

Implementation of an Optimal Statistical Inference to Reduce Systematic Uncertainties in the ${ m H} o au au$ Analysis at the CMS Experiment Uncertainty aware training

12. 12. 2022 Markus Klute, Artur Monsch, Günter Quast, Lars Sowa, Roger Wolf

KIT - The Research University in the Helmholtz Association

www.kit.edu

M systematic uncortainties

Statistical inference and systematic uncertainties in HEP

- Systematic variations provided in form of event weights and
- Incorporated in a statistical model as constraints

$$\mathcal{L}(N,\mu,\{\theta_j\}) = \prod_{i=1}^{N_{\text{bins}}} \mathcal{P}(n_i | \mu \underbrace{s_i(\{\theta_j\})}_{i \in \{0\}} + \underbrace{b_i(\{\theta_j\})}_{j \in \{1\}}) \prod_{j=1}^{M} \mathcal{C}\left(\theta_j | \mu_{\theta_j}, \sigma_{\theta_j}\right),$$

Impact of θ_i on signal and background models

where

- \mathcal{P} is the Poisson distribution
- μ is the signal strength
- s_i, b_i the expected number of signal and background events and
- n_i number of measured events in bin i

Target: Extraction of $\mu \pm \sigma_{\mu}$

Structure of NN-based analyses workflows (in HEP)

Inference

Training task

Extraction of $\mu \pm \sigma_{\mu}$ from nominal and shifted NN outputs

CE training is not aware of systematic variations!

 \rightarrow suboptimal training

Uncertainty aware training

- Keep the application and inference step
- Change the training step by replacing

Training objective CE ightarrow Analysis objective σ_{μ}

- Incorporate systematic variations in calculation of σ_{μ} via
 - Event weights
 - Shifted data sets, propagated through NN

New Loss: σ_{μ}

Starting with a binned Likelihood L (N, μ, {θ_j}) where systematic uncertainties for every bin i can be incorporated as

$$s_i = s_{i_0} + \sum_j^M \theta_j s_{i_{\text{shift}}}, \quad b_i = b_{i_0} + \sum_j^M \theta_j b_{i_{\text{shift}}}$$

assuming an ideal case by

- Obtain nominal value from Asimov data set: $n_i = \mu s_i + b_i$, $\mu = 1$ and
- Applying no pull on the nuisance parameters $\theta_j = 0 \forall j$

• The estimation of σ_{μ} is obtained from the Fisher information:

$$\mathcal{F}_{ij} = \mathbb{E}\left[\left(\frac{\partial^2}{\partial x_i \partial x_j} \left(-\ln \mathcal{L}\right)\right)_{x_i, x_j = \mu, \{\theta_j\}}\right] \stackrel{\text{Asimov}}{=} \left(\text{Hess}\left(-\ln \mathcal{L}\right)\right)_{ij} \qquad \Rightarrow \qquad \left(\mathcal{F}_{ij}\right)^{-1} = V_{ij}$$

• Where $V_{11} = \sigma_{\mu}^2$ contains statistical and systematic uncertainties of μ

(Un)differentiable histograms

- $\mathcal{L}(N, \mu, \{\theta_j\})$ is calculated on binned data
- NN backpropagation requires each step in the calculation of of the loss function to be differentiable
- Histogram gradient, described by delta functions at bin edges lacks continuity.

Replacement of histogram gradient necessary

- Previously proposed gradient replacement [1]: Gaussian derivative for each bin
- Additional introduction of warm-up phase based on BCE Statistical part of σ_μ can be reduced by a spatial separation of signal and background

Evolution of NN output with proposed custom gradient

- Collapse of NN output function into 1-3 bins
 - Independent from concrete warm-up
 - More pronounced feature for more complicated tasks.
- Collapse is not improving the loss

ightarrow Unstable training, convergence is not ensured

Improved custom histogram gradient

- Restrict Gaussian derivative to the respective bin
 - \rightarrow Removes long range effects across bins, which lead to low gradient amplitudes everywhere except the outer most bins
 - \rightarrow "Movement directive within a bin" rather than a Gaussian "smearing of a bin"

