

3D Z+Jet Cross-Section Measurement at $\sqrt{s} = 13$ TeV

ETP Meeting – Master Thesis Presentation

Cedric Verstege | 07. November 2022

www.kit.edu

Table of Contents

- 1. Analysis Strategy
 - Analysis Overview
 - Motivation

2. Datasets and Selections

- Selections and Corrections
- RECO Data-MC-Comparisons
- Framework Validation
- MC Stitching and Merging
- 3. Unfolding
 - Basics
 - Response Matrix
 - Unfolded Result
 - Uncertainties
- 4. Ultra Legacy Results
- 5. Compatibility between Data-taking Periods
- 6. Conclusions

Why ...?

$\dots \mathbf{Z} \to \mu^+ \mu^-$

- Adequate number of signal events with low background
- Muons efficiently reconstructable and identifiable

... Triple Differential

- Transverse momentum of dimuon-system p^Z_T
 - information about momentum transfer of the hard interaction

•
$$\mathbf{y}_{\mathbf{b}} = \frac{1}{2}|y^{Z} + y^{\text{Jet1}}|$$

- boost of center-of-mass system
- information about the initial state parton-momentum-fractions

•
$$\mathbf{y}^* = \frac{1}{2}|\mathbf{y}^Z - \mathbf{y}^{\text{Jet1}}|$$

- Lorentz-invariant "scattering angle"
- information about contributing parton luminosities

Z+Jet Production Channels at LO

Variations of Parton Lumis in the Analysis Phase-Space

T. Berger 2019 [1]

1000

Event Selections and Corrections

- Muon events selected with single muon trigger, corrected for L1 Prefiring
- Two muons passing tight ID and ISO above trigger threshold inside muon system coverage, dressed

 —> Compatible with Z-boson
- At least one jet passing tight ID inside roughly same detector coverage
- Lepton veto in Jet ID and muon-jet-overlap removal

Detailed selections and corrections in Backup

Event Selections and Corrections

- Muon events selected with single muon trigger, corrected for L1 Prefiring
- Two muons passing tight ID and ISO above trigger threshold inside muon system coverage, dressed

 —> Compatible with Z-boson
- At least one jet passing tight ID inside roughly same detector coverage
- Lepton veto in Jet ID and muon-jet-overlap removal
- Reduced sensitivity to PU with PUJetID and Jet-p_T cut

Detailed selections and corrections in Backup

Detector Level Comparison of MC and Data

- Data and MC in good agreement within uncertainties
- Dominated by signal events
- MC overshoots by a small constant factor
- Inclusive NNLO cross-section FEWZ NNLO from 2019: 6077.22 pb FEWZ NNLO from 2017: 5818.37 pb
 - Theory cross section NNLO for inclusive Z production
 - \rightarrow NLO for Z+Jet
 - Dependent on y*-yb-bins
 - \rightarrow Results may help improve theory predictions

Framework Validation

- Updated code to UL
- Complete code review
 - $\rightarrow~$ Found and fixed some bugs
- Framework cross check with Brussels for 2018 data
- Further updates on unfolding, uncertainty handling, ...

Combination of Inclusive and N_{jet}-Exclusive MC

- Systematic uncertainties through limited number of events in MC samples
- \Rightarrow Gather as much MC as available
- DYJetsToLL signal MC ~3.9M events after selection

Inclusive DYJetsToLL

Combination of Inclusive and N_{jet}-Exclusive MC

- Systematic uncertainties through limited number of events in MC samples
- \Rightarrow Gather as much MC as available
- DYJetsToLL signal MC ~3.9M events after selection
- Add jet-binned "high-stat." samples DYJetsToLL_0J, DYJetsToLL_1J, DYJetsToLL_2J (0.2M + 4.7M + 2.7M events after selection)
 - Reweight each exclusive sample to corresponding contribution in inclusive

Jet-binned DYJetsToLL

- Systematic uncertainties through limited number of events in MC samples
- \Rightarrow Gather as much MC as available
- DYJetsToLL signal MC ~3.9M events after selection
- Add jet-binned "high-stat." samples DYJetsToLL_0J, DYJetsToLL_1J, DYJetsToLL_2J (0.2M + 4.7M + 2.7M events after selection)
 - Reweight each exclusive sample to corresponding contribution in inclusive
 - Reweight exclusive and inclusive samples according to effective number of events
- $\rightarrow~$ Reduced statistical uncertainty on MC

Parenthesis - Bin unraveling

3D phase-space 1D visualization \rightarrow **≬** y* Z→µµ 2.5 2.0 y* 0.0 2.0 2.5 1.5 leading jet 1.5 \rightarrow Y_b 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 0.0 0.5 1.00.0 0.5 p_T^Z 1.0 global bin index 1 2 3 263 264 0.5 L 6

From M. Schnepf 2022 [2]

