\infty} c_{3,k}^{1/2} \left(x - \frac{1}{2}\right)^k.$$

Similar results for $F_1(x)$ and $F_2(x)$.

Second ₂*F*₁-set:

$$F_k(x) = -F_{k-3}(1-x), \quad k \in \{4,5,6\}.$$

by using the above representations [expressed in G-functions].

• Check all representations against known Mellin moments numerically.

Iterating on $_{2}F_{1}$ solutions

- In $A_{O_2}^{(3)}$ only 2 3 \times 3 systems contribute, which are not factorizing at 1st order & they are conjugate to each other.
- Both form seeds on which only 1st order factorizing factors have to be iterated to obtain all $_{2}F_{1}$ -dependent master integrals.
- The corresponding differential equations read

$$y'(x) + \frac{A}{x-b}y(x) = h(x)$$

$$y(x) = (b-x)^{-A} \left[C b^A + \int_0^x dy (b-y)^A h(y) \right].$$

- h(x) is a G-functions containing ${}_{2}F_{1}$ -dependent letters.
- The occurring G-functions containing ${}_{2}F_{1}$ -dependent letters have a rather simple structure, which helps in expansions and the calculation of constants.
- In this way we compute all ${}_{2}F_{1}$ -dependent master integrals contributing to $a_{Oa}^{(3)}$. All types of other letters up to root-valued letters contribute here too.

The massive OME $A_{qq}^{(3)}$

A 1st order factorizing, but involved case.

$$\hat{\hat{A}}_{gg,Q}^{(1)} = \left(\frac{\hat{m}^2}{\mu^2}\right)^{\varepsilon/2} \left[\frac{\hat{\gamma}_{gg}^{(0)}}{\varepsilon} + a_{gg,Q}^{(1)} + \varepsilon \overline{a}_{gg,Q}^{(1)} + \varepsilon^2 \overline{\overline{a}}_{gg,Q}^{(1)}\right] + O(\varepsilon^3),
\hat{\hat{A}}_{gg,Q}^{(2)} = \left(\frac{\hat{m}^2}{\mu^2}\right)^{\varepsilon} \left[\frac{1}{\varepsilon^2} c_{gg,Q,(2)}^{(-2)} + \frac{1}{\varepsilon} c_{gg,Q,(2)}^{(-1)} + c_{gg,Q,(2)}^{(0)} + \varepsilon c_{gg,Q,(2)}^{(1)}\right] + O(\varepsilon^2),
\hat{\hat{A}}_{gg,Q}^{(3)} = \left(\frac{\hat{m}^2}{\mu^2}\right)^{3\varepsilon/2} \left[\frac{1}{\varepsilon^3} c_{gg,Q,(3)}^{(-3)} + \frac{1}{\varepsilon^2} c_{gg,Q,(3)}^{(-2)} + \frac{1}{\varepsilon} c_{gg,Q,(3)}^{(-1)} + a_{gg,Q}^{(3)}\right] + O(\varepsilon).$$

The alphabet:

$$\mathfrak{A} = \{f_k(x)\}|_{k=1..6} = \left\{\frac{1}{x}, \frac{1}{1-x}, \frac{1}{1+x}, \frac{\sqrt{1-x}}{x}, \sqrt{x(1-x)}, \frac{1}{\sqrt{1-x}}\right\}.$$

26/37

Binomial Sums

$$BS_0(N) = \frac{1}{2N - (2l + 1)}, \quad l \in \mathbb{N},$$

$$BS_1(N) = 4^N \frac{(N!)^2}{(2N)!}$$

$$BS_2(N) = \frac{1}{4^N} \frac{(2N)!}{(N!)^2},$$

$$\mathsf{BS}_4(N) = \sum_{1}^{N} \frac{4^{\tau_1} (\tau_1 !)^2}{(2\tau_1)! \tau_1^2},$$

