

Batch System Introduction

• Andreas Baer, KIT - SCC

Funding:

www.bwhpc.de

Reference: bwHPC Wiki

- All information given in this talk can be found at <u>wiki.bwhpc.de</u>:
 - Batch Jobs

Material: Slides & Scripts

- https://indico.scc.kit.edu/e/bwhpc_course_2022-10-13
- @bwUniCluster:
 - /opt/bwhpc/common/workshops/2022-10-13

How to read the following slides

Abbreviation/Colour code	Full meaning
<pre>\$ command -option value</pre>	<pre>\$ = prompt of the interactive shell The full prompt may look like: user@machine:path\$ The command has been entered in the interactive shell session</pre>
<integer> <string></string></integer>	<> = Placeholder for integer, string etc

Batch System

Resource management

Jobs are **NOT** executed by the user

Instead, there is a management system (Batch System)

workload manager (scheduler)

- scheduling, managing, monitoring, reporting
- SLURM (HoreKa, bwUniCluster 2.0, 2x bwForCluster)
- MOAB (2x bwForCluster)
- resource manager
 - control over jobs and distributed compute nodes
 - SLURM (HoreKa, bwUniCluster 2.0, 2x bwForCluster)
 - TORQUE (2x bwForCluster)

Resource and workload manager (1)

(4) The resource manager executes the job and communicates status information to nodes

Resource and workload manager (2)

All clusters:

- compute job will only be processed by the batch system
- Running jobs on login nodes not allowed

- Waiting time:
 - depends on:
 - your job demands
 - your demand history
 - ONLY bwUniCluster 2.0: your university's share

Job's life cycle

2. Sub<u>mit: ONLY with "**sbatch**" (for interactive jobs</u>: "**salloc**")

\$ sbatch job_script.sh
<job_ID>

3. Processing:

\$ squeue
<job_ID> STATE: "PENDING" → "RUNNING" → "COMPLETED"

4. Postprocessing: Job is finished → check output (default job name) bwUniCluster: slurm-<job_ID>.out

HoreKa : slurm-<job_ID>.out

1./2. Job Submit: Sbatch options

- <u>https://wiki.bwhpc.de/e/BwUniCluster 2.0 Slurm common Features#sbatch Command Parameters</u> on bwUniCluster 2.0 and
- https://www.nhr.kit.edu/userdocs/horeka/batch/ on HoreKa respectively.
- sbatch options: command line or in your job script

Command line	Script	Purpose
-N nodes	#SBATCHnodes=nodes	Number of nodes to be used.
-n <i>tasks</i>	#SBATCHntasks= <i>tasks</i>	Number of tasks to be launched.
-J name	#SBATCHjob-name=name	Gives a user specified name to the job.
-p queue	#SBATCHpartition=queue	Defines the queue class
mail-type=type	#SBATCHmail-type=type	Send email when job begins (BEGIN), ends (END), aborts (FAIL), at each event (ALL)

1./2. Job Submit: Important Resource Parameters

Sbatch Resource Options							
Command line	Script	Purpose					
-t time	#SBATCHtime=time	Wallclock time limit					
-N nodes	#SBATCHnode=nodes	Number of nodes to be used					
-n <i>tasks</i>	#SBATCHntasks=tasks	Number of tasks to be launched					
-c count	#SBATCHcpus-per-task=count	Number of CPUs required per (MPI-)task					
ntasks-per- node= <i>count</i>	#SBATCHntasks-per-node= <i>count</i>	Number of (MPI-)tasks per node					
mem=MB_value	#SBATCHmem=MB_value	Memory in MegaByte per node					
mem-per-cpu=MB_value	#SBATCHmem-per-cpu=MB_value	Memory required per allocated core					

- https://wiki.bwhpc.de/e/BwUniCluster_2.0_Slurm_common_Features#sbatch_Command_Parameters on bwUniCluster 2.0 and
- https://www.nhr.kit.edu/userdocs/horeka/batch/ on HoreKa respectively.
- sbatch options: command line or in your job script

1./2. Job Submit: Important Resource Parameters

	Sbatch Resource Options	
Command line	Script	Purpose
-t time	#SBATCHtime=time	Wallclock time limit
-N nodes	#SBATCHnode=nodes	Number of nodes to be used
-n <i>tasks</i>	#SBATCHntasks=tasks	Number of tasks to be launched
-c count	#SBATCHcpus-per-task=count	Number of CPUs required per (MPI-)task
ntasks-per- node= <i>count</i>	#SBATCHntasks-per-node= <i>count</i>	Number of (MPI-)tasks per node
mem=MB_value	#SBATCHmem=MB_value	Memory in MegaByte per node
mem-per-cpu= <i>MB_value</i>	#SBATCHmem-per-cpu= <i>MB_value</i>	Memory required per allocated core

. . .