- Further adjustments to the training procedure:
 - Increase of learning rate
 - Change optimizer from Adam to NAdam

8/24 12.12.2022 Artur Monsch: Uncertainty aware training

Institute of Experimental Particle Physics

Evolution of NN output with modified custom gradient

- Reduced event aggregation into fewer bins
- Improved training convergence

Demonstration on a binary toy model

- Signal (background) modeled as 2D Gaussians with 10⁵ samples each, reweighted to 50 (1000) events for the final inference
- Systematic variation: $x_2 \pm 1$ (dashed lines in Figure)
- Test (training, validation) data sets: 2 · 10⁵ (10⁵, 10⁵) independent events
- Fully connected feed forward NN
 - Input: x_1, x_2
 - One hidden layer with 100 nodes and ReLU activation
 - One output node with sigmoid activation
- Full-batch training, 1000 epochs patience on validation loss

Results of binary toy study

 Training on BCE: Spatial separation of processes in value space of NN output leads to reduction of statistical part of σ_μ

S.

3

-1

 Effect of systematic variation is clearly visible (as expected)

- Training on σ_{μ} reduces the combined uncertainty by $\approx 20 \%$ relative to BCE based training
- BCE warm-up improves the process separation in cases of dominating statistical uncertainty

Class 1

Class 2

÷

Class C

Class 1

Class 2

Class C

0.76

Idea of multi-class classification

- Assignment of signal/background processes to (different) classes
- Realization use multiple output nodes
- Activation function in output layer: Softmax
 - → Probabilistic interpretation of the likelihood to find a corresponding event in a given class when using CE loss
- Modifications to final inference

$$\mathcal{L}\left(N,\mu,\{\theta\}\right) = \prod_{\text{class } c=1}^{C} \prod_{\text{bin } i=1}^{N} \mathcal{P}\left(n_{i} \middle| \sum_{k=1}^{P} \mu_{k} s_{i,k} \left(\{\theta_{j}\}\right) + \sum_{k'=1}^{P} b_{i,k'} \left(\{\theta_{j}\}\right)\right) \prod_{j=1}^{M} \mathcal{C}\left(\theta_{j} \middle| \mu_{\theta_{j}}, \sigma_{\theta_{j}}\right)$$

 $m_{
m inv}$

 p_T

:

Extension of the toy data set to multi-class classification

- Introduction of a second
 - background at (-1,2)
 - signal at (0.5, 3)
- signal (background) processes are reweighted to 100 (1000) events each
- Used uncertainties
 - Background 1: $x_2 \pm 1$ (as before)
 - Background 2: $x_1 \pm 1$

Multi-class classification: Problem

Expectation: Minor adjustments after CE warm-up to address systematic uncertainties, but:

- Classes act only as additional bins
- \hfill No penalty for misclassification in the training on σ_μ and final inference
- Predefined classes are not used during training as intended
- ightarrow With increasing problem complexity: Empty classes and misclassified events within a class occurs

Applicable multi-class classification: Ansatz 1

 Not all NN classification information is used for loss calculation

Ansatz 1:

- Use only one "class"
 - Change (back) to one output node with Sigmoid activation
 - Increase number of bins
- Separation of signal processes as due to $\sum_i \sigma_{\mu_i}$ minimization
- \rightarrow Creation of regions with accumulated signal processes

700

600

500

300

200

100

0.0

tuno 400

Applicable multi-class classification: Ansatz 2

Karlsruhe Institute of Technolog

Ansatz 2:

Preservation of class assignments by performing weight optimization in constrained phase space

- \rightarrow Output nodes activation function: Sigmoid
- \rightarrow Construction of a loss with a penalty term

 $\mathrm{Loss} = \sigma_{\mu} + \lambda \left(\mathrm{L}_{\mathrm{BCE}} - \mathrm{L}_{\mathrm{BCE}}' \right)$

where

- $\hfill L_{BCE}'$ is the BCE loss as the end of the warm-up phase,
- $\hfill \ensuremath{\,\bullet\)} L_{BCE}$ the BCE loss of the current epoch and
- λ a learnable parameter in case of $L_{BCE}-L_{BCE}'>0$ and 0 otherwise
- \rightarrow Constraint preserves the initial classification during the σ_{μ} minimization

