

Studies of boosted topologies in the search for NMSSM inspired di-Higgs events in the $\tau\tau$ + bb final state with the CMS experiment

Martin Marz | September 12, 2022

www.kit.edu

Table of contents

- Underlying model
- Ourrent status of the analysis
- Boosted topologies
- Goals of my thesis
- Generator studies
- Multiclassification with neural networks
- Results
- Summary and outlook

The Standard Model (SM)

- Lepton and boson masses generated via spontaneous electroweak symmetry breaking
- Prediction of a single Higgs boson
- SM has shortcomings (Gravitation, DM etc.)
- One possible extension is supersymmetry

Figure: Courtesy of Felix Heyen

Content	Theory	Current	Goals	Generator studies	Multiclassification	Results	Summary and outlook
3/28	12.9.2022	Martin Marz: Thesis over	rview			Institute of Experin	nental Particle Physics (ETP)

Minimal Supersymmetric Standard Model (MSSM)

- Minimal extension with SU(2) Higgs doublet
- Predicts super partners for all particles with different spin quantum number
- No super partners observed till now

Figure: Courtesy of Felix Heyen

Content	Theory	Current	Goals	Generator studies	Multiclassification	Results	Summary and outlook
4/28	12.9.2022	Martin Marz: Thesis over	erview			Institute of Experir	mental Particle Physics (ETP)

Introduction to the NMSSM

- MSSM symmetry **must** be broken
- Next-to-Minimal Supersymmetric Standard Model (NMSSM): symmetry breaking occurs naturally
- Introduce additional singlet scalar field
- Results in even more Higgs bosons (7 in total)
- For my thesis h and h_S of importance

Content

5/28

Overview

- h = Higgs boson with standard model like properties m_h = 125 GeV
- h_S = new singlet Higgs boson
- H = new heavy Higgs boson
- Analysis by Dr. Janek Bechtel at KIT (ETP-KA/2021-04)
- Published analysis: <u>here</u>

Figure: Feynman diagram for the $H \to h(\tau \tau) h_S(bb)$ final state.

Current upper limits

- *m*_h = 125 GeV
- No theory prediction for m_H, m_{hs}
 - \implies free parameters
 - \implies large possible mass range
- Only on-shell decays
 - \implies restriction on m_H, m_{hs}
- Upper limits on $\sigma(gg \rightarrow H)B(H \rightarrow hh_S \rightarrow \tau\tau + bb)$
- Limits in graph scaled for visualization purposes

Figure: Taken from published analysis

Boosted topologies

No dedicated studies regarding high p_T objects which could be useful for large heavy Higgs masses

 $\Delta R(daughters) \approx \frac{2M(mother)}{p_{T}(mother)}$

- $\Delta R \cong$ relative distance in $\eta \phi$ space between two objects
- Light objects decay with high pT \implies small $\Delta \mathbf{R}$ between decay products
- So for high $m_{\rm H}$ and/or small $m_{\rm hs}$ small ΔR are expected
- Objects with small $\Delta \mathbf{R}$ are called boosted

https://indico.cern.ch/event/732102/contributions/3092580/attachments/1759641/2854473/

Content Theory Goals Generator studies Multiclassification Results Current 8/28 Martin Marz: Thesis overview 12.9.2022 Institute of Experimental Particle Physics (ETP)

Summary and outlook

- Felix Heyen studied the inclusion of the swapped final state H → h(bb)h_S(ττ) (ETP-KA/2021-18)
- Only the $\tau_h \tau_h$ final state was used

Swapped final state

 Content
 Theory
 Current
 Goals
 Generator studies
 Multiclassification
 Results
 Summary and outlook

 9/28
 12.9.2022
 Martin Marz: Thesis overview
 Institute of Experimental Particle Physics (ETP)

