

Inelastic Dark Matter with Dark Higgs

Jonas Eppelt | November 14, 2022

イロト イタト イモト イモト

KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association

Introduction

Anomaly Detection in general

- Something that is unlike any other: out-of-distribution
- In HEP typically over-densities

Figure: ATLAS collaboration, https://atlas.cern/updates/briefing/new-atlas-IDMDH - Jonas Eppelt

Anomaly Detection in HEP

- physics case: Jet Identification at CMS or ATLAS
- prevalent methods: Classification without labels, Autoencoders

Figure: B. Dillon, T. Plehn, C. Sauer, P. Sorrenson, "Better Latent Spaces for Better Autoencoders", SciPost 11 no.3 (Sep, 2021)

ର ୍ଦ 2/35

Belle II - a e^+e^- collider experiment

Inelastic Dark Matter with Dark Higgs

I D > I A

7 free parameters

- Coupling constants for Dark Higgs h' to Dark Matter χ_1/χ_2 and Dark Photon A' to Dark Matter
- Mixing angles for the A' and h'
- Masses for the χ_1 , h' and A'
- described in Long-lived Dark Higgs and inelastic Dark Matter at Belle II (DOI:2012.08595)

4 10

DQC

Motivating Anomaly Detection

Searches for Inelastic Dark Matter

- Non prompt decays have low background (\longrightarrow search by Patrick Ecker)
- Prompt decays hard to identify
- Curse of dimensionality: number of points $\propto n^d \longrightarrow$ Find a model-independent way to select signal

イロト イヨト イヨト イヨト

∽ < (~ 5/35

Signal Simulation

model parameter	values		
m_{χ_1}	[0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]		
$m_{h'}$	[0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]		
heta	10 ⁻²		
ϵ	10 ⁻²		
$m_{A'}$	$4 \cdot m_{\chi_1}$		
	$2.746 imes 10^{-1}$		
	1.12		

example signals

- light dm: $m_{h'} = 0.5 \,\text{G}, \, m_{\chi_1} = 0.5 \,\text{G}$
- heavy dm: $m_{h'} = 2.5 \,\text{G}, m_{\chi_1} = 2.5 \,\text{G}$
- high mass splitting: $m_{h'} = 0.5 \text{ G}, m_{\chi_1} = 3 \text{ G}$

 \equiv

・ロト ・四ト ・日ト ・日ト

Reconstruction

Goals

- Reduce 'unphysical' background sources (beam background)
- Reduce the amount of events to a 'handleable' level

final state particles

- leptons (e/μ)
 - Trackinghits > 20
 - binaryPID (μ vs e)
 - e :> 0.1
 - $\mu:<{\rm 0.9}$
 - θ in CDCAcceptance
 - nCDCHits > 20
 - $dr < 0.5 \, cm$
 - |dz| < 2 cm

reconstruct particles

$$\mu^+\mu^-
ightarrow$$
 h' / $e^+e^-
ightarrow \chi_2$

- dr <= 0.2 cm
- $\chi_{\mathrm{Prob}} > 0$ & min one $\chi_{\mathrm{Prob}} >= 0.01$

Rest of event (ROE)

- θ in CDCAcceptance
- nCDCHits > 20
- dr < 0.5 cm
- |dz| < 2 cm
- E > 0.05 GeV

 π_o veto

candidate closest to π^0_{InvM}

590

Missing energy selection

∽ < (~ 9/35

Sensitivities after Reconstruction

IDMDH - Jonas Eppelt

November 14, 2022

10/35

Truthmatching

b a B b a B b = November 14, 2022

IDMDH - Jonas Eppelt

590

イロト イロト イヨト イヨト

Autoencoder

Event features

Variational Autoencoder

Encoder Decoder Latent distribution

Event features

Reconstructed event

Dirichlet Variational Autoencoder

Reconstructed event

590

About Dirichlet

basics

- probability for categorical distributions, e.g.:
 - 30% 'anomalous' ightarrow 70% 'normal'
 - 10% 'Bhabha', 80% 'ττ, 10% 'anomalous'
- with k categories k parameters α_k

approximation

- $D_{\alpha}(r) \approx \operatorname{softmax}[N(z, \mu, \sigma)]$ with
 - $\mu_i = \log \alpha_i \frac{1}{R} \sum_i^d \log \alpha_i$ • $\sigma_i = \frac{1}{\alpha_i} (1 - \frac{2}{R}) + \frac{1}{R^2} \sum_i^d \frac{1}{\alpha_i}$
- add a softmax layer after resampling
- distribution characterized by d parameter

