Calculating the Casimir effect using the boundary element method

Marius Utheim, Isak Kilen, Karl Øyvind Mikalsen, Per Jakobsen

UiT - The Arctic University of Norway

16th MCnet meeting - Karlsruhe, 2017

Goals

- 1. Give a brief introduction to the Casimir force
- 2. Show some examples of renormalization
- 3. Explain how to numerically solve integral equations

Outline

Motivation

Mode summation

An expression for the Casimir force

Boundary integral problem

Numerical implementation

Symmetry reduction

Discussion

Outline

Motivation

Mode summation

An expression for the Casimir force

Boundary integral problem

Numerical implementation

Symmetry reduction

Discussion

< □ > < @ > < 분 > < 분 > 분 % Q (~ 5/49

- Mode summation
 - Theoretically useful gold standard
 - Applicable only to very specific configurations

- Mode summation
 - Theoretically useful gold standard
 - Applicable only to very specific configurations
- Proximity force approximation
 - Approximates curves as sets of small parallel plates
 - Only applicable to small separations

- Mode summation
 - Theoretically useful gold standard
 - Applicable only to very specific configurations
- Proximity force approximation
 - Approximates curves as sets of small parallel plates
 - Only applicable to small separations
- Finite difference time domain (lattice method)
 - Well-tested in electromagnetism
 - Applicable to complex geometries
 - Discretizes the whole space, which is computationally expensive

- Mode summation
 - Theoretically useful gold standard
 - Applicable only to very specific configurations
- Proximity force approximation
 - Approximates curves as sets of small parallel plates
 - Only applicable to small separations
- Finite difference time domain (lattice method)
 - Well-tested in electromagnetism
 - Applicable to complex geometries
 - Discretizes the whole space, which is computationally expensive
- Functional integral method
 - Expresses the force in terms of a matrix determinant derived from a functional integral
 - Cumbersome and theoretically shaky
 - Efficient, but we can't parallelize it

Advantages:

Boundary integral methods are well known

- Boundary integral methods are well known
- The expression for the force is relatively simple

- Boundary integral methods are well known
- The expression for the force is relatively simple
- Renormalization is geometry-independent

- Boundary integral methods are well known
- The expression for the force is relatively simple
- Renormalization is geometry-independent
- Gives the pressure at each point

- Boundary integral methods are well known
- The expression for the force is relatively simple
- Renormalization is geometry-independent
- Gives the pressure at each point
- Requires solving a system of linear equations, which is trivially parallelizable

- Boundary integral methods are well known
- The expression for the force is relatively simple
- Renormalization is geometry-independent
- Gives the pressure at each point
- Requires solving a system of linear equations, which is trivially parallelizable
- Simplifications from symmetries can be explicitly implemented

Outline

Motivation

Mode summation

An expression for the Casimir force

Boundary integral problem

Numerical implementation

Symmetry reduction

Discussion

Underlying equations

The free massless scalar field is determined by the Lagrangian

$$\mathcal{L} = \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi$$

which obeys the Euler-Lagrange equation,

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) = 0$$

Underlying equations

The free massless scalar field is determined by the Lagrangian

$$\mathcal{L} = \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi$$

which obeys the Euler-Lagrange equation,

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) = 0$$

This is equivalent to the wave equation,

$$\nabla^2 \phi - \phi_{tt} = 0$$

Energy of the free scalar field

$$\nabla^2 \phi - \phi_{tt} = 0$$

Taking the Fourier transform in time,

$$\nabla^2 \phi + \omega^2 \phi = 0$$

Energy of the free scalar field

$$\nabla^2 \phi - \phi_{tt} = 0$$

Taking the Fourier transform in time,

$$\nabla^2 \phi + \omega^2 \phi = 0$$

With boundary conditions, only a set of resonance frequencies $\{\omega_n\}$ are allowed. The energy is given by

$$E = \frac{1}{2} \sum_{n} \omega_n$$

This is the Casimir energy.

Parallel plates

As an example, let's consider parallel plates in one-dimensional space with Dirichlet boundary conditions.

$$\phi_{xx} + \omega^2 \phi = 0$$

$$\phi(0) = \phi(a) = 0$$

Parallel plates

As an example, let's consider parallel plates in one-dimensional space with Dirichlet boundary conditions.

$$\phi_{xx} + \omega^2 \phi = 0$$
$$\phi(0) = \phi(a) = 0$$

General solutions are given by

$$\phi(x) = A\cos\omega_n x + B\sin\omega_n x, \qquad \omega_n = \frac{n\pi}{a}$$

Parallel plates

As an example, let's consider parallel plates in one-dimensional space with Dirichlet boundary conditions.

$$\phi_{xx} + \omega^2 \phi = 0$$
$$\phi(0) = \phi(a) = 0$$

General solutions are given by

$$\phi(x) = A\cos\omega_n x + B\sin\omega_n x, \qquad \omega_n = \frac{n\pi}{a}$$

This presents a problem, because

$$E = \frac{1}{2} \sum_{n} \omega_n = \sum_{n=1}^{\infty} \frac{n\pi}{2a} = \infty$$

10/49

Approaches to renormalization

Separate the energy into two parts E(x, t) = E_∞ + E(x, t), where E is finite and E_∞ is constant. Note that ∇E = ∇E.