Results of Felix's thesis

- An overall improvement is achieved
- Different exclusion sensitivity for the two final states
- Attributed to efficiency of boosted topologies
- Particularly relevant for boosted $h_S \to \tau \tau$ decays with $m_{h_S} < 125\,GeV$
- $h \rightarrow \tau \tau$ are boosted for heavy m_{h_S}

Content	Theory	Current	Goals	Generator studies	Multiclassification	Results	Summary and outlook
10/28	12.9.2022	Martin Marz: Thesis over	erview			Institute of Experim	mental Particle Physics (ETP)

- Study the reconstruction efficiency of di-Higgs signal events
- Scan the mass phase space of m_H and m_{hs} for boosted topologies
- Study the impact of a dedicated treatment of events with boosted b-jet topologies
- Multiple differences w.r.t the published analysis due to switch to UL Run-2
- Final results **not** comparable with the published analysis
 - \implies only relative improvement measured

Reconstruction efficiency

- Signal samples for $H \rightarrow h(bb)h_{S}(\tau\tau)$ and $H \rightarrow h(\tau\tau)h_{S}(bb)$
- $m_H = [600, 700, 800, 900, 1000, 1200]GeV$ and $m_{h_S} = 60 \text{ GeV}$
- For the reconstruction efficiency calculation a reference set of events (N_{nen}) is needed
- Of interest are boosted topologies
- Reference set limited on fiducial volume (as shown in table below)
- In addition apply matching between generator and reconstruction level objects to determine identification purity

Particle	Transverse momentum	Pseudorapidity (GeV)	Mother particle
μ	<i>p</i> _T ≥ 20	$ \eta \leq 2.6$	h _S /h
$ au_h$	$p_{\mathrm{T}} \ge 25$	$ \eta \le 2.8$	h _S /h
b-quark	$p_{\mathrm{T}} \ge 15$	$ \eta \le 3.0$	h/h _S
Current	Goals	enerator studies Multiclassi	fication

Table: Selection criteria on generator-level particles

Content

Theory

Generator studie

Results

Summary and outlook

12/28 12.9.2022

Institute of Experimental Particle Physics (ETP)

Event selection criteria

- Each event needs to pass multiple sets of selection criteria
- Most important RECO cuts: based on the published analysis
 - presence of a $\mu \tau_{\rm h}$ -pair
 - 2 N_{jets} \geq 2 with $p_T \geq$ 30 GeV
 - 3 N_{bjets} \geq 1 with $p_T \geq$ 20 GeV
- $\Delta R(\mu \tau_h) \ge 0.5$ cut left out since boosted topologies are of interest
- b-jet pair constructed from jets to reconstruct the respective Higgs boson

GEN $\Delta R(\tau \tau)$ dependency

- Only lepton selection applied to isolate reconstruction efficiency from the b-quark pair
- Only statistical uncertainties shown in plot on the right
- Reconstruction efficiency reveals a steep drop for

GEN $\Delta R(\tau \tau) \le 0.5$

- Identification purity $\approx 100\%$
- Current event selection **not** suited for boosted *τ*-topologies
- This explains the lower event yield and subsequently the different exclusion sensitivity for boosted ττ events found by Felix Heyen

GEN $\Delta R(bb)$ dependency

- Only b-quark and jet selection applied to isolate reconstruction efficiency from the μτ_h-pair
- Only statistical uncertainties shown in plot on the right
- Reconstruction efficiency reveals a small drop for

GEN $\Delta R(bb) \le 0.5$

- Identification purity $\approx 0\%$ for this region
- Signal events with boosted b-jet pairs pass current event selection but are not reconstructed correctly

Interpretation

- N_{bjets} ≥ 1 criteria allows most of the events with boosted b-jet topology
- A dedicated treatment of events with misidentified particles (boosted events) should improve the analysis in concerned kinematic regions

Content	Theory	Current	Goals	Generator studies	Multiclassification	Results	Summary and outlook
16/28	12.9.2022	Martin Marz: Thesis ov	erview			Institute of Experi	mental Particle Physics (ETP)