Use these options in the job script:

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 20
#SBATCH --time=00:02:00
#SBATCH --mem=500mb

Or use them with sbatch:

\$ sbatch -N 1 -n 20 -t 2 --mem=500 <job_script>

bwUniCluster 2.0

	Thin nodes	HPC nodes	Fat nodes	GPU nodes
Number of nodes	100 + 60	360	6	14 (4 GPUs each) 10 (8 GPUs each)
Number of sockets	2	2	4	2
Number of cores per node	40	40	80	40
Main memory per node	96 GB / 192 GB	96 GB	3 TB	384 GB 768 GB
Local SSD	960 GB SATA	960 GB SATA	4.8 TB NVMe	3.2 TB NVMe 6.4 TB NVMe
Interconnect (InfiniBand)	HDR 100 (blocking)	HDR 100	HDR	HDR

- 0 4 login nodes
- ^o Some additional nodes that will be turned of by end of October

sbatch -p queues (Important queues of bwUniCluster 2.0)

queue	default resources	MIN resources	MAX resources
dev_single	time=10, mem-per-cpu=1125mb		time=30, nodes=1, mem=180000mb, ntasks- per-node=40
single	time=30, mem-per-cpu=1125mb		time=72:00:00, nodes=1, mem=180000mb, ntasks- per-node=40
multiple	time=30, mem-per-cpu=1125mb	nodes=2	time=72:00:00, nodes=128, mem=90000mb, ntasks-per- node=40
gpu_4	time=10, mem-per-cpu=2178mb cpu-per-gpu=20	nodes=2	time=48:00:00, nodes=14, mem=376000, ntasks-per- node=40
fat	time=10, mem-per-cpu=18750mb		time=72:00:00, nodes=1, ntasks-per-node=80

https://wiki.bwhpc.de/e/BwUniCluster_2.0_Batch_Queues

Time and memory will be automatically chosen if not set

Available Resources

Check available resources via

\$ sinfo_t_idle

xy_ab12340	@bwunicluster:~	\$	sinfo_†	t_idle	
Partition	dev single	•	6	nodes	idlo
Dertition	dev_singre	:	0	nodea	idle
Partition	STUBLE	•	0	nodes	тате
Partition	dev_multiple	:	8	nodes	idle
Partition	multiple	:	3	nodes	idle
Partition	fat	:	0	nodes	idle
Partition	dev_multiple_e	:	8	nodes	idle
Partition	multiple_e	:	3	nodes	idle
Partition	dev_special	:	2	nodes	idle
Partition	special	:	0	nodes	idle
Partition	gpu_4	:	0	nodes	idle
Partition	dev_gpu_4	:	1	nodes	idle
Partition	gpu_8	:	0	nodes	idle

Tutorial 1a – bwUniCluster

- **Goal:** Use the Batch System to execute "printenv" on the cluster
- 1) Create a file "submit_script.sh" and set the following options in the submit

script:

- 1 task
- 500 MB memory
- Time: 5 minutes

#!/bin/bash
#SBATCH [???]
#SBATCH --time=00:05:00
#SBATCH --mem=500

[?????]