- Separate the energy into two parts $E(\boldsymbol{x},t) = E_{\infty} + \mathcal{E}(\boldsymbol{x},t)$, where \mathcal{E} is finite and E_{∞} is constant. Note that $\nabla E = \nabla \mathcal{E}$.
- Separate into energy from mutual interactions and self-interactions. Only mutual interactions can give a net force.

- Separate the energy into two parts E(x, t) = E_∞ + E(x, t), where E is finite and E_∞ is constant. Note that ∇E = ∇E.
- Separate into energy from mutual interactions and self-interactions. Only mutual interactions can give a net force.
- Mathematical tools such as analytic continuation with zeta renormalization or Ramanujan summation.

- Separate the energy into two parts E(x, t) = E_∞ + E(x, t), where E is finite and E_∞ is constant. Note that ∇E = ∇E.
- Separate into energy from mutual interactions and self-interactions. Only mutual interactions can give a net force.
- Mathematical tools such as analytic continuation with zeta renormalization or Ramanujan summation.

Approaches to renormalization

- Separate the energy into two parts E(x, t) = E_∞ + E(x, t), where E is finite and E_∞ is constant. Note that ∇E = ∇E.
- Separate into energy from mutual interactions and self-interactions. Only mutual interactions can give a net force.
- Mathematical tools such as analytic continuation with zeta renormalization or Ramanujan summation.

$$\Re \sum_{n=1}^{\infty} n = -\frac{1}{12}$$

11/49

Outline

Motivation

Mode summation

An expression for the Casimir force

Boundary integral problem

Numerical implementation

Symmetry reduction

Discussion

Configuration

We consider a set of compact objects V_1, \ldots, V_r with boundaries Q_1, \ldots, Q_r . Let V_0 be the exterior of all objects, and denote by Q the union of all surfaces.

The massless scalar field

The free massless scalar field is determined by the Lagrangian

$$\mathcal{L} = \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi$$

The massless scalar field

The free massless scalar field is determined by the Lagrangian

$$\mathcal{L} = \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi$$

The stress-energy tensor:

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial^{\nu}\phi - \eta^{\mu\nu}\mathcal{L}$$

Conservation laws:

$$\partial_{\nu}T^{\mu\nu} = 0$$
$$\partial_{t}\boldsymbol{p} + \nabla \cdot S = 0$$

イロト イロト イヨト イヨト 三日

14/49

The massless scalar field

The free massless scalar field is determined by the Lagrangian

$$\mathcal{L} = \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi$$

The stress-energy tensor:

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial^{\nu}\phi - \eta^{\mu\nu}\mathcal{L}$$

Conservation laws:

$$\partial_{\nu}T^{\mu\nu} = 0$$

 $\partial_t \boldsymbol{p} + \nabla \cdot S = 0$
 $\boldsymbol{F}_{\alpha} = \partial_t \int_{V_{\alpha}} dV \, \boldsymbol{p}(\boldsymbol{x}, t) = -\oint_{Q_{\alpha}} d\boldsymbol{A} \cdot S(\boldsymbol{x}, t)$

Quantizing the stress tensor

The stress tensor is given by

$$S(\pmb{x},t) = -\nabla\phi\nabla\phi + \frac{1}{2}\mathrm{Tr}(\nabla\phi\nabla\phi)I - \frac{1}{2}\phi_t^2I$$
Quantizing the stress tensor

The stress tensor is given by

$$S(\boldsymbol{x},t) = -\nabla\phi\nabla\phi + \frac{1}{2}\mathrm{Tr}(\nabla\phi\nabla\phi)I - \frac{1}{2}\phi_t^2I$$

To be able to quantize this, we use point splitting

$$S(\boldsymbol{x},t) = \lim_{\substack{\boldsymbol{x}' \to \boldsymbol{x} \\ t' \to t}} \left(-\nabla \nabla' + \frac{1}{2} \mathsf{Tr}(\nabla \nabla') - \frac{1}{2} \partial_t \partial_{t'} \right) \phi(\boldsymbol{x},t) \phi(\boldsymbol{x}',t')$$

Then we can quantize the field and get the quantum stress tensor

$$\hat{S}(\boldsymbol{x},t) = \lim_{\substack{\boldsymbol{x}' \to \boldsymbol{x} \\ t' \to t}} \left(-\nabla \nabla' + \frac{1}{2} \mathsf{Tr}(\nabla \nabla') - \frac{1}{2} \partial_t \partial_{t'} \right) \frac{1}{2} \{ \hat{\phi}(\boldsymbol{x},t) \hat{\phi}(\boldsymbol{x}',t') \},$$

where $\{\cdot,\cdot\}$ is the anti-commutator.