Parameter spaces with boosted topology

Goals

- Study the generator event selection of signal events (selection as shown before)
- Study the regions with boosted topologies
- **Oracle Section** Of each $m_{\rm H}$; $m_{\rm hs}$ mass hypothesis

Categorization

Each m_H; m_{hs} mass hypothesis falls into one of four categories
 A mass hypothesis is classified as **boosted** ττ if

median $\Delta R(\tau \tau) \leq 0.5$

Equally a hypothesis is classified as boosted bb if

median $\Delta R(bb) \le 0.5$

- (a) A hypothesis can be **boosted** $\tau\tau$ and **boosted bb** at the same time
- A hypothesis can be neither **boosted** $\tau\tau$ nor **boosted bb**
- The threshold 0.5 is chosen based on the previously observed efficiency drops

Results

Content

19/28

- Hpotheses marked in:
 - Red have an event acceptance below 20 %
 - Green are the hypotheses categorized as boosted bb
 - Blue are the hypotheses categorized as boosted *ττ*
 - Almost all hypotheses contain events with a boosted τ-pair and/or b-pair
- Similar study for the swapped final state $H \rightarrow h(bb)h_S(\tau\tau)$ (Manuel Freudig)
- Regions for boosted ττ and boosted bb hypotheses are also swapped

CMS simulation work in progress

Figure: $H \rightarrow h(\tau \tau)h_{S}(bb)$

Theory Current Goals Generator studies Mul 12.9.2022 Martin Marz: Thesis overview

Multiclassification

Results

Summary and outlook

Institute of Experimental Particle Physics (ETP)

Summary of generator study

- Boosted $\mu \tau_h$ -pairs do **not** pass the event selection criteria
- N_{bjets} \geq 1 allows most of the boosted b-jet signatures to pass the event selection
- These events contain to a large fraction mis-identified b-jet pairs
- Boosted signatures are expected for a significant number of m_H-m_{h_S} hypotheses independent of the decay channel
- The kinematic acceptance is bad for small m_H and/or high m_{hs}

Multiclassification

- Classify signal and background processes
- Event classification with neural network (NN)
- 16 input features
 - $p_{\rm T}$ of the μ
 - visible p_T of the r_h
 - 3 ...
- 5 Output nodes
 - $\begin{array}{l} \bullet \hspace{0.1cm} H \rightarrow h(\tau\tau)h_{S}(bb) \\ \bullet \hspace{0.1cm} H \rightarrow h(bb)h_{S}(\tau\tau) \\ \bullet \hspace{0.1cm} Ill \\ \bullet \hspace{0.1cm} W+jets \end{array}$
 - o tī

Figure: $m_H = 1200 \text{ GeV}$

Content	Theory	Current	Goals	Generator studies	Multiclassification	Results	Summary and outlook
21/28	12.9.2022	Martin Marz: Thesis over	erview			Institute of Experir	mental Particle Physics (ETP)

Measures to improve multiclassification

- Architecture similar to the original analysis
- Baseline NN trained for relative comparison

Adding input features (Feat.)

- 13 new input features are introduced to the analysis
- Selected due to their high discriminating power between signal and background
- Mostly AK8 (i.e. R = 0.8) jet variables are chosen to make use of boosted b-jet topologies

Splitting $H \rightarrow h(\tau \tau)h_{S}(bb)$ into two orthogonal groups (Split.)

- $H \rightarrow h(\tau \tau)h_{S}(bb)$ signal events with a spacial distance GEN $\Delta R(bb) \le 0.5$ (boosted)
- ② H → $h(\tau\tau)h_{S}(bb)$ signal events with a spacial distance GEN∆R(bb) > 0.5 (resolved)

One additional selection criterion (N_{AK8})

- N_{AK8 jet} ≥ 1
- Each aiming at optimizing the NN for boosted topologies without losing performance for resolved topologies