$$\mathsf{BS}_6(\textit{N}) = \sum_{\tau_1 = 1}^{\textit{N}} \frac{4^{-\tau_1} \left(2\tau_1\right)! \sum_{\tau_2 = 1}^{\tau_1} \frac{4^{\tau_2} \left(\tau_2!\right)^2}{\left(2\tau_2\right)! \tau_2^2}}{\left(\tau_1!\right)^2 \tau_1}, \quad \mathsf{BS}_7(\textit{N}) = \sum_{\tau_1 = 1}^{\textit{N}} \frac{4^{-\tau_1} \left(2\tau_1\right)! \sum_{\tau_2 = 1}^{\tau_1} \frac{4^{\tau_2} \left(\tau_2!\right)^2}{\left(2\tau_2\right)! \tau_2^3}}{\left(\tau_1!\right)^2 \tau_1},$$

$$\mathsf{BS_8}(N) = \sum_{\tau_1=1}^{N} \frac{\sum_{\tau_2=1}^{\tau_1} \frac{4^{\tau_2} \left(\tau_2!\right)^2}{\left(2\tau_2\right)!\tau_2^2}}{\tau_1},$$

$$\mathsf{BS}_{10}(N) = \sum_{1}^{N} \frac{4^{\tau_1}}{\binom{2\tau_1}{2}} \frac{1}{\tau_1^2} \mathcal{S}_1(\tau_1).$$

 $BS_{3}(\textit{N}) = \sum_{\tau_{\star}=1}^{\textit{N}} \frac{4^{-\tau_{1}} \left(2\tau_{1}\right)!}{\left(\tau_{1} \, !\right)^{2} \tau_{1}},$

$$\mathsf{BS}_5(N) = \sum_{\tau_1=1}^{N} \frac{4^{\tau_1} \left(\tau_1!\right)^2}{\left(2\tau_1\right)! \tau_1^3},$$

$$\mathsf{BS}_9(\mathit{N}) = \sum_{\tau_1 = 1}^{\mathit{N}} \frac{4^{-\tau_1} \big(2\tau_1 \big)! \sum_{\tau_2 = 1}^{\tau_1} \frac{4^{\tau_2} \big(\tau_2! \big)^2 \sum_{\tau_3 = 1}^{\tau_2} \frac{1}{\tau_3}}{\big(2\tau_2 \big)! \tau_2^2}}{\big(\tau_1! \big)^2 \tau_1},$$

Recursions and Asymptotic Representation

$$\begin{split} \mathsf{BS_8}(N) - \mathsf{BS_8}(N-1) &= \frac{1}{N} \mathsf{BS_4}(N), \\ \mathsf{BS_9}(N) - \mathsf{BS_9}(N-1) &= \frac{1}{N} \mathsf{BS_3}(N) \mathsf{BS_{10}}(N), \\ \mathsf{BS_{10}}(N) - \mathsf{BS_{10}}(N-1) &= \frac{1}{N} \mathsf{BS_1}(N) \mathsf{S_1}. \\ \mathsf{BS_0}(N) &\propto \frac{1}{2N} \sum_{k=0}^{\infty} \left(\frac{2l+1}{2N}\right)^k, \\ \mathsf{BS_8}(N) &\propto -7\zeta_3 + \left[+3(\ln(N) + \gamma_E) + \frac{3}{2N} - \frac{1}{4N^2} + \frac{1}{40N^4} - \frac{1}{84N^6} + \frac{1}{80N^8} - \frac{1}{44N^{10}} \right] \zeta_2 \\ &+ \sqrt{\frac{\pi}{N}} \left[4 - \frac{23}{18N} + \frac{1163}{2400N^2} - \frac{64177}{564480N^3} - \frac{237829}{7741440N^4} + \frac{5982083}{166526976N^5} \right. \\ &+ \frac{5577806159}{438593126400N^6} - \frac{12013850977}{377864847360N^7} - \frac{1042694885077}{90766080737280N^8} \\ &+ \frac{6663445693908281}{127863697547722752N^9} + \frac{23651830282693133}{1363413316298342400N^{10}} \right], \end{split}$$

