
(Re)Interpreting LHC results

David Yallup

16th MCnet Meeting Karlsruhe

Reinterpretation of ATLAS/CMS results

- Results ATLAS/CMS searches/measurements
 - What different results do we produce
 - What are the implications for interpreting these results for arbitrary new physics models
- The MCnet point of view
 - What do we need from our physics predictions to reinterpret results
 - Rivet/Contur MCnet projects aiming to tackle these problems

Results

Roughly speaking need to know how to convert a particle level simulation (MC Generator output) σ to an observed count in a detector volume $N_{\rm obs}$

$$N_{\text{obs}} = L \cdot \sigma_{\text{Total}} \cdot A \cdot \epsilon$$

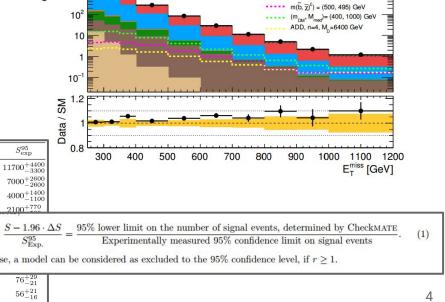
- L Luminosity, known
- A Acceptance, effectively the analysis definition
 - Can be simple, what about complicated analyses, BDTs for S/B discrimination etc.
- ϵ Efficiency, Detector simulation
 - Approximate detector sims, e.g. Delphes used

Current hot topic inside/outside experiment, how do we deliver A and ϵ better?

Example: Detector level results

Detector Level Result - e.g. monojet

Signal channel


IM1

Need Detector Simulation and Signal Acceptance

Something like CheckMATE (Delphes + analysis def) To reinterpret these results in terms of a new model

 $\langle \sigma \rangle_{\rm obs}^{95}$ [fb]

531

Data 2015+2016

Standard Model

 $Z(\rightarrow vv) + jets$

 $Z(\rightarrow II)$ + jets $t\bar{t}$ + single top Dibosons

AS Preliminary

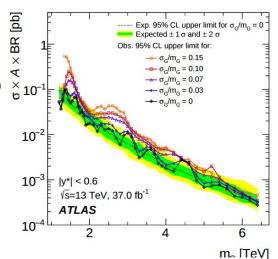
 \sqrt{s} = 13 TeV. 36.1 fb⁻¹

(i1)>250 GeV, E"

dN/dEriss [Events/GeV]

IM2	330	11903	7000^{+2600}_{-2600}
IM3	188	6771	4000^{+1400}_{-1100}
IM4	93	3344	2100+770
IM5	43	1546	$S - 1.96 \cdot \Delta S = 959$
IM6	19	696	$r \equiv {S_{\text{Exp.}}^{95}} = {}$
IM7	7.7	276	Service of the servic
IM8	4.9	178	In that case, a model can be co
IM9	2.2	79	76^{+29}_{-21}
IM10	1.6	59	56^{+21}_{-16}

19135


Example: Particle level results

Particle Level Result

Lots of different ways to try and do more for reinterpretability from the experiments, no clear solution fo all

All come with different caveats on usability

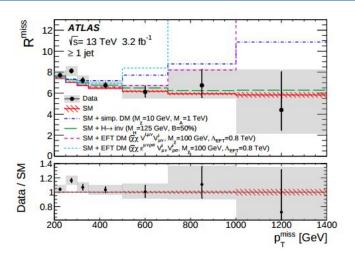
Range in	$\sigma_{{\rm vis},h(b\bar{b})+{ m DM}}^{ m obs}$	$\sigma^{\exp}_{{ m vis},h(bar{b})+{ m DM}}$	$\mathcal{A} \times \varepsilon$
$E_{\rm T}^{\rm miss}$ [GeV]	[fb]	[fb]	[%]
[150, 200)	19.1	$18.3^{+7.2}_{-5.1}$	15
[200, 350)	13.1	$10.5^{+4.1}_{-2.9}$	35
[350, 500)	2.4	$1.7^{+0.7}_{-0.5}$	40
[500, ∞)	1.7	$1.8^{+0.7}_{-0.5}$	55

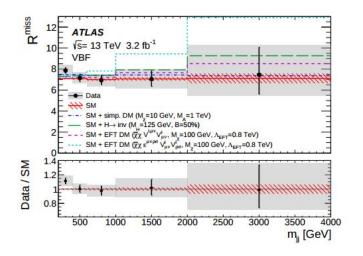
Conservative limits with A. ϵ given

Generic resonance limits Z'->II

Example: Unfolding

Segues nicely to a particular ATLAS analysis that is of interest (and that I work on!)