The Green's function

After a Wick rotation s = it, we can show that

$$\frac{1}{2}\left\langle \{\hat{\phi}(\boldsymbol{x},s)\hat{\phi}(\boldsymbol{x}',s')\}\right\rangle = \left\langle \mathcal{T}[\hat{\phi}(\boldsymbol{x},s)\hat{\phi}(\boldsymbol{x}',s')]\right\rangle \equiv D(\boldsymbol{x},s,\boldsymbol{x}',s')$$

where \mathcal{T} indicates time ordering.

The Green's function

After a Wick rotation s = it, we can show that

$$\frac{1}{2}\left\langle \{\hat{\phi}(\boldsymbol{x},s)\hat{\phi}(\boldsymbol{x}',s')\}\right\rangle = \left\langle \mathcal{T}[\hat{\phi}(\boldsymbol{x},s)\hat{\phi}(\boldsymbol{x}',s')]\right\rangle \equiv D(\boldsymbol{x},s,\boldsymbol{x}',s')$$

where \mathcal{T} indicates time ordering. D depends only on the time difference s - s', and it is periodic with period $\beta = 1/T$, where T is temperature. As $T \to 0$, we can take the Fourier transform, and the $D(\boldsymbol{x}, \boldsymbol{x}', \omega)$ turns out to be a Green's function for the operator $L = \nabla^2 - \omega^2$,

$$\nabla^2 D(\boldsymbol{x}, \boldsymbol{x}', \omega) - \omega^2 D(\boldsymbol{x}, \boldsymbol{x}', \omega) = \delta(\boldsymbol{x} - \boldsymbol{x}')$$

The Green's function

Now the quantum stress tensor can be written as

$$\left\langle \hat{S}(\boldsymbol{x},\omega) \right\rangle = \lim_{\boldsymbol{x}' \to \boldsymbol{x}} \left(-\nabla \nabla' + \frac{1}{2} \mathrm{Tr}(\nabla \nabla') + \frac{1}{2} \omega^2 \right) D(\boldsymbol{x},\boldsymbol{x}',\omega)$$

and the force integral becomes

$$\boldsymbol{F}_{\alpha} = -\int_{Q_{\alpha}} dA \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left(-\partial_{\boldsymbol{n}} \nabla' + \frac{1}{2} \boldsymbol{n} \nabla \cdot \nabla' + \frac{1}{2} \boldsymbol{n} \omega^{2} \right) D(\boldsymbol{x}, \boldsymbol{x}, \omega)$$

Summary of the force integral

The force on Q_{α} is

$$\boldsymbol{F}_{\alpha} = -\int_{Q_{\alpha}} dA \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left(-\partial_{\boldsymbol{n}} \nabla' + \frac{1}{2} \boldsymbol{n} \nabla \cdot \nabla' + \frac{1}{2} \boldsymbol{n} \omega^{2} \right) D(\boldsymbol{x}, \boldsymbol{x}, \omega)$$

and we can thus define pressure as

$$p = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left(-\partial_{\boldsymbol{n}} \nabla' + \frac{1}{2} \boldsymbol{n} \nabla \cdot \nabla' + \frac{1}{2} \boldsymbol{n} \omega^2 \right) D(\boldsymbol{x}, \boldsymbol{x}, \omega)$$

where D is found by solving

$$\nabla^2 D(\boldsymbol{x}, \boldsymbol{x}', \omega) - \omega^2 D(\boldsymbol{x}, \boldsymbol{x}', \omega) = \delta(\boldsymbol{x} - \boldsymbol{x}')$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Boundary conditions

If ${\cal A}$ is a linear operator and $\hat{\phi}$ satisfies a boundary condition on the form

$$\mathcal{A}\hat{\phi}(\boldsymbol{x},s) = 0, \qquad \boldsymbol{x} \in Q$$

then similar conditions apply to D,

$$\begin{aligned} \mathcal{A}D(\boldsymbol{x},\boldsymbol{x}',\omega) &= 0, \qquad \boldsymbol{x} \in Q \\ \mathcal{A}'D(\boldsymbol{x},\boldsymbol{x}',\omega) &= 0, \qquad \boldsymbol{x}' \in Q \end{aligned}$$