1.5 2.0 25 Yb

0.0

0.0

0.5

1.0

Karlsruhe Institute of Technology

Unfolding Basics

Unfolding for detector effects of observation y to true spectrum x

- Detector resolution →Migration between generator and reconstruction bins
- Detector efficiency →Less events on reconstruction level than generator level

Statistical fluctuations \tilde{y} and \tilde{x} of true spectrum

Unfolding Basics

- Unfolding for detector effects of observation y to true spectrum x
 - Detector resolution →Migration between generator and reconstruction bins
 - Detector efficiency →Less events on reconstruction level than generator level
- Usually discretized observations and predictions in histograms → "invert" response matrix A (i.e. TUnfold)
 - Ill-conditioned matrix → Regularize "unphysical" high-frequency oscillations
 - $\hfill Estimate response matrix from MC \rightarrow$ Systematic and statistical uncertainties

Statistical fluctuations \tilde{y} and \tilde{x} of true spectrum

We have:
$$ilde{y}_i = \sum_i oldsymbol{A}_{ij} ilde{x}_j + oldsymbol{b}_i$$

We want: $x_i \rightarrow TUnfold$

CMS Private Work Condition number: 2.62 Event fraction (14 250 Global reco. bin number $(y^*, y_b,$ 200 10-2 150 Global gen. bin number $(y^{*,gen}, y_{b}^{gen}, p_{T}^{Z,gen})$

2018

- Low condition number < 10</p>
- ightarrow Regularization not necessary
 - Stat. uncertainty on data propagated through unfolding
- Unfolding uncertainties from limited MC precision propagated internally by TUnfold
- Systematic uncertainty propagated separately by new unfolding for each variation

CMS Private Work Condition number: 2.62 Event fraction (14 250 Global reco. bin number $(y^*, y_b,$ 10-2 150 Global gen. bin number $(y^{*,gen}, y_{b}^{gen}, p_{T}^{Z,gen})$

2018

- Low condition number < 10</p>
- ightarrow Regularization not necessary
 - Stat. uncertainty on data propagated through unfolding
- Unfolding uncertainties from limited MC precision propagated internally by TUnfold
- Systematic uncertainty propagated separately by new unfolding for each variation
- Similar for all data periods (2018)

2017

CMS Private Work Condition number: 2.79 Event fraction (14 250 Global reco. bin number $(y^*, y_b,$ 200 10-2 150 Global gen. bin number $(y^{*,gen}, y_{b}^{gen}, \rho_{T}^{Z,gen})$

- Low condition number < 10</p>
- ightarrow Regularization not necessary
 - Stat. uncertainty on data propagated through unfolding
- Unfolding uncertainties from limited MC precision propagated internally by TUnfold
- Systematic uncertainty propagated separately by new unfolding for each variation
- Similar for all data periods (2017)

2016postVFP

- Low condition number < 10</p>
- \rightarrow Regularization not necessary
 - Stat. uncertainty on data propagated through unfolding
 - Unfolding uncertainties from limited MC precision propagated internally by TUnfold
- Systematic uncertainty propagated separately by new unfolding for each variation
- Similar for all data periods (2016postVFP)

2016preVFP

- Low condition number < 10</p>
- ightarrow Regularization not necessary
 - Stat. uncertainty on data propagated through unfolding
 - Unfolding uncertainties from limited MC precision propagated internally by TUnfold
- Systematic uncertainty propagated separately by new unfolding for each variation
- Similar for all data periods (2016preVFP)

50 200 500 1000 $p_{\rm T}^{\rm Z}$ / GeV

13/21 07.11.2022 C. Verstege: 3D Z+Jet Cross-Section Measurement

Unfolded Result

Detector Level

Unfolding - Statistical Uncertainty

- Derived through uncertainty propagation in the TUnfold method
- Systematic uncertainty through limited number of events in MC sample
- DYJetsToLL signal MC ~3.9M events after selection
- \rightarrow High statistical unfolding uncertainty (pseudo MC generation?)

Unfolding - Statistical Uncertainty

- Derived through uncertainty propagation in the TUnfold method
- Systematic uncertainty through limited number of events in MC sample
- DYJetsToLL signal MC ~3.9M events after selection
- $\rightarrow\,$ High statistical unfolding uncertainty (pseudo MC generation?)
- Add jet-binned "high-stat." samples DYJetsToLL_0J, DYJetsToLL_1J, DYJetsToLL_2J (0.2M + 4.7M + 2.7M events after selection)
- \rightarrow Significant improvement in statistical unfolding uncertainty (no pseudo generation needed)

Systematic Uncertainties

- Various systematic uncertainty sources, e.g. luminosity, JEC, trigger & muon scale factors, ...
- Uncertainty propagation by creating new response matrices for each uncertainty variation and repeat unfolding
- ightarrow JEC dominant in low, statistical uncertainty in high $p_{\mathrm{T}}^{\mathrm{Z}}$ -region
- **Crucial:** Waiting for SHERPA DY-MC for estimation of modelling bias!