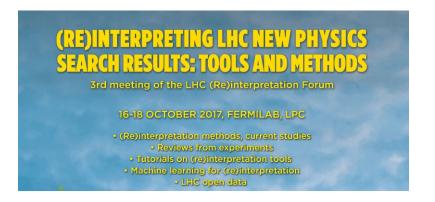

Experiment takes care of ϵ , use full detector simulation


Validated rivet analysis gives A (as for all SM rivet routines that are already in Rivet

arxiv.org/abs/1707.03263

Unfold a measurement of $\sigma(Z->vv/Z->II) = R^{Miss}$

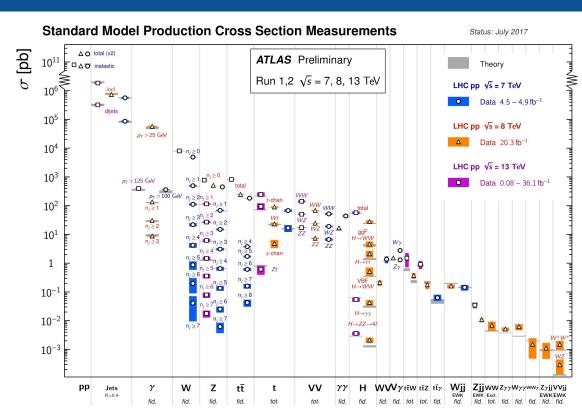
Provides detector corrected measurements of distribution sensitive to production of invisible particles at the LHC, **first unfolded measurement to do this**Can apply to DM models, SUSY....



Activity

Complex spectrum of Analyses, models, information that need bringing together.

Very much a hot button topic right now, many MCnet members involved in various projects that touch upon these areas


Loads of Activity/Initiatives from both sides:

Rivet, Contur, CheckMATE, MadAnalysis, Delphes, Simplified Likelihoods, SModelS, Gambit.... Many more

Contur

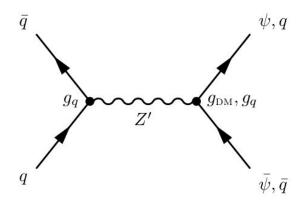
- MCnet project for ITN3, under the CEDAR banner
 - MCnet ITN3 long term associated PhD student @ UCL/Glasgow nodes
 - Strong ties to Rivet involvement with Glasgow node
 - Jon Butterworth, David Grellscheid, DY. Currently involved MCnet members.

Fundamental design choice, see what precision Standard Model measurements can tell us about new physics

We measure a lot (and differentially), a lot of information covering a lot of final states!

Simplified DM model

Introduce BSM model with 4 degrees of freedom


Vector Mediator mass M₇

DM Mass $M_{\rm DM}$

DM-Mediator Coupling g_{DM}

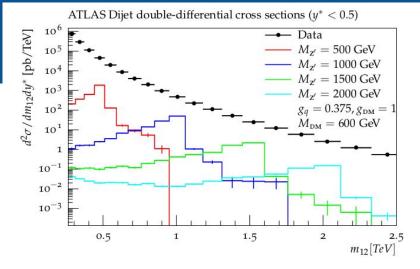
Quark Mediator coupling g_a

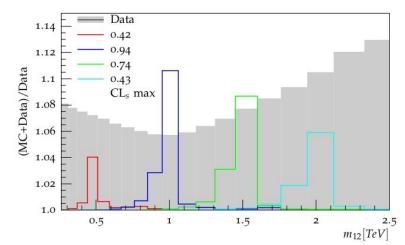
$$\mathcal{L} \supset g_{\rm DM} \, \overline{\psi} \gamma_{\mu} \gamma_5 \psi \, Z^{\prime \mu} + g_q \sum_q \bar{q} \gamma_{\mu} q \, Z^{\prime \mu} \,,$$

Commonly discussed at LHC DM WG

Simplified DM model

Throw events (from Herwig) through SM Rivet routines

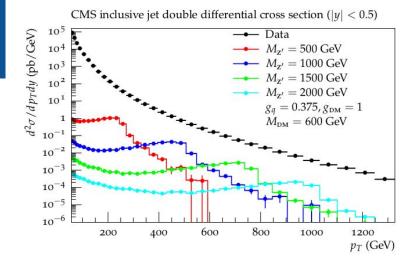

Right, ATLAS 7TeV Dijet

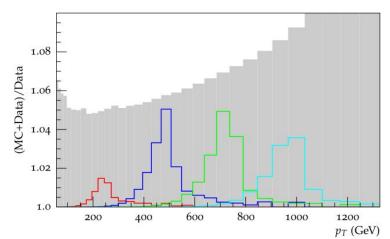

The Caveat:

Assume SM expected background is equal to data

(Conclusion, roughly, from the paper, mirrors how we already understand these data)

Compute significance of resulting BSM deviations (Profile Likelihood formalism)

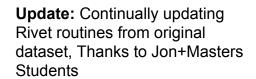


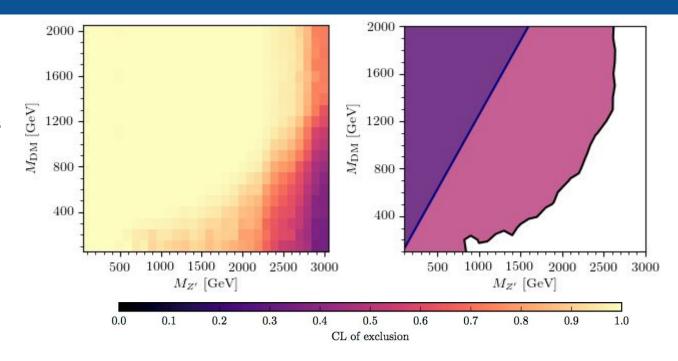

Simplified DM model

Throw events (from Herwig) through SM Rivet routines

Simultaneous fit to orthogonal datasets:

CMS jet measurement (right)





Simplified DM model

Manually scan through mass plane parameter space points

Build exclusion limits from combinations of measurements

Define coupling working point, here, $g_q=0.5$, $g_{DM}=1$

Combine As many orthogonal analyses as possible 7,8,13TeV

Contur - Developments

Code work

Currently working on a formal release of the Python module containing executables and instructions to compute limits

Hopefully define a framework for generic limit setting on yoda inputs

Extend framework

Extend to cover MC based background predictions, fairly simple change internally but can be driven by MC predictions from experimental papers?

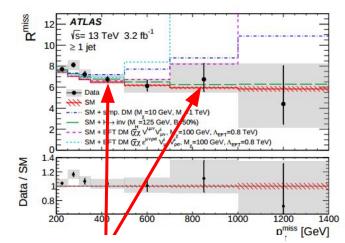
Diversify model studies

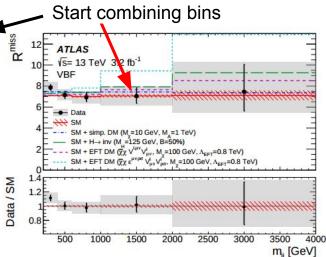
Work in progress, nothing public to show but looking at sensitivity to models predicting different final states

Contur - Developments

Correlations

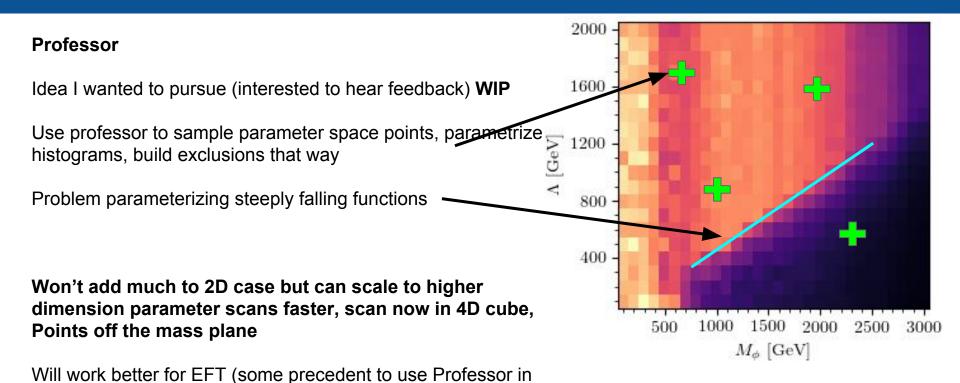
Increasingly experiments looking to give breakdown of systematic correlations, and for non orthogonal kinematic regions, statistical correlations


Exists (right) for R_{Miss} unfolded ratio measurement Start thinking mentioned earlier more about non resonant effects


etc.

Formalise in HepData

Formalise these objects in Yoda


(hard to work with unless theres a unified way of delivering the data)

Contur - Developments/Plans

this context already, see TopFitter)

Conclusion

- Ongoing project with lots of potential extensions
- Interacting with lots of MCnet tools,
 - Currently looking at MadGraph for BSM generation alongside Herwig
 - Rivet, Yoda, Hepdata, Professor etc.
- New Results soon!