For example, with Dirichlet conditions, $\hat{\phi}(\pmb{x},s)=0$ so

$$D(\boldsymbol{x},\boldsymbol{x}',\omega)=0,\qquad \boldsymbol{x}\in Q \text{ or } \boldsymbol{x}'\in Q$$

Outline

Motivation

Mode summation

An expression for the Casimir force

Boundary integral problem

Numerical implementation

Symmetry reduction

Discussion

Integral identity

Let $D_0(\boldsymbol{x}, \boldsymbol{x}'')$ be the free Green's function for L, satisfying

$$LD_0(\boldsymbol{x}, \boldsymbol{x}'') = \delta(\boldsymbol{x} - \boldsymbol{x}''), \qquad D_0 \to 0 \text{ when } |\boldsymbol{x}| \to \infty$$

Integral identity

Let $D_0(\boldsymbol{x}, \boldsymbol{x}'')$ be the free Green's function for L, satisfying

$$LD_0(\boldsymbol{x}, \boldsymbol{x}'') = \delta(\boldsymbol{x} - \boldsymbol{x}''), \qquad D_0 \to 0 \text{ when } |\boldsymbol{x}| \to \infty$$

For $m{x}', m{x}'' \in V_0$, Green's second identity gives

$$\int_{V_0} d\boldsymbol{\xi} \left[D(\boldsymbol{\xi}, \boldsymbol{x}') L D_0(\boldsymbol{\xi}, \boldsymbol{x}'') - D_0(\boldsymbol{\xi}, \boldsymbol{x}'') L D(\boldsymbol{\xi}, \boldsymbol{x}') \right]$$
$$= -\int_Q d\boldsymbol{\xi} \left[D(\boldsymbol{\xi}, \boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}'') - D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \partial_{\boldsymbol{n}} D(\boldsymbol{\xi}, \boldsymbol{x}') \right]$$

Integral identity

Let $D_0(\boldsymbol{x}, \boldsymbol{x}'')$ be the free Green's function for L, satisfying

$$LD_0(\boldsymbol{x}, \boldsymbol{x}'') = \delta(\boldsymbol{x} - \boldsymbol{x}''), \qquad D_0 \to 0 \text{ when } |\boldsymbol{x}| \to \infty$$

For $m{x}', m{x}'' \in V_0$, Green's second identity gives

$$\int_{V_0} d\boldsymbol{\xi} \left[D(\boldsymbol{\xi}, \boldsymbol{x}') L D_0(\boldsymbol{\xi}, \boldsymbol{x}'') - D_0(\boldsymbol{\xi}, \boldsymbol{x}'') L D(\boldsymbol{\xi}, \boldsymbol{x}') \right]$$
$$= -\int_Q d\boldsymbol{\xi} \left[D(\boldsymbol{\xi}, \boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}'') - D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \partial_{\boldsymbol{n}} D(\boldsymbol{\xi}, \boldsymbol{x}') \right]$$

which implies that D satisfies the integral identity

$$D(\boldsymbol{x}'', \boldsymbol{x}') = D_0(\boldsymbol{x}', \boldsymbol{x}'') + \int_Q d\boldsymbol{\xi} \big[D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \partial_{\boldsymbol{n}} D(\boldsymbol{\xi}, \boldsymbol{x}') \\ - D(\boldsymbol{\xi}, \boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \big]$$

Dirichlet boundary conditions

$$D(\boldsymbol{x}'', \boldsymbol{x}') = D_0(\boldsymbol{x}', \boldsymbol{x}'') + \int_Q d\boldsymbol{\xi} \left[D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \partial_{\boldsymbol{n}} D(\boldsymbol{\xi}, \boldsymbol{x}') - D(\boldsymbol{\xi}, \boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \right]$$

Consider Dirichlet conditions, D(x', x'') = 0 when $x' \in Q$ or $x'' \in Q$. With these conditions, the force integral becomes

$$\boldsymbol{F}_{\alpha} = \frac{1}{2} \int_{Q_{\alpha}} dA \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \partial_{\boldsymbol{n}\boldsymbol{n}'} D(\boldsymbol{x}, \boldsymbol{x}, \omega)$$

and the integral identity simplifies to

$$D(x'', x') = D_0(x', x'') + \int_Q d\xi D_0(\xi, x'') \partial_n D(\xi, x')$$

$$D(\boldsymbol{x}'',\boldsymbol{x}') = D_0(\boldsymbol{x}',\boldsymbol{x}'') + \int_Q d\boldsymbol{\xi} D_0(\boldsymbol{\xi},\boldsymbol{x}'') \partial_{\boldsymbol{n}} D(\boldsymbol{\xi},\boldsymbol{x}')$$