Comparison of confusion matrices and Taylor coefficients

- The discrimination between the two final states and signal versus background (ROC score range of 0.7-0.9) for each NN
- All NN's with changes performed better on confusion matrix level compared to the baseline
- The most important features for the baseline NN are:
 - *m* of the $\mu \tau_{h}$ -pair
 - 2 m of ττ + bb
 - $p_{\rm T}$ of the $p_{\rm T}$ -leading b-jet
- The most important features for the NN with additional set of input features are:
 - *m* of the $\mu \tau_{\rm h}$ -pair
 - **2 new:** ΔR between the $\mu \tau_{h}$ -pair and b-jet pair
 - $p_{\rm T}$ of the $p_{\rm T}$ -leading b-jet
 - new: p_T of the p_T-leading AK8-jet

More realistic comparison method

- For each NN signal and background templates are produced
- Statistical model $(\mu \cdot s + b)$ is only taking statistical uncertainties into account
- Expected asymptotic 95 % CL upper limit on σ(gg → H)B(H → hh_S → ττ + bb) calculated for each approach using the CL_S method

Expected upper limit: baseline

- Limit is decreasing for higher m_H Effect of increasing event acceptance Stronger effect than event loss due to
- reconstruction efficiency Weaker limit for $H \rightarrow h(bh)h_{2}(\tau\tau)$ correl
- Weaker limit for H → h(bb)h_S(ττ) correlates with high fraction of boosted events

 Content
 Theory
 Current
 Goals
 Generator studies
 Multiclassification
 Results
 Summary and outlook

 25/28
 12.9.2022
 Martin Marz: Thesis overview
 Institute of Experimental Particle Physics (ETP)

Interpretation of upper limits

- Isolated changes:
 - Feat.: Stronger for high m_H correlates with stronger discrimination power of variables
 - Split.: Bad discrimination between resolved and boosted signal topology for small m_H
 - NAK8: Loss of events for high m_H
- Largest improvement when applying all three changes together
- Average improvement of 50 %

Conclusion

- On its own adding input features resulted in highest improvement between the three treatments
- Highest improvement when applying all three treatments at once
- Effect could be different for other m_H-m_{hs} regions
- A dedicated treatment of boosted b-jet topologies is beneficial
- Only statistical uncertainties in this study

Summary and outlook

Summary

- Boosted μτ_h-pair topologies do **not** pass the event selection criteria
- Boosted b-jet topologies pass the current event selection criteria
- High number of events with boosted topologies are expected
- $\Delta R(hh_S)$ is a characterizing feature
- Dedicated treatment of boosted topologies is beneficial for the analysis

Outlook

- Extend study to bigger m_H-m_{hs} parameter phase space
- Improve AK8 jet selection and description
 - spatial matching with b-jet
 - e make better use of substructure
- Include $\tau_h \tau_h$ and $e \tau_h$ final states
- Adept event selection criteria for boosted µth-pair topologies

$\mu \tau_{\rm h}$ criteria

Muon ID	Transverse momentum [GeV]	Pseudorapidity	Distance from PV [cm]	ParticleFlow isolation (ΔR)
medium	<i>p</i> _T ≥ 25	$ \eta \le 2.1$	$d_z \le 0.2$ $d_{xy} \le 0.045$	≤ 0.15 (0.4)

Table: Selection criteria for μ in the $\mu \tau_h$ final state

Table: Selection criteria for τ_h in the $\mu \tau_h$ final state

[]		Identification WP
$ \eta \le 2.3$	$d_z \le 0.2$ $d_{xy} \le 0.045$	Tight vs μ VVLoose vs $m{e}$ Medium vs jets
NINI	Distributions	Discrimination
	η ≤ 2.3	$ \eta \le 2.3$ $d_z \le 0.2$ $d_{xy} \le 0.045$

Selections

Institute of Experimental Particle Physics (ETP)

Pair algorithm

Table: $\mu \tau_h$ pair algorithm

Importance	Criteria
4. 3. 2.	smallest μ ParticleFlow isolation highest μ p_T highest DeepTau vs jets discriminator
1.	highest $\tau_{\rm h} \rho_{\rm T}$