 α_i

Prescaling

Input features

- final state leptons 4-vectors (E, px, py, pz)
- order of (e^- , e^+ , μ^- , μ^+)
- missing Energy as 4-vector
- prescale by standardize:

$$x' = \frac{x - \hat{x}}{\sigma(x)} \tag{1}$$

 \rightarrow

590

Hyperparameters

Architecture

- both parts 3 hidden layers @ 100 neurons
- 1 to 10 latent dimensions
- ReLU activation

Training

- Adam with learning rate 10⁻⁵
- early stopping after 15 epochs without new best epoch (max 500)
- Cross-validation with 20 % split
- Stochastic Weighted Average
- Batch size 128
- LR scheduling on plateau (factor 0.1 10 epochs, relative change of 10⁻⁴)

化口下 化固下 化压下 化压下

= 990

Training AE(I=10)

Trainings results

E		
lat. dim	h	mse
1	1.6	0.7
2	17	0.3
3	22	0.22
4	26	0.14
5	23	0.1
6	27	0.08
7	28	0.06
8	25	0.04
9	21	0.028
10	27	0.013

VAE					
	lat. dim	h	mse		
	1	2.1	0.9		
	2	8	0.8		
	3	9	0.7		
	4	7	0.7		
	5	9	0.7		
	6	7	0.7		
	7	9	0.7		
	8	8	0.7		
	9	8	0.8		
	10	8	0.7		

JVAE						
	lat. dim	h	mse			
	2	8	0.7			
	3	18	0.4			
	4	21	0.29			
	5	20	0.28			
	6	30	0.2			
	7	30	0.15			
	8	30	0.12			

9

10

- < ロ > < 回 > < 回 > < 回 > = 三

28

40

0.09

0.08

Training VAE(I=5)

MSE of AE(I=1)

21/35

=

Punzi curves

benchmark sensitivity: Punzi Figure of Merit (PFOM)

$$\mathsf{PFOM} = rac{\textit{eff}_{\mathsf{signal}}}{rac{1}{2} + \sqrt{\textit{N}_{\mathsf{background, after}}}}$$

effsignal relative to selected samples

DQC

ъ

Punzi comparison AE

Ξ •Ω < (~

イロト イヨト イヨト イヨト

AE(I=8)

AE(I=10)

Punzi comparison VAE

Ξ •Ω < (~

イロト イヨト イヨト イヨト

Punzi comparison DVAE

November 14, 2022 27/35

Ξ •Ω < (~

イロト イヨト イヨト イヨト

IDMDH - Jonas Eppelt

イロト イロト イヨト イヨト \equiv 590

IDMDH - Jonas Eppelt

E DQC

Latent space VAE(I=3)

Latent space DVAE(I=2)

Punzi comparison DVAE(I=10) latent space

Validation

590

33/35

Look in data

- Idea: validate that latent-dimension looks similar for data
- Selecting three track Trigger and HLT

Selecting Anomalies using AE(I=8), MSE > 0.1978

Anomaly Detection for Belle II

Figure: courtesy of L. Reuter

Anomaly Detection for Inelastic Dark Matter

- Differently sized latent spaces are sensitive to different model parameter configurations
- Trade-off between model independence and sensitivities
- only little use of PID information was made

Use and Future of Autoencoders

- AEs outperform VAEs & DVAEs
- Further tuning of Hyperparameters possible
- DVAEs priors for the latent space require more investigation
- architectures could be further improved (Normalized Autoencoder, Graph Neural Networks)

SOR