Let x_{lpha} be a point on Q_{lpha} , and let $x'' o x_{lpha}$. We get

$$-D_0(\boldsymbol{x}',\boldsymbol{x}_\alpha) = \int_Q d\boldsymbol{\xi} \, D_0(\boldsymbol{\xi},\boldsymbol{x}_\alpha) \partial_{\boldsymbol{n}} D(\boldsymbol{\xi},\boldsymbol{x}')$$

$$D(\boldsymbol{x}'', \boldsymbol{x}') = D_0(\boldsymbol{x}', \boldsymbol{x}'') + \int_Q d\boldsymbol{\xi} D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \partial_{\boldsymbol{n}} D(\boldsymbol{\xi}, \boldsymbol{x}')$$

Let x_{lpha} be a point on Q_{lpha} , and let $x'' o x_{lpha}$. We get

$$-D_0(oldsymbol{x}',oldsymbol{x}_lpha) = \int_Q doldsymbol{\xi} \, D_0(oldsymbol{\xi},oldsymbol{x}_lpha) \partial_{oldsymbol{n}} D(oldsymbol{\xi},oldsymbol{x}')$$

$$-D_0(\boldsymbol{x}', \boldsymbol{x}_\alpha) = PV_{\boldsymbol{x}_\alpha} \int_Q d\boldsymbol{\xi} \, D_0(\boldsymbol{\xi}, \boldsymbol{x}_\alpha) \partial_{\boldsymbol{n}} D(\boldsymbol{\xi}, \boldsymbol{x}')$$

<ロ> (四) (四) (三) (三) (三) (三)

$$-D_0(\boldsymbol{x}',\boldsymbol{x}_\alpha) = PV_{\boldsymbol{x}_\alpha} \int_Q d\boldsymbol{\xi} \, D_0(\boldsymbol{\xi},\boldsymbol{x}_\alpha) \partial_{\boldsymbol{n}} D(\boldsymbol{\xi},\boldsymbol{x}')$$

Next we let $x' \to x_{\beta} \in Q_{\beta}$. This causes a problem if $x_{\alpha} = x_{\beta}$.

$$-D_0(\boldsymbol{x}',\boldsymbol{x}_\alpha) = PV_{\boldsymbol{x}_\alpha} \int_Q d\boldsymbol{\xi} \, D_0(\boldsymbol{\xi},\boldsymbol{x}_\alpha) \partial_{\boldsymbol{n}} D(\boldsymbol{\xi},\boldsymbol{x}')$$

Next we let $x' \to x_{\beta} \in Q_{\beta}$. This causes a problem if $x_{\alpha} = x_{\beta}$.

To solve this, introduce the self-pressure D_β , corresponding to the pressure we would get if Q_β had been the only object. That is, it satisfies the equation

$$-D_0(\boldsymbol{x}', \boldsymbol{x}_{\alpha}) = PV_{\boldsymbol{x}_{\alpha}} \int_{Q_{\beta}} d\boldsymbol{\xi} \, D_0(\boldsymbol{\xi}, \boldsymbol{x}_{\alpha}) \partial_{\boldsymbol{n}} D_{\beta}(\boldsymbol{\xi}, \boldsymbol{x}')$$

24 / 49

Dirichlet boundary conditions - The self pressure

Now let

$$\mathcal{D}(\boldsymbol{x}_{lpha}, \boldsymbol{x}_{eta}) = egin{cases} D(\boldsymbol{x}_{lpha}, \boldsymbol{x}_{eta}) - D_{eta}(\boldsymbol{x}_{lpha}, \boldsymbol{x}_{eta}), & lpha = eta, \ D(\boldsymbol{x}_{lpha}, \boldsymbol{x}_{eta}), & lpha
eq eta \end{cases}$$

be the regularized pressure. When subtracting the self-pressure, the D_0 terms cancel, so taking the limit $x' \to x_\beta$ is no problem.

Dirichlet boundary conditions - The self pressure

Now let

$$\mathcal{D}(\boldsymbol{x}_{lpha}, \boldsymbol{x}_{eta}) = egin{cases} D(\boldsymbol{x}_{lpha}, \boldsymbol{x}_{eta}) - D_{eta}(\boldsymbol{x}_{lpha}, \boldsymbol{x}_{eta}), & lpha = eta, \ D(\boldsymbol{x}_{lpha}, \boldsymbol{x}_{eta}), & lpha
eq eta \end{cases}$$

be the regularized pressure. When subtracting the self-pressure, the D_0 terms cancel, so taking the limit $x' \to x_\beta$ is no problem.