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
30/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experiment	tal Particle Physics (ETP)

Jet criteria

Table: Selection criteria for different jet types

Jet type	Transverse momentum [GeV]	Pseudorapidity	DeepFlavour Identification WP	Seperation to leptons
b-jet non b-jet	$p_{\mathrm{T}} \geq 30$ $p_{\mathrm{T}} \geq 20$	$ert \eta ert \leq 2.5 \ ert \eta ert \leq 2.5 \ ert \eta ert \leq 2.5$	medium -	$\Delta R \ge 0.4$ $\Delta R \ge 0.4$
AK8 jet	$p_{\mathrm{T}} \ge 160$	$ \eta \le 2.5$	-	$\Delta R \ge 0.8$

Selection	IS	Gen study	NN	Distributions	Discriminatior	Improvement
31/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experiment	al Particle Physics (ETP)

Table:	Selection	criteria	for veto	leptons
--------	-----------	----------	----------	---------

Particle	Lepton ID	Transverse momentum [GeV]	Pseudorapidity	Distance from PV [cm]	ParticleFlow isolation (ΔR)
е	MVA noIso ID V2 WP90	<i>p</i> _T ≥ 10	$ \eta \le 2.1$	$d_z \le 0.2$ $d_{xy} \le 0.045$	≤ 0.3 (0.3)
μ	medium	$p_{\rm T} \ge 10$	$ \eta \le 2.1$	$d_z \le 0.2$ $d_{xy} \le 0.045$	≤ 0.3 (0.4)

Selection	S	Gen study	NN	Distributions	Discriminatior	Improvement
32/28	12.9.2022	Martin Marz: Thesis overvie	w		Institute of Experiment	tal Particle Physics (ETP)

Acceptance

CMS simulation work in progress

 Selections
 Gen study
 NN
 Distributions
 Discrimination
 Improvement

 33/28
 12.9.2022
 Martin Marz: Thesis overview
 Institute of Experimental Particle Physics (ETP)

median ΔR

CMS simulation work in progress

CMS simulation work in progress

Gen study

NN

Distributions

Discriminatior

Improvement

34/28 12.9.2022

Martin Marz: Thesis overview

Institute of Experimental Particle Physics (ETP)

Baseline confusion

Figure: m_H = 600 GeV

Baseline Taylor

Wjet -	0.056	0.055	0.111	0.038	0.027	0.040	0.024	0.014	0.054	0.066	0.181	0.156	0.019	0.027	0.066	0.066
Z11 -	0.031	0.038	0.405	0.030	0.035	0.066	0.014	0.020	0.046	0.044	0.077	0.059	0.028	0.009	0.039	0.058
ttbar -	0.037	0.041	0.177	0.051	0.029	0.047	0.023	0.014	0.052	0.052	0.136	0.111	0.026	0.020	0.074	0.110
MH600_TauTau -	0.073	0.076	0.558	0.030	0.009	0.020	0.007	0.016	0.020	0.006	0.034	0.010	0.015	0.007	0.048	0.071
MH600_BB -	0.041	0.050	0.326	0.068	0.010	0.030	0.015	0.012	0.015	0.009	0.077	0.020	0.015	0.012	0.078	0.222
	Pair_Mu_Pt_corr -	Pair Tau Pt.corr -	Pair_M_corr -	Pair Pt.corr -	N_taggedJets_corr_nom -	nontaggedJets_Pt_corr_nom[0] -	N_nontaggedJets_corr_nom -	nonbJetPair dR.corr_nom -	nonbJetPair_M_corr_nom -	nonbJetPair_Pt_corr_nom -	taggedJets_Pt_corr_nom[0] -	taggedJets_Pt_corr_nom[1] -	nontaggedJets_Pt_corr_nom[1] -	bJetPair_bTagDisSorted_M_corr_nom -	oJetPair.bTagDisSorted_Pt_corr_nom -	System_bTagDisSorted_M_corr_nom -