- 2) After defining these options, insert the command to be exectuted at the end of the jobscript ("printenv")
- **3)** Save the jobscript and submit it to the Batch System with

\$ sbatch -p single --reservation=ws submit_script.sh

- You can use "squeue" to see the status of your job
- 4) Look in the output file of your job (slurm-<jobID>.out) for variables starting with "SLURM_". These can be used to get information on how the job was started

Tutorial 1a – Solution

Create a file named "**submit_script.sh**" with the following content:

#!/bin/bash
#SBATCH -n 1
#SBATCH --time=00:05:00
#SBATCH --mem=500

printenv

Save the file and submit it with ("--reservation=ws" only for this workshop)

\$ sbatch -p single --reservation=ws submit_script.sh

In the output file, you can find the SLURM variables:

For example: "**SLURM_JOB_PARTITION=cpuonly**" means:

In the job script, we have not defined a partition but the job was submitted

to the "cpuonly" partition with sbatch command

Tutorial 1b

- 1) Modify your submit script so that instead of "printenv" the value of "SLURM_NPROCS" is printed (Hint: Use echo)
- Submit your job again, but this time use sbatch to specify the number of processes:
- \$ sbatch -p single --reservation=ws -n 4 submit_script.sh
- 2) Check in your output file if the number of processes is "1" as specified in the submit script or "4" as specified directly with sbatch

Tutorial 1b - Solution

Modify your submit script to print the variable **SLURM_NPROCS**

#!/bin/bash
#SBATCH -n 1
#SBATCHtime=00:01:00
#SBATCHmem=500
echo \$SLURM NPROCS

Save the file and submit it with

\$ sbatch -p single --reservation=ws -n 4 submit_script.sh

In the output file the number of processes is printed: slurm-<job-ID>.out

4

The options given directly to sbatch take precedence over the options in the submit script

Job life cycle: 3. Processing (1)

After submit command: if successful it returns <job-ID>

```
$ sbatch submit_script.sh
```

Submitted batch job 1487560

- Monitoring" via:
 - 3.a.

scontrol show job <job-ID>

3.b.

squeue

3.c. Login to compute node:

srun --jobid=<id> --pty [--overlap] /usr/bin/bash

"Modifying" via:

scancel <job-ID>

3.a. Processing - scontrol show job (1)

After submission of your script submit_script.sh

<pre>\$ scontrol show job <job-id></job-id></pre>	1) Consumed resources will be booked on your
JobId=1487569 JobName=submit_script.sh	university
UserId=ab1234(27049) GroupId=scc(12345)	2) Your ich stata
Priority=4298 Nice=0 Account=kit QOS=normal	2) Your Job state
<pre>JobState=RUNNING Reason=Prolong Dependency=(null)</pre>	
Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0	3) Your time logging
RunTime=00:00:19 TimeLimit=00:10:00 TimeMin=N/A	
SubmitTime=2021-10-13T00:06:58 EligibleTime=2021-10-13	
AccrueTime=2021-10-13T00:06:59	
StartTime=2021-10-13T00:06:59 EndTime=2021-10-13T00:16:59	
SuspendTime=None SecsPreSuspend=0 LastSchedEval=	(1) Your colocted regulation
Partition=dev_single AllocNode:Sid=uc2n997:2170796	4) Your selected partition
ReqNodeList=(null) ExcNodeList=(null)	
NodeList=uc2n362	5) Your node list and
BatchHost=uc2n362	Node on which job
	started

3.a. Processing - scontrol show job (2)

After submission of your script **submit_script.sh**

3.b. Processing - squeue

After submission of your script **submit_script.sh**

\$ squeue							
JOBID PARTITION NAME USER S	ST :	TIME N	ODES N	ODELIS	T(REASON	1)	
1487570 dev_singl submit_s ab1234	R (0:05	1 u	1c2n362			
¢ gauouolong							
a sdrare tong							
JOBID PARTITION NAME USER	STATE	TIM	E TIME	LIMI	NODES N	ODELIS	ST(REASON)
1487570 dev_singl submit_s ab1234 R	RUNNING	2:49	9	10:00	1 u	1c2n362	2
Ioh states:	Whe	≏n i∩h i	s nen	ding∙ e	vnecter	l star	time?
= PD = PFNDING			5 pen		Apeciei		. chine .
P - PIINNTNC	\$ sque	uest	art				
= R $ R$ R R R R R R R R R	t Dquo						
\square CD = COMPLETED	JOB	ID		STA	RT_TIME	SCH	EDNODES
	14875	70	2021-	10-14T1	0:10:10		uc2n362
\blacksquare F = FAILED							
\blacksquare CA = CANCELLED							

3.b. Processing - sacct

After submission of your script submit_script.sh

Display accounting data of your job and job steps?