By the way, what we eventually are interested in is $\partial_{nn'}\mathcal{D}$, not $\partial_n\mathcal{D}$. In order to acquire the normal derivative, we must take the gradient $\nabla_{x'}$ before letting x' go to the boundary.

Dirichlet boundary conditions - The boundary integral problem

The boundary integral problem for \mathcal{D} becomes

$$V(\boldsymbol{x}_{\alpha}, \boldsymbol{x}_{\beta}) + PV_{\boldsymbol{x}_{\alpha}} \int_{Q} d\boldsymbol{\xi} D_{0}(\boldsymbol{\xi}, \boldsymbol{x}_{\alpha}) \partial_{\boldsymbol{n}\boldsymbol{n}'} \mathcal{D}(\boldsymbol{\xi}, \boldsymbol{x}_{\beta}) = 0$$

where

$$V(\boldsymbol{x}_{\alpha}, \boldsymbol{x}_{\beta}) = -\partial_{\boldsymbol{n}} D_0(\boldsymbol{x}_{\beta}, \boldsymbol{x}_{\alpha}) - PV_{\boldsymbol{x}_{\alpha}} \int_{Q_{\beta}} d\boldsymbol{\xi} D_0(\boldsymbol{\xi}, \boldsymbol{x}_{\alpha}) \partial_{\boldsymbol{n}\boldsymbol{n}'} D_{\beta}(\boldsymbol{\xi}, \boldsymbol{x}_{\beta})$$

when x_{lpha} and x_{eta} are on different surfaces, and it is zero otherwise.

Neumann boundary conditions in 2D

$$D(\boldsymbol{x}'', \boldsymbol{x}') = D_0(\boldsymbol{x}', \boldsymbol{x}'') + \int_Q d\boldsymbol{\xi} \left[D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \partial_{\boldsymbol{n}} D(\boldsymbol{\xi}, \boldsymbol{x}') - D(\boldsymbol{\xi}, \boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \right]$$

Next consider Neumann conditions, $\partial_{n'}D(x', x'') = 0$ when $x' \in Q$ and $\partial_{n''}D(x', x'') = 0$ when $x'' \in Q$. In two dimensions, the force integral becomes

$$\boldsymbol{F}_{\alpha} = -\frac{1}{2} \int_{Q_{\alpha}} dA \, \boldsymbol{n} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left(\partial_{\boldsymbol{t}\boldsymbol{t}'} + \omega^2 \right) D(\boldsymbol{x}, \boldsymbol{x}, \omega)$$

and the boundary identity becomes

$$D(\boldsymbol{x}'',\boldsymbol{x}') = D_0(\boldsymbol{x}',\boldsymbol{x}'') - \int_Q d\boldsymbol{\xi} D(\boldsymbol{\xi},\boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi},\boldsymbol{x}'')$$

27 / 49

Neumann boundary conditions in 2D - Renormalization

$$D(x'', x') = D_0(x', x'') - \int_Q d\xi D(\xi, x') \partial_n D_0(\xi, x'')$$

Like before, we first let ${m x}'' o {m x}_lpha \in Q_lpha.$

Neumann boundary conditions in 2D - Renormalization

$$D(\boldsymbol{x}'', \boldsymbol{x}') = D_0(\boldsymbol{x}', \boldsymbol{x}'') - \int_Q d\boldsymbol{\xi} D(\boldsymbol{\xi}, \boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}'')$$

Like before, we first let $x'' \to x_{\alpha} \in Q_{\alpha}$. Now the integral over C_{ε} gives a contribution

$$-\int_{C_{\varepsilon}} d\boldsymbol{\xi} D(\boldsymbol{\xi}, \boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}'')$$
$$\approx -D(\boldsymbol{x}_{\alpha}, \boldsymbol{x}') \int_{C_{\varepsilon}} d\boldsymbol{\xi} \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}'') \to \frac{1}{2} D(\boldsymbol{x}_{\alpha}, \boldsymbol{x}')$$

The integral over the remainder of the curve becomes a principal value integral,

$$\frac{1}{2}D(\boldsymbol{x}_{\alpha}, \boldsymbol{x}') = D_0(\boldsymbol{x}', \boldsymbol{x}_{\alpha}) - PV_{\boldsymbol{x}_{\alpha}} \int_Q d\boldsymbol{\xi} D(\boldsymbol{\xi}, \boldsymbol{x}') \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}_{\alpha})$$