Figure: $m_H = 600 \text{ GeV}$

Selections

Gen study

NN

Distributions

Improvement

36/28 12.9.2022 Martin Marz: Thesis overview

Institute of Experimental Particle Physics (ETP)
Add var confusion

Figure: $m_H = 600 \text{ GeV}$

Selection	IS	Gen study	NN	Distributions	Discriminatior	Improvement
37/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental Particle	Physics (ETP)

Add var Taylor

Wjet -	0.025	0.022	0.045	0.037	0.038	0.040	0.027	0.021	0.009	0.017	0.042	0.090	0.081	0.023	0.015	0.015	0.054	0.017	0.022	0.037	0.065	0.043	0.012	0.042	0.018	0.039	0.008	0.027	0.006	0.042
ZI -	0.030	0.028	0.250	0.058	0.028	0.029	0.038	0.013	0.004	0.021	0.034	0.040	0.036	0.023	0.017	0.024	0.037	0.017	0.016	0.035	0.053	0.029	0.013	0.033	0.018	0.024	0.009	0.020	0.006	0.019
ttbar -	0.019	0.019	0.091	0.033	0.025	0.034	0.036	0.019	0.008	0.017	0.038	0.077	0.069	0.024	0.016	0.025	0.071	0.023	0.020	0.042	0.077	0.043	0.011	0.039	0.017	0.031	0.008	0.026	0.006	0.035
MH600_TauTau	0.076	0.064	0.316	0.113	0.030	0.005	0.039	0.005	0.003	0.005	0.007	0.032	0.008	0.010	0.012	0.023	0.094	0.018	0.016	0.017	0.020	0.016	0.013	0.012	0.008	0.005	0.013	0.009	0.002	0.008
MH600_BB •	0.040	0.043	0.184	0.078	0.026	0.007	0.032	0.010	0.005	0.012	0.011	0.059	0.016	0.009	0.010	0.056	0.104	0.061	0.031	0.031	0.034	0.016	0.029	0.011	0.024	0.019	0.009	0.018	0.013	0.005
	Pair Mu Pt corr	Pair Tau Pt. corr	Par M.oor	Pair dR corr	Pair Pr. corr	N taggeddets corr rom	n ant agg ed Jois P t co m nam [0]	M nontaggeddets corr nom	no ritul edPair dR. corr. nom	nordu) e6Pair M. corr nom	norib Jeébair Ph. corr.nom	tagged less P too m nom [0]	tagged less P too moon [1]	n ont aggred lets. Pit com nam [1]	ulet Pair Is TagDisSort of M. corr. nom	System b TagDi Sort ed M. corr nom	system h TagDisSorted dR. corr nom	let Par h TagDisSorted dR. corr nom	Jet Pair b TagDi Sorted Pt. cor. nom	N AKBARE nom	Ak8. Jet. Pr. nom [0]	AK8.Mt midt drop nom [0]	A K8 Jet tau ratio21.nom [0]	A K8 Jet nurri 032 nom [0] -	Wither particle defection QCD non [0]	A KB Jet particlefet MD 356 non [0]	AK8Jet tau1.nom[0]	AK8.let 1au 2 nom [0]	AK8.ket tau 3 nom [0]	AK8Jet tau 4 nom [0]

Split confusion

Figure: $m_H = 600 \text{ GeV}$

Selection	IS	Gen study	NN	Distributions	Discriminatior	Improvement
39/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental Particle	Physics (ETP)

Cut confusion

Figure: $m_H = 600 \text{ GeV}$

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
40/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental Particle	Physics (ETP)

 ΔR ($\mu \tau_h$;bb)

Selection	S	Gen study	NN	Distributions	Discriminatior	Improvement
41/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental Particle	Physics (ETP)