Introduction

olutions in Mellin Space

Inverse Mellin transform via analytic continuation

The massive OME $A_{gg,Q}^{(3)}$

Conclusion

Inverse Mellin Transform

$$\begin{split} \mathbf{M}^{-1}[\mathsf{BS}_8(N)](x) &= \left[-\frac{4 \left(1 - \sqrt{1 - x} \right)}{1 - x} + \left(\frac{2 (1 - \ln(2))}{1 - x} + \frac{\mathrm{H}_0(x)}{\sqrt{1 - x}} \right) \mathrm{H}_1(x) - \frac{\mathrm{H}_{0,1}(x)}{\sqrt{1 - x}} \right. \\ &\quad + \frac{\mathrm{H}_1(x) \mathrm{G}(\{6, 1\}, x)}{2 (1 - x)} - \frac{\mathrm{G}(\{6, 1, 2\}, x)}{2 (1 - x)} \right]_+, \\ \mathbf{M}^{-1}[\mathsf{BS}_{10}(N)](x) &= \left[-\frac{1}{1 - x} \left[-4 - 4 \ln(2) \left(-1 + \sqrt{1 - x} \right) + 4 \sqrt{1 - x} + \zeta_2 \right] \right. \\ &\quad + 2 (-1 + \ln(2)) \left(-1 + \sqrt{1 - x} + x \right) \frac{\mathrm{H}_0(x)}{(1 - x)^{3/2}} - 2 \frac{\mathrm{H}_1(x)}{\sqrt{1 - x}} \right. \\ &\quad + \frac{\mathrm{H}_{0,1}(x)}{\sqrt{1 - x}} - \frac{(-2 + \ln(2)) \mathrm{G}(\{6, 1\}, x)}{1 - x} + \frac{\mathrm{G}(\{6, 1, 2\}, x)}{2 (1 - x)} \\ &\quad - \frac{\mathrm{G}(\{1, 6, 1\}, x)}{2 (1 - x)} \right] . \end{split}$$

Small x limits of $a_{gg,Q}^{(3)}$

$$\begin{split} & \frac{a_{gg,Q}^{x\to0}(x)}{x} \propto \\ & \frac{1}{x} \Biggl\{ \ln(x) \Biggl[C_A^2 T_F \Biggl(-\frac{11488}{81} + \frac{224\zeta_2}{27} + \frac{256\zeta_3}{3} \Biggr) + C_A C_F T_F \Biggl(-\frac{15040}{243} - \frac{1408\zeta_2}{27} \Biggr) \\ & -\frac{1088\zeta_3}{9} \Biggr) \Biggr] + C_A T_F^2 \Biggl[\frac{112016}{729} + \frac{1288}{27} \zeta_2 + \frac{1120}{27} \zeta_3 + \left(\frac{108256}{729} + \frac{368\zeta_2}{27} - \frac{448\zeta_3}{27} \right) \\ & \times N_F \Biggr] + C_F \Biggl[T_F^2 \Biggl(-\frac{107488}{729} - \frac{656}{27} \zeta_2 + \frac{3904}{27} \zeta_3 + \left(\frac{116800}{729} + \frac{224\zeta_2}{27} - \frac{1792\zeta_3}{27} \right) N_F \Biggr) \\ & + C_A T_F \Biggl(-\frac{5538448}{3645} + \frac{1664B_4}{3} - \frac{43024\zeta_4}{9} + \frac{12208}{27} \zeta_2 + \frac{211504}{45} \zeta_3 \Biggr) \Biggr] \\ & + C_A^2 T_F \Biggl(-\frac{4849484}{3645} - \frac{352B_4}{3} + \frac{11056\zeta_4}{9} - \frac{1088}{81} \zeta_2 - \frac{84764}{135} \zeta_3 \Biggr) \\ & + C_F^2 T_F \Biggl(\frac{10048}{5} - 640B_4 + \frac{51104\zeta_4}{9} - \frac{10096}{9} \zeta_2 - \frac{280016}{45} \zeta_3 \Biggr) \Biggr\} \end{split}$$