Ansatz comparison

One class:

17/24

12, 12, 2022

- No additional hyper parameters
- Worse results compared to constrained approach
- With increasing number of signal processes separation worsens

Constrained loss approach:

- Provides stable and better results
- Separation still possible also with/despite of increasing number of processes
- Introduction of additional hyperparameters during training, which are not present in the final inference

Application to Standard Model H ightarrow au au analysis [3]

- Goal: Differential measurements of Higgs boson production
- $H \rightarrow \tau \tau$: Highest branching ratio (6.3 %) after $\bar{b}b$ but with less background contributions
- NN output is used for the final inference

Restriction for this study:

- Final decay mode: $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$
- **Data set:** 2016, **2017**, 2018
- Using 86 systmatic variations in form of event weights (no jer, jes...)

${ m H} ightarrow au au$: Binary classification

- Combination of all background and signal processes correspondingly (inclusive measurement)
- All uncertainties as shape uncertainty
- Stable and converging training comparable to toy study

H ightarrow au au : Results

H ightarrow au au: Multi-class classification

- $\hfill qqh$ and ${\rm ggh}$ Higgs boson production mechanisms as signal processes
- Separation of qqh events as a result of statistical uncertainty reduction (dominant uncertainty), larger confusion of ggh events with background processes

Ansatz comparison on H ightarrow au au

Both approaches:

- Allow for differential measurements of the signal strength of selected Higgs boson production modes
- $\hfill \ensuremath{\bullet}$ Are able so separate qqh better than classic CE-training based on the same NN architecture
- Avoid the problem of empty classes.

A constraint on σ_{μ} loss improves the result at the cost of introducing additional hyperparameters, which are not adressed or motivated in the final inference

Summary

- Improved stability during the training on σ_{μ} by modifying the custom histogram gradient
- Extension to uncertainty-aware multi-class classification
- \blacksquare Successfull application on a subset of the SM $H \to \tau \tau$ analysis [3]

Outlook

- \blacksquare Apply to the full $H \to \tau \tau$ analysis with more differentiable Higgs boson production process
- Incorporation of a method to avoid the use of histograms for uncertainty calculation
- Adaption of statistical inference to the multi-class classification based on uncertainty aware training

References

- [1] Stefan Wunsch et al. "Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters". en. In: *Comput. Softw. Big Sci.* 5.1 (Dec. 2021).
- [2] John Platt and Alan Barr. "Constrained Differential Optimization". In: Neural Information Processing Systems. Ed. by D. Anderson. Vol. 0. American Institute of Physics, 1987. URL: https://proceedings.neurips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf.
- [3] CMS Collaboration. Measurements of Higgs boson production in the decay channel with a pair of leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV. 2022. DOI: 10.48550/ARXIV.2204.12957. URL: https://arxiv.org/abs/2204.12957.

Backup

$H \to \tau \tau$ Binary: Reduced number of NP

Institute of Experimental Particle Physics

$H \to \tau \tau$ Used training variables

• $p_T(\tau_1)$

 $\bullet p_T(\tau_2)$

- \bullet $m_{\rm vis}$
- $p_{T_{\rm vis}}$
- $m_{\rm sv_{Puppi}}$
- $\bullet N_{\rm Btag}$
- $p_T(j_1)$
- $ightharpoons N_{\mathrm{Jet}}$

- $\Delta \eta_{jj}$
- *m*_{jj}
- $\operatorname{MELA}_Q^2(V_1)$
- $p_T(jj)$
- $\operatorname{MELA}_Q^2(V_2)$
- $\bullet p_T(j_2)$
- $\Delta R_{\tau_1 \tau_2}$

Impact of Further adjustments to the training procedure

Loss evolution: One class and Constrained-loss

Institute of Experimental Particle Physics

$H \to \tau \tau$ Multi-class classification: CE benchmark, exemplary shift

Shift: CMS_htt_dyShape

List of used systematic uncertainties 1/5

List of used systematic uncertainties 2/5

List of used systematic uncertainties 3/5

List of used systematic uncertainties 4/5

List of used systematic uncertainties 5/5