Softdrop mass

Figure: $m_H = 1200 \text{ GeV}$

Selections Gen study NN Distributions Discrimination Improvement 42/28 12.9.2022 Martin Marz: Thesis overview Institute of Experimental Particle Physics (ETP)

Figure: m_H = 600 GeV

QCD disc

Figure: $m_H = 600 \text{ GeV}$

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
43/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experime	ental Particle Physics (ETP)

X(bb) disc

Figure: $m_H = 600 \text{ GeV}$

Selection	IS	Gen study	NN	Distributions	Discriminatior	Improvement
44/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	I Particle Physics (ETP)

AK8 *p*_T

Figure: $m_H = 600 \text{ GeV}$

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
45/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	I Particle Physics (ETP)

 τ_1

Selection	IS	Gen study	NN	Distributions	Discriminatior	Improvement
46/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	I Particle Physics (ETP)

Selections		Gen study	NN	Distributions	Discriminatior	Improvement
47/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	al Particle Physics (ETP)

 τ_2/τ_1

Figure: $m_H = 600 \text{ GeV}$

Selection	IS	Gen study	NN	Distributions	Discriminatior	Improvement
48/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	al Particle Physics (ETP)

Signal nodes baseline

Selection	ns	Gen study	NN	Distributions	Discriminatior	Improvement
49/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experime	ntal Particle Physics (ETP)

Background nodes baseline

Selection	ıs	Gen study	NN	Distributions	Discriminatior	Improvement
50/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experime	ntal Particle Physics (ETP)

Background nodes baseline

Signal nodes baseline

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
52/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	I Particle Physics (ETP)

Background nodes baseline

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
53/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental	Particle Physics (ETP)

Background nodes baseline

Signal nodes add. vars

Figure: $m_H = 600 \text{ GeV}$

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
55/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental	Particle Physics (ETP)

Background nodes add. vars

Selection	ıs	Gen study	NN	Distributions	Discriminatior	Improvement
56/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental	Particle Physics (ETP)

Background nodes add. vars

Signal nodes add. vars

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
58/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	Particle Physics (ETP)

Background nodes add. vars

Selection	าร	Gen study	NN	Distributions	Discriminatior	Improvement
59/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	al Particle Physics (ETP)

Background nodes add. vars

Signal nodes split

Selection	IS	Gen study	NN	Distributions	Discriminatior	Improvement
61/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experiment	al Particle Physics (ETP)

Signal nodes split

Background nodes split

Selection	ıs	Gen study	NN	Distributions	Discriminatior	Improvement
63/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experim	ental Particle Physics (ETP)

Background nodes split

Signal nodes split

Selection	ns	Gen study	NN	Distributions	Discriminatior	Improvement
65/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimenta	al Particle Physics (ETP)

Signal nodes split

Background nodes split

Selection	S	Gen study	NN	Distributions	Discriminatior	Improvement
67/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental	Particle Physics (ETP)

Background nodes split

Signal nodes cut

Selectio	ns	Gen study	NN	Distributions	Discriminatior	Improvement
69/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experime	ntal Particle Physics (ETP)

Background nodes cut

Selections		Gen study	NN	Distributions	Discriminatior	Improvement
70/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experiment	al Particle Physics (ETP)

Background nodes cut

Signal nodes cut

Figure: $m_H = 1200 \text{ GeV}$

Selections		Gen study	NN	Distributions	Discriminatior	Improvement
72/28	12.9.2022	Martin Marz: Thesis overview			Institute of Experimental Particle Physics (ETF	
Background nodes cut

Figure: $m_H = 1200 \text{ GeV}$

Selections		Gen study	NN	Distributions	Discriminatior	Improvement
73/28	12.9.2022	Martin Marz: Thesis overview	Institute of Experimental Particle		al Particle Physics (ETP)	

Background nodes cut

Figure: $m_H = 1200 \text{ GeV}$

Table: Improvements on the upper limit on $\sigma B(H \rightarrow hh_S \rightarrow \tau \tau + bb)$ for each approach for a dedicated boosted topology description.