Introduction

olutions in Mellin Space

Inverse Mellin transform via analytic continuation

The massive OME $A_{gg}^{(3)}$, Q

Conclusions

Small x limits of $a_{qq,Q}^{(3)}$

$$+ \left[-\frac{4}{3}C_{F}C_{A}T_{F} + \frac{2}{15}C_{F}^{2}T_{F} \right] \ln^{5}(x) + \left[-\frac{40}{27}C_{A}^{2}T_{F} + \frac{4}{9}C_{F}^{2}T_{F} + C_{F} \left(-\frac{296}{27}C_{A}T_{F} \right) \right] + \left(\frac{28}{27} + \frac{56}{27}N_{F} \right) T_{F}^{2} + \left[\ln^{4}(x) + \left[\frac{112}{81}C_{A}(1 + 2N_{F})T_{F}^{2} + C_{F} \left(\left(\frac{1016}{81} + \frac{496}{81}N_{F} \right)T_{F}^{2} \right) \right] + C_{A}T_{F} \left(-\frac{10372}{81} - \frac{328\zeta_{2}}{9} \right) \right) + C_{F}^{2}T_{F} \left[-\frac{2}{3} + \frac{4\zeta_{2}}{9} \right] + C_{A}^{2}T_{F} \left[-\frac{1672}{81} + 8\zeta_{2} \right] \ln^{3}(x) + \left[\frac{8}{81}C_{A}(155 + 118N_{F})T_{F}^{2} + C_{F} \left[T_{F}^{2} \left(-\frac{32}{81} + N_{F} \left(\frac{3872}{81} - \frac{16\zeta_{2}}{9} \right) + \frac{232\zeta_{2}}{9} \right] \right] + C_{A}T_{F} \left(-\frac{70304}{81} - \frac{680\zeta_{2}}{9} + \frac{80\zeta_{3}}{3} \right) \right) + C_{A}^{2}T_{F} \left[\frac{4684}{81} + \frac{20\zeta_{2}}{3} \right] + C_{F}^{2}T_{F} \left[56 + \frac{8\zeta_{2}}{3} - 40\zeta_{3} \right] \ln^{2}(x) + \left[C_{F} \left[T_{F}^{2} \left(\frac{140992}{243} + N_{F} \left(\frac{182528}{243} - \frac{400\zeta_{2}}{27} - \frac{640\zeta_{3}}{9} \right) \right] \right] + C_{A}^{2}T_{F} \left[\frac{140992}{243} + N_{F} \left(\frac{182528}{243} - \frac{400\zeta_{2}}{27} - \frac{640\zeta_{3}}{9} \right) \right]$$

February, 13-16, 2023

Small and large x limits of $a_{gg,Q}^{(3)}$

$$\begin{split} &-\frac{728}{27}\zeta_{2}-\frac{224}{9}\zeta_{3}\right)+C_{A}T_{F}\left(-\frac{514952}{243}+\frac{152\zeta_{4}}{3}-\frac{21140\zeta_{2}}{27}-\frac{2576\zeta_{3}}{9}\right)\bigg]\\ &+C_{A}T_{F}^{2}\left[\frac{184}{27}+N_{F}\left(\frac{656}{27}-\frac{32\zeta_{2}}{27}\right)+\frac{464\zeta_{2}}{27}\right]+C_{A}^{2}T_{F}\left[-\frac{42476}{81}-92\zeta_{4}+\frac{4504\zeta_{2}}{27}\right]\\ &+\frac{64\zeta_{3}}{3}\right]+C_{F}^{2}T_{F}\left[-\frac{1036}{3}-\frac{976\zeta_{4}}{3}-\frac{58\zeta_{2}}{3}+\frac{416\zeta_{3}}{3}\right]\left]\ln(x), \end{split}$$

$$a_{gg,Q}^{(3),x\to 1}(x) \propto a_{gg,Q,\delta}^{(3)}\delta(1-x) + a_{gg,Q,\text{plus}}^{(3)}(x) + \left[-\frac{32}{27}C_AT_F^2(17+12N_F) + C_AC_FT_F\left(56 - \frac{32\zeta_2}{3}\right) + C_A^2T_F\left(\frac{9238}{81} - \frac{104\zeta_2}{9} + 16\zeta_3\right) \right] \ln(1-x) + \left[-\frac{8}{27}C_AT_F^2(7+8N_F) + C_A^2T_F\left(\frac{314}{27} - \frac{4\zeta_2}{3}\right) \right] \ln^2(1-x) + \frac{32}{27}C_A^2T_F \ln^3(1-x).$$

