
Parallelization of Radio module using Gyges

A. Augusto Alves Jr, with Nikos Karastathis

Presented at CORSIKA development meeting - KIT, Karlshuhe
October 13, 2022

1/18

Recap: Amdahl’s law

• Predicts the expected speedup from parallelism:

Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities

Amdahl, Gene M.

AFIPS Conference Proceedings (30): 483–485 (1967)
doi:10.1145/1465482.1465560

• It is expressed as

S(n) =
1

(1 − p) + p
n

where: S(n) is the speedup in function of the number of cores/threads. n is number of
cores/threads and p is the fraction of code that is parallelizable.

2/18

CORSIKA, Radio and Amdahl’s law

• Radio module calculates the signal corresponding to each particle/track for each antenna
of the detector.

• And it often runs as one of the final operations in the sequence. Keep in mind that
currently the all algorithms in the sequence run sequentially. Same applies for the
processing of the particles in the stack.

• We parallelized the calculation of the signal over the detector. It means, in a per
particle/track basis, the antennas response are processed in parallel.

• The expected overall speed-up (CORSIKA wise) then depends hugely of the detector size,
i.e. number of antennas in the detector. I minor, but still significantly, it also depends on
the calculations in the antenna itself.

• With a large detector, the importance Radio module operations grows and tends to
dominate the sequence. In such, situations the speed-up is larger. This is what Amdahl’s
law predicts.

3/18

Gyges

Gyges is a lightweight C++20 header-only library to manage thread pooling.

• With Gyges , thread creation and destruction costs can be paid just once in the program lifetime.

• Threads from the pool pick-up tasks as they became available. If there is no task, the threads just
go sleeping.

• Tasks can be submitted from multiple threads. The submitter gets a std::future for monitoring
the task in-place.

• Task assignment and running can be stopped at any time acting over an std::stop_token .

• A gyges::gang can also be created or put in a “hold-on” state. The processing of the tasks will
be postponed until it is put on “unhold” status. The threads are not keep busy-waiting, they are
put to sleep until “unhold” command is sent.

• Two implementations of gyges::for_each . One of than able to recycle an already existing
gyges::gang .

Status: Released. Code is available here: https://gitlab.iap.kit.edu/AAAlvesJr/Gyges
4/18

https://gitlab.iap.kit.edu/AAAlvesJr/Gyges

Some implementations hints, not details

• corsika::RadioProcess instances own the gyges::gang . Size of it can be specified at
construction time :

1 auto propagator = make_simple_radio_propagator(enviroment);
2 auto coreas = make_radio_process_CoREAS(detector, propagator, nthreads);
3 auto zhs = make_radio_process_ZHS(detector, propagator, nthreads);

• No need to specify template parameters with the new interface.

• The implementation will define a task per thread (not per antenna). Each task will iterate
over the same number of antennas, so that each thread will perform about the same
amount of work.

5/18

What is being profiled?

1 ...
2 auto propagator = make_simple_radio_propagator(enviroment);
3 auto coreas = make_radio_process_CoREAS(detector, propagator, nthreads);
4 auto zhs = make_radio_process_ZHS(detector, propagator, nthreads);
5 ...
6 //start chronometer
7 coreas.doContinuous(particle, base, true);
8 //stop chronometer
9 ...

10 //start chronometer
11 zhs.doContinuous(particle, base, true);
12 //stop chronometer

6/18

Performance: detector with 1k antennas

7/18

Performance: detector with 10k antennas

8/18

Performance: detector with 100k antennas

9/18

Performance: detector with 200 antennas

10/18

Comments

• Parallelized Radio module behave as expected, in terms of performance and physics (See
Nikos’ slides).

• Scaling behavior for small detectors probably improves more complexes propagators.

• One should also pay attention to the absolute value of the timing for a given number of
threads, when passing from 200 to 10,000 antennas.

11/18

A performance issue found during this work

• In initial stages of this study we found out the opposite to the expected behavior: time
always increasing with the number of threads.

• Investigating further we found out that the culprit was the std::shared_ptr<> managing
the the coordinate system.

• This pointer is shared among all geometry objects. By distributing this pointer among
different threads we was distributing a lock.

• We substituted it by an corsika::dumb_ptr and the glitch went away and we even got
some performance gain in single thread application.

12/18

Backup Slides

Gyges example

1 #include <future>
2 #include <iostream>
3 #include <random>
4 #include <vector>
5 #include <gyges/gang.hpp>
6
7
8 int main(int argv, char** argc)
9 {

10 //number of random numbers to accumulate per task
11 unsigned max_nr = 1000000000;
12
13 // it will create a gang with the number
14 // of cores supported by the hardware.
15 gyges::gang thread_pool{};
16
17 std::cout << "The gang has #" << thread_pool.size() << " workers\n";
18
19 //tasks will accumulate max_nr of random numbers
20 //and set the result in the corresponding position of a vector
21
22 std::vector<double> results(thread_pool.size(), 0.0);
23 std::vector<std::future<void>> monitors;

14/18

Gyges example

1 for(std::size_t i=0; i< thread_pool.size() ; ++i)
2 {
3 //used to obtain a seed for the random number engine
4 std::random_device rd;
5 auto seed = rd();
6 //where to place the result
7 auto result_iterator = results.begin() + i;
8
9 //lambda function getting the necessary parameters to perform the task.

10 auto Task = [result_iterator, max_nr, seed](std::stop_token t) {
11
12 double partial_result = 0;
13 std::mt19937 generator(seed);
14 std::uniform_real_distribution<double> distribution(0.0, 1.0);
15
16 for(unsigned nr = 0; nr< max_nr; ++nr)
17 partial_result+=distribution(generator);
18 //set results
19 *(result_iterator) = partial_result;
20 };
21 // task submission
22 auto future = thread_pool.submit_task(Task);
23 monitors.push_back(std::move(future));
24
25 }//close for loop

15/18

Gyges example

1 //check the tasks and print the result
2 for(std::size_t i=0; i< monitors.size(); ++i){
3 monitors[i].get();
4 std::cout << "Task #" << i << " completed. Result: "<< results[i] << std::endl;
5 }
6
7 //stop the gang or let it get destroyed exiting scope
8 thread_pool.stop();
9

10 return 0;
11 }

16/18

Gyges example

1 [augalves@LabHome Gyges_Proj] $./examples/use_gangs
2 The gang has #8 workers
3 Task #0 completed. Result: 4.99999e+08
4 Task #1 completed. Result: 4.99998e+08
5 Task #2 completed. Result: 4.99998e+08
6 Task #3 completed. Result: 4.99975e+08
7 Task #4 completed. Result: 4.99992e+08
8 Task #5 completed. Result: 5.00011e+08
9 Task #6 completed. Result: 5.00009e+08

10 Task #7 completed. Result: 4.99997e+08
11 [augalves@LabHome Gyges_Proj] $

Basically 6x109 calls to RNG plus the accumulation operation performed in about 10s.

17/18

What next ?

Profiling...

18/18

Thanks