Changes	Average [%]	m _H [GeV]	Maximal [%]	m _H [GeV]	Minimal [%]
Feat.	29.83	1200	37.50	600	22.40
Split	26.17	1200	34.82	600	9.74
N _{AK8}	13.38	600	22.40	1200	0.00
Feat.+Split	47.49	1000	58.28	600	31.81
Feat.+N _{AK8}	37.73	700	40.15	1200	34.82
Split+N _{AK8}	34.50	900	39.00	600	28.57
Feat.+Split+N _{AK8}	50.12	1000	58.28	600	38.31

Best fit

CMS simulation baseline NN work in progress 1.4 Ŧ Ŧ Ŧ 0.6 comb hS bb hS tautau ttbar Wjet 711 node

Figure: Statistical uncertainties only

s+b Asimov toy

- example best fit using only specific output nodes
- m_H = 600 GeV; m_{hs} = 60 GeV
- background nodes have only a small impact
- Zll node also sensitive on signal due to signal migration

 Selections
 Gen study
 NN
 Distributions
 Discrimination
 Improvement

 76/28
 12.9.2022
 Martin Marz: Thesis overview
 Institute of Experimental Particle Physics (ETP)

Event signature

CMS simulation work in progress

2800 2600 2400 2200 2000 1800 1600 1400 1300 1000 900 800 500 650 650 450 450 450 350 350 150 150 120 100 100 100 60 median $\Delta R(H to hh_S)$ m_{hs} (GeV) 앙 m_H (GeV)

- Studied the event signature
- Spacial distance between the two lighter Higgs bosons
- Back-to-back decay regardless of hypothesis
- Characterizing feature for signal events

 Selections
 Gen study
 NN
 Distributions
 Discrimination
 Improvement

 77/28
 12.9.2022
 Martin Marz: Thesis overview
 Institute of Experimental Particle Physics (ETP)

Expected upper limit: Additional input features

- Average improvement of around 30 %
- Stronger improvement for heavier m_H
- Correlates with discriminating power of added variables
- Higher signal over background ratio for heavier m_H

Expected upper limit: Splitting

- Average improvement of 26 % Stronger improvement for heavier m_H For lighter m_H the signal node discriminator for resolved topologies low
- Worse discrimination
- Phase space limited

Expected upper limit: Cut

Improvement

 $m_{h_{\rm S}} = 60 \; {\rm GeV}$ work in progress 10¹ baseline $H \rightarrow h(\tau \tau)h_{S}(bb)$ ττbb) (pb) $H \rightarrow h(bb)h_{<}(\tau\tau)$ N_{AK8} 100 68% exp 95% exp 95% CL limit on $\sigma B(H \rightarrow hh_{S} \rightarrow$ 10^{-1} 10-2 10^{-3} 600 700 800 900 1000 1100 1200 *т*_н (GeV)

CMS simulation

- Average improvement of 13%
- Stronger improvement for lighter m_H
- For heavier m_H the imposed cut limits the statistic
- Studied phase space limited

Input features

- *p*_T of the μ
- visible p_T of the t_h
- visible *m* of the $\mu \tau_h$ -pair
- visible p_T of the $\mu \tau_h$ -pair
- number ob b-tagged jets
- *p*_T of the *p*_T-leading b-tagged jet
- *p*_T of the *p*_T-sub-leading b-tagged jet
- visible m of the two p_T-leading b-tagged jets
- visible p_T of the two p_T-leading b-tagged jets
- number of non b-tagged jets
- *p*_T of the *p*_T-leading non b-tagged jet
- *p*_T of the *p*_T-sub-leading non b-tagged jet
- m between the two p_T-leading non b-tagged jets
- *p*_T between the two *p*_T-leading non b-tagged jets
- spatial distance ΔR between the two p_{T} -leading non b-tagged jets
- visible *m* of the entire $\tau \tau$ + bb system