Neumann boundary conditions in 2D - Renormalization

$$\frac{1}{2}D(\boldsymbol{x}_{\alpha},\boldsymbol{x}') = D_{0}(\boldsymbol{x}',\boldsymbol{x}_{\alpha}) - PV_{\boldsymbol{x}_{\alpha}}\int_{Q}d\boldsymbol{\xi} D(\boldsymbol{\xi},\boldsymbol{x}')\partial_{\boldsymbol{n}}D_{0}(\boldsymbol{\xi},\boldsymbol{x}_{\alpha})$$

When letting $x' \to x_{\beta} \in Q_{\beta}$, we get a problem if $x_{\alpha} = x_{\beta}$, because D_0 is singular. As before, we introduce the self-pressure D_{β} and the regularized pressure \mathcal{D} .

$$\frac{1}{2}D_{\beta}(\boldsymbol{x}_{\alpha},\boldsymbol{x}_{\beta}) = D_{0}(\boldsymbol{x}_{\beta},\boldsymbol{x}_{\alpha}) - PV_{\boldsymbol{x}_{\alpha}} \int_{Q_{\beta}} d\boldsymbol{\xi} D_{\beta}(\boldsymbol{\xi},\boldsymbol{x}_{\beta}) \partial_{\boldsymbol{n}} D_{0}(\boldsymbol{\xi},\boldsymbol{x}_{\alpha})$$

Neumann boundary conditions in 2D - The boundary integral problem

With this, we get

$$\frac{1}{2}\mathcal{D}(\boldsymbol{x}_{\alpha},\boldsymbol{x}_{\beta}) = V(\boldsymbol{x}_{\alpha},\boldsymbol{x}_{\beta}) - PV_{\boldsymbol{x}_{\alpha}} \int_{Q} d\boldsymbol{\xi} \, \mathcal{D}(\boldsymbol{\xi},\boldsymbol{x}_{\beta}) \partial_{\boldsymbol{n}} D_{0}(\boldsymbol{\xi},\boldsymbol{x}_{\alpha})$$

where

$$V(\boldsymbol{x}_{\alpha}, \boldsymbol{x}_{\beta}) = D_0(\boldsymbol{x}_{\alpha}, \boldsymbol{x}_{\beta}) - \int_{Q_{\beta}} d\boldsymbol{\xi} \, D_{\beta}(\boldsymbol{\xi}, \boldsymbol{x}_{\beta}) \partial_{\boldsymbol{n}} D_0(\boldsymbol{\xi}, \boldsymbol{x}_{\alpha})$$

when x_{α} and x_{β} are on different objects, and V is zero otherwise.

Outline

Motivation

Mode summation

An expression for the Casimir force

Boundary integral problem

Numerical implementation

Symmetry reduction

Discussion

Discretization - Dirichlet boundary conditions in 2D

Considering Dirichlet boundary conditions, we have the equation

$$PV_{\boldsymbol{x}_{\alpha}} \int_{Q} d\boldsymbol{\xi} D_{0}(\boldsymbol{\xi}, \boldsymbol{x}_{\alpha}) \partial_{\boldsymbol{n}\boldsymbol{n}'} \mathcal{D}(\boldsymbol{\xi}, \boldsymbol{x}_{\beta}) + V(\boldsymbol{x}_{\beta}, \boldsymbol{x}_{\alpha}) = 0$$

So now the question is, how do we apply numerical methods to solve it?

Discretization

Partition each object Q_{γ} into small pieces I_{γ}^k , for $k = 1, \ldots, N$.

Discretization

Partition each object Q_{γ} into small pieces I_{γ}^k , for $k = 1, \ldots, N$.

The equation becomes

$$-V(\boldsymbol{x}_{\beta}^{j}, \boldsymbol{x}_{\alpha}^{i}) = \sum_{\gamma=1}^{r} \sum_{k=1}^{N} PV_{\boldsymbol{x}_{\alpha}^{i}} \int_{I_{\gamma}^{k}} d\boldsymbol{\xi} D_{0}(\boldsymbol{\xi}, \boldsymbol{x}_{\alpha}^{i}) \partial_{\boldsymbol{n}\boldsymbol{n}'} \mathcal{D}(\boldsymbol{\xi}, \boldsymbol{x}_{\beta}^{j})$$
$$\approx \sum_{\gamma=1}^{r} \sum_{k=1}^{N} |I_{\gamma}^{k}| D_{0}(\boldsymbol{x}_{\gamma}^{k}, \boldsymbol{x}_{\alpha}^{i}) \partial_{\boldsymbol{n}\boldsymbol{n}'} \mathcal{D}(\boldsymbol{x}_{\gamma}^{k}, \boldsymbol{x}_{\beta}^{j})$$

