

High Quality Graph and Hypergraph Partitioning

2nd BMBF Big Data All Hands Meeting · October 11, 2017 Yaroslav Akhremtsev, Peter Sanders, Sebastian Schlag, Christian Schulz

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Graphs and Hypergraphs

- models relationships between objects
- dyadic (2-ary) relationships

Graphs and Hypergraphs

- models relationships between objects
- dyadic (2-ary) relationships

Hypergraph H = (V, E)

- Generalization of a graph
 - \Rightarrow hyperedges connect \ge 2 nodes
- arbitrary (**d-ary**) relationships
- Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$

Algorithmics Group

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

$$C(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

Graphs:

• cut:
$$\sum_{e \in cut} \omega(e)$$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

Graphs:

• cut:
$$\sum_{e \in cut} \omega(e) = 17$$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

Graphs:

• cut:
$$\sum_{e \in cut} \omega(e) = 17$$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in cut} \omega(e) = 17$
- Hypergraphs:

• cut:
$$\sum_{e \in cut} \omega(e)$$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in cut} \omega(e) = 17$
- Hypergraphs:

• cut:
$$\sum_{e \in cut} \omega(e) = 5$$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in cut} \omega(e) = 17$
- Hypergraphs:

• cut:
$$\sum_{e \in cut} \omega(e) = 5$$

• connectivity:
$$\sum_{e \in cut} (\lambda - 1) \omega(e)$$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in cut} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in cut} \omega(e) = 5$
 - connectivity: $\sum_{e \in cut} (\lambda 1) \omega(e)$

blocks connected by e

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

Graphs:

- cut: $\sum_{e \in cut} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in cut} \omega(e) = 5$

• connectivity:
$$\sum_{e \in cut} (\lambda - 1) \omega(e) = 7$$

blocks connected by e /

Applications

Warehouse Optimization

[Martin Grandjean, via Wikimedia Commons]

Complex Networks

Route Planning

Simulation

Scientific Computing

Applications

Warehouse Optimization

[Martin Grandjean, via Wikimedia Commons]

Complex Networks

Route Planning

Setting:

- repeated SpM×V on supercomputer
- A is large \Rightarrow distribute on multiple nodes
- symmetric partitioning \Rightarrow y & b divided conformally with A

Parallel Sparse-Matrix Vector Product (SpM×V)

 $A \in \mathbf{R}^{16 imes 16}$

Commuication Volume?

Commuication Volume?

Commuication Volume? \Rightarrow 24 entries!

Commutcation Volume? \Rightarrow 24 entries!

$$A \in \mathbf{R}^{16 imes 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \ldots, v_{16}\}$$

• One hyperedge per column: $\Rightarrow E_C = \{e_1, e_2, \dots, e_{16}\}$

Load Balancing?

9 Y. Akhremtsev, P. Sanders, S. Schlag and C. Schulz – High Quality Graph and Hypergraph Partitioning

Where are the cut-hyperedges?

Commuication Volume?

Commulcation Volume? \Rightarrow 6 entries!

How does

(Hyper)Graph Partitioning

work?

10 Y. Akhremtsev, P. Sanders, S. Schlag and C. Schulz – High Quality Graph and Hypergraph Partitioning

How does

Bad News:

Hypergraph Partitioning is NP-hard

even finding good approximate solutions for graphs is NP-hard

work?

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

11 Y. Akhremtsev, P. Sanders, S. Schlag and C. Schulz – High Quality Graph and Hypergraph Partitioning

Multilevel Paradigm - Algorithmic Ingredients

12 Y. Akhremtsev, P. Sanders, S. Schlag and C. Schulz – High Quality Graph and Hypergraph Partitioning

Multilevel Paradigm - Algorithmic Ingredients

12 Y. Akhremtsev, P. Sanders, S. Schlag and C. Schulz – High Quality Graph and Hypergraph Partitioning

Multilevel Paradigm - Algorithmic Ingredients

12 Y. Akhremtsev, P. Sanders, S. Schlag and C. Schulz – High Quality Graph and Hypergraph Partitioning

Multilevel Paradigm - Algorithmic Ingredients Preprocessing: community detection output partition sparsification local search cluster **Coarsening:** Uncoar matching clustering uncontract edge ratings **Initial Partitioning:** portfolio of various algorithms ~> diversification

- **recalculate** gain g(v) of neighbors
- move each node at most once
- dge-cut: **7**, **6**

- **recalculate** gain g(v) of neighbors
- move each node at most once
- dge-cut: **7**, **6**

- **recalculate** gain g(v) of neighbors
- move each node at most once
- dge-cut: **7**, **6**,**5**

KaHIP - Karlsruhe High Quality Partitioning

Experimental Results – KaHIP (ParHIP)

KaHyPar - Karlsruhe Hypergraph Partitioning

Preprocessing

Community

Detection

- *n*-Level Partitioning Framework
- Objectives:
 - hyperedge cut
 - connectivity $(\lambda 1)$
- Partitioning Modes:
 - recursive bisection
 - direct k-way

16

- Upcoming Features:
 - evolutionary algorithm
 - flow-based refinement
 - advanced local search algorithms
 - http://www.kahypar.org

KaHyPar

Configurations

Meta Heuristics

V-Cycles

Experimental Results – KaHyPar

All Instances

Conclusion

(Hyper)Graph Partitioning:

- fundamental graph problem with many application areas
- successful heuristic: multilevel approach + local search
- Graphs: KaHIP http://algo2.iti.kit.edu/kahip/
- Hypergraphs: KaHyPar http://www.kahypar.org