OOOOO

Solutions in Mellin Space

Inverse Mellin transform via analytic continuation

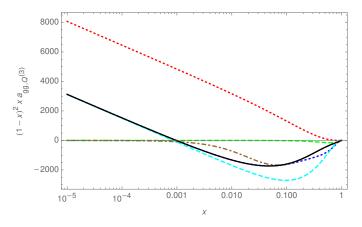
 $ME A_{gg,Q}^{(3)}$

32/37

Representations of the OME

- The logarithmic parts of $(\Delta)A_{Qq}^{(3)}$ were computed in [Behring et al., (2014)], [JB et al. (2021)].
- We did not spent efforts to choose the MI basis such that the needed ε -expansion is minimal, which we could afford in all first order factorizing cases.
- N space
 - Recursions available for all building blocks: $N \rightarrow N + 1$.
 - Asymptotic representations available.
 - Contour integral around the singularities of the problem at the non-positive real axis.
- x space
 - All constants occurring in the transition $t \to x$ can be calculated in terms of ζ -values.
 - This can be proven analytically by first rationalizing and then calculating the obtained cyclotomic G-functions.
 - Separate the $\delta(1-x)$ and +-function terms first.
 - Series representations to 50 terms around x = 0 and x = 1 can be derived for the regular part analytically (12 digits).
 - The accuracy can be easily enlarged, if needed.

 $a_{gg,Q}^{(3)}$

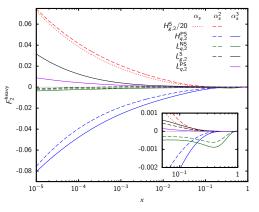


The non- N_F terms of $a_{gg,Q}^{(3)}(N)$ (rescaled) as a function of x. Full line (black): complete result; upper dotted line (red): term $\propto \ln(x)/x$, BFKL limit; lower dashed line (cyan): small x terms $\propto 1/x$; lower dotted line (blue): small x terms including all $\ln(x)$ terms up to the constant term; upper dashed line (green): large x contribution up to the constant term; dash-dotted line (brown): complete large x contribution.

HITOGUCTION
00000

Current summary on F_2^{charm}

An example to show numerical effects: the charm quark contributions to the structure function $F_2(x, Q^2)$



Allows to strongly reduce the current theory error on m_c .

Started \sim 2009; might be completed this year.

Lots of new algorithms had to be designed; different new function spaces; new analytic calculation techniques ...

Conclusions

- Contributions to massless & massive OMEs and Wilson coefficients factorizing at 1st order can be computed in Mellin N space using difference ring techniques as implemented in the package Sigma.
- N-space methods also applicable in the case of non-1st order factorization are more involved and need further study.
- *x*-space representations are needed also to determine the small *x* behaviour, since it cannot be obtained by the *N*-space methods, because they are related to integer values in *N* not covered.
- The t-resummation of the original N-space expressions is already necessary to perform the IBP reduction.
- The transformation from the continuous variable *t* to the continuous variable *x* is possible trough the optical theorem.
- This applies to all 1st order factorizing cases and also to non-1st order factorizing situations, provided one can derive a closed form solution of the respective equations and perform the analytic continuation.
- This includes also the calculation of various new constants, which might open up a new field for special numbers, unless these quantities finally reduce to what is known already.
- The moments of the master integrals depend on ζ -values only.

Johannes Blümlein, DESY³⁷ - Mathematical Structures in Massive Operator Matrix Elements

Conclusions

- It is most efficient to work with ₂F₁-solutions in the present examples, because they are most compact and since everything is known about them.
- For numerical representations analytic expansions around x = 0, x = 1/2 and x = 1 suffice, with ~ 50 terms, (Example: $a_{Qg}^{(3)}$). In some cases further overlapping series expansions have to be performed.
- $A_{gg,Q}^{(3)}$ has contributions from finite central binomial sums or square-root valued alphabets, factorizing at 1st order.
- Both efficient N- and x-space solutions can be derived which are very fast numerically.
 ⇒ QCD analysis.
- BFKL-like approaches are shown to utterly fail in describing these quantities.