33 / 49

Results - Parallel plates in 2D

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results - Parallel plates in 2D

Results - Concentric circles in 2D

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Results - Concentric circles in 2D

Inner circle

Outer circle

Results - Parallel plates in 3D

Results - Parallel plates in 3D

 Results - Concentric spheres in 3D

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■

Results - Concentric spheres in 3D

Outer sphere

Results - Concentric spheres in 3D

Outer sphere
Outline

Motivation

Mode summation

An expression for the Casimir force

Boundary integral problem

Numerical implementation

Symmetry reduction

Discussion

Interactions

In D(x, x'), we can think of x as the observation point and x' as the source location. Then D(x, x') tells us about the contribution of point x' to the Casimir effect at point x.

Source location symmetries

Source location symmetries

If g is an isometry that leaves the surfaces invariant and for which x is a fixed point, i.e. g(x) = x, it can be shown that

$$D(\boldsymbol{x}, g(\boldsymbol{x}')) = D(\boldsymbol{x}, \boldsymbol{x}'),$$

then this symmetry can be utilized when calculating D(x, x').

Observation point symmetries

Observation point symmetries

If \boldsymbol{h} is an isometry that leave the surfaces invariant, then we can show that

$$D(h(\boldsymbol{x}), \boldsymbol{x}') = D(\boldsymbol{x}, h^{-1}(\boldsymbol{x}')),$$

and we can utilize these kind of symmetries.

Outline

Motivation

Mode summation

An expression for the Casimir force

Boundary integral problem

Numerical implementation

Symmetry reduction

Discussion

<ロト < 部 > < 言 > < 言 > 言 の < 3 < 44 / 49

The method has given good results for Dirichlet boundary conditions for both two and three dimensions

- The method has given good results for Dirichlet boundary conditions for both two and three dimensions
- One problem is that the method gives 1/2 the answer predicted by the exact solutions or the functional integral method, both for 2D and 3D

- The method has given good results for Dirichlet boundary conditions for both two and three dimensions
- One problem is that the method gives 1/2 the answer predicted by the exact solutions or the functional integral method, both for 2D and 3D
- Source test shows that this is not a problem with the renormalization, so it seems a factor 2 is missing in the force integral

< □ ト < □ ト < □ ト < ≧ ト < ≧ ト ≧ のQで 45/49

 We have not been able to achieve results that correspond to the exact solutions

- We have not been able to achieve results that correspond to the exact solutions
- Source tests proves that the renormalization is correct, except for the self-pressure

- We have not been able to achieve results that correspond to the exact solutions
- Source tests proves that the renormalization is correct, except for the self-pressure
- Possibly a problem with how we are handling the \u03b8_{tt}, D part of the force integrand

- We have not been able to achieve results that correspond to the exact solutions
- Source tests proves that the renormalization is correct, except for the self-pressure
- Possibly a problem with how we are handling the \u03b8_{tt'}D part of the force integrand
- Other methods also have problems with Neumann conditions

Future work

\blacktriangleright Understand why the Dirichlet case gives a factor 1/2

Future work

- \blacktriangleright Understand why the Dirichlet case gives a factor 1/2
- Show that the method gives correct results under Neumann boundary conditions

Future work

- \blacktriangleright Understand why the Dirichlet case gives a factor 1/2
- Show that the method gives correct results under Neumann boundary conditions
- Develop the method for vector fields and Maxwell's equations

Thank you for your attention!

References and further reading I

```
H. B. G. Casimir.
```

On the Attraction Between Two Perfectly Conducting Plates. *Kon. Ned. Akad. Wetensch.*, 10:261–263, 1948.

🔋 I. Kilen.

Numerical calculation of Casimir forces. Master's thesis, University of Tromsø, June 2012.

I. Kilen and P. Jakobsen.

Computing the Casimir force using regularized boundary integral equations.

Physica Scripta, 89(11):115-205, 2014.

📔 K. Ø. Mikalsen.

Deforming the vacuum. On the physical origin and numerical calculation of the Casimir effect.

Master's thesis, University of Tromsø, May 2014.

References and further reading II

M. Utheim.

Insulating the Vacuum. Calculating the Casimir force using the boundary integral method with von Neumann boundary conditions.

Master's thesis, UiT - The Arctic University of Norway, August 2016.

T. Emig, N. Graham, R. L. Jaffe, and M. Kardar.
Casimir forces between compact objects: The scalar case.
Phys. Rev. D, 77(2):025005, 2008.

S. M. Christensen.

Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point-separation method. *Phys. Rev. D*, 14(10):2490, 1976.