<pre>\$ sbatch submit_script.sh Submitted batch job 1487652</pre>								
\$ sacct -j 14	487652							
JobID	JobName	Partition	Account	AllocCPUS	State	ExitCode		
1487652	<pre>submit_sc+</pre>	dev_single	kit	2	RUNNING	0:0		
1487652.bat+	batch		kit	2	RUNNING	0:0		
1487652.ext+	extern		kit	2	RUNNING	0:0		
1487652.0	hostname		kit	2	COMPLETED	0:0		
1487652.1	bash		kit	2	RUNNING	0:0		

3.c. Processing - Compute node login

Once your job is running (state=R),

login to dededicated nodes is possible:

```
ab1234@uc2n997:~$ sbatch submit_script.sh
Submitted batch job 1487652
ab1234@uc2n997:~$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1487652 dev_singl submit_s ab1234 R 2:42 1 uc2n0362
ab1234@uc2n997:~$ srun --jobid=1487652 --pty /usr/bin/bash
ab1234@uc2n362:~$
```

The command srun adds another step to your job,

Once main jobs finishs, this job step is cancelled automatically:

```
ab1234@uc2n362:~$
slurmstepd: error: *** STEP 1487652.2 ON uc2n362 CANCELLED AT 2021-10-
13T10:35:52 ***
exit
srun: Job step aborted: Waiting up to 32 seconds for job step to finish.
ab1234@uc2n997:~$
```


3.d. Processing - Change status of your job

- Once your job is submitted (state=**PD or R**),
 - You can cancel your job

<pre>\$ sbatch submit_script.sh Submitted batch job 1487683</pre>								
\$ scancel 1487683								
JOBID PARTITION	NAME	USER	ST]	ΓIME	NODES	NODELIST(REASON)	
1487683 dev_singl s	submit_s	ab1234	R	2	2:42	1	uc2n362	

Check with sacct :

\$ sacct -j 1487683						
JobID	JobName	Partition	Account	AllocCPUS	State	ExitCode
1487683	<pre>submit_sc+</pre>	dev_single	kit	2	CANCELLED+	0:0
1487683.bat+	batch		kit	2	CANCELLED	
1487683.ext+	extern		kit	2	CANCELLED	

Tutorial 2

- Modify your submit script so that it executes a command to wait for 600 seconds (sleep 600)
- Set walltime to 10 minutes and give your job a name
- Submit your job script with sbatch
- Use squeue to check the status of your job
- Use scontrol show job to see from which directory you started your job
- Use scancel <job-ID> to cancel your job

Tutorial 2 - Solution

Modify your submit script

```
#!/bin/bash
#SBATCH -N 1 -n 1
#SBATCH -t 00:10:00
#SBATCH --mem-per-cpu=500
#SBATCH -J myJobName
sleep 600
```

Save the file and submit it with

\$ sbatch -p single --reservation=ws submit_script.sh

Get your start directory of your jobs

\$ scontrol show job 1487685 | grep WorkDir WorkDir=/pfs/data5/home/kit/scc/ab1234/workshop

Use **scancel <job-ID>** to cancel your job

Interactive jobs

Jobs on login nodes are not permitted

Solution: interactive slurm jobs

Access compute nodes and work on them interactively

```
Job is waiting to start, Do
ab1234@uc2n997$ salloc -p ws -n 1 -t 10 --mem=2000
                                                                    Not interupt the command
salloc: Granted job allocation 1487738
                                                                    Job running. You are
salloc: Waiting for resource configuration
                                                                    now on a compute node
salloc: Nodes uc2n362 are ready for job
ab1234@uc2n362:~$ {Now you can work on the compute node}
salloc: Job 1487738 has exceeded its time limit and its allocation has been revoked.
srun: Job step aborted: Waiting up to 32 seconds for job step to finish.
slurmstepd: error: *** STEP 1487738.interactive ON uc2n362 CANCELLED AT 2021-10-
13T13:02:41 DUE TO TIME LIMIT ***
                                                                    Requested time for the
exit
                                                                    interactive job ran out
srun: error: uc2n362: task 0: Exited with exit code 127
ab1234@uc2n997:~$
                         Back on the login node
```