Unfolded Cross-Sections 2018: Central Region

- JEC uncertainty dominant at low p^Z_T
- Stat. + unfolding uncertainty dominant at high p_T^Z

Unfolded Cross-Sections 2018: Forward-Backward

- JEC uncertainty dominant at low p^Z_T, stat. + unfolding at high p^Z_T
- High uncertainties: high η , low stats

Unfolded Cross-Sections 2018: High Boost

- JEC uncertainty dominant at low p^Z_T, stat. + unfolding at high p^Z_T
- Higher uncertainties: high η

 \leq

Compatibility between Years

• Overall cross-section for 2017 data $\sim 5.0 \pm 2.4$ (Lumi.) % significantly higher than for 2016preVFP data

CMS Private Work Cross Section Ratio with stat. unc. total unc 0.6 50 100 150 200 250 Global gen. bin number $(y^{*,gen}, y_b^{gen}, p_T^{Z,gen})$

2016preVFP/2017 UL

Compatibility between Years

- Overall cross-section for 2017 data $\sim 5.0 \pm 2.4$ (Lumi.) % significantly higher than for 2016preVFP data
- Discrepancy between 2017 and 2018 data $(\sim 2.0 \pm 2.8 \text{ (Lumi.) \%})$ insignificant
- Similar observations in independent analyses (Z-Counting, Brussels)

2018/2017 UL

Compatibility of 2016 Data

• Overall cross-section for 2017 data $\sim 5.0 \pm 2.3$ (Lumi.) % significantly higher than for 2016preVFP data

2016preVFP/2017 UL

Compatibility of 2016 Data

- Overall cross-section for 2017 data $\sim 5.0 \pm 2.3$ (Lumi.) % significantly higher than for 2016preVFP data
- Less discrepancy in normalization of 2016postVFP compared to 2017 data
- Weird p^Z_T-dependent trend in 2016postVFP data (compared to 2017)

2016postVFP/2017 UL

Compatibility of 2016 Data

- Overall cross-section for 2017 data $\sim 5.0 \pm 2.3$ (Lumi.) % significantly higher than for 2016preVFP data
- Less discrepancy in normalization of 2016postVFP compared to 2017 data
- Weird p^Z_T-dependent trend in 2016postVFP data (compared to 2017)
 - Saw-tooth pattern less pronounced in 2016preVFP data

2016preVFP/2017 UL

Conclusions and Outlook

- First 3D Z+Jet cross section measurement of full Run II data presented
- Software framework updated to UL and validated with ULB
- Discrepancies of 2016 data confirmed and made CMS Collaboration aware of it
- By now also seen in independent analyses:
 - DY in a wide mass range by Brussels (ULB)
 - Z counting by LumiPOG
- Aiming for publication by the end of 2023
- I'm excited to stay at ETP for my PhD starting in January!

Datasets

- Data 2016preVFP: /SingleMuon/Run2016[B-ver1,B-ver2,C-F]_HIPM_UL2016_MiniA0Dv2-v2/MINIA0D
- Data 2016postVFP: /SingleMuon/Run2016[F-H]_UL2016_MiniA0Dv2-v2/MINIA0D
- Data 2017: /SingleMuon/Run2017[B-F]-UL2017_MiniA0Dv2-v1/MINIA0D
- Data 2018: /SingleMuon/Run2018[A-D]-UL2018_MiniA0Dv2-v[2,3]/MINIA0D

MC

- DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8
- TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8
- ST_t-channel_(anti)?top_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8
- ST_tW_(anti)?top_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8
- [WW,WZ,ZZ]_TuneCP5_13TeV-pythia8
- Global Tags
 - Data: 106X_dataRun2_v35
 - MC 2016preVFP: 106X_mcRun2_asymptotic_preVFP_v11
 - MC 2016postVFP: 106X_mcRun2_asymptotic_v17
 - MC 2017: 106X_mc2017_realistic_v9
 - MC 2018: 106X_upgrade2018_realistic_v16_L1v1

Detailed Event Selection

$-$ One z $\rightarrow \mu_l$	a candidate with the following chiefia		
Selection	Value	At least one let with	the following criteria
Trigger	2016: HLT_IsoMu24 or HLT_TkMu24 2017: HIT_IsoMu27	Selection	Value
	2018: HLT_IsoMu24	Jet ID	Tight + Lepveto
Muon ID Muon PF ISO Muon p_T Muon $ \eta $	Tight Tight > 29 GeV < 2.4	PUJetID $\Delta R(\mu_Z, \text{Jet})$ Jet p_T Jet $ y $ Jet Veto Maps	Tight > 0.4 > 20 GeV < 2.4 ✓
Z mass Z p _T	$m_Z\pm$ 20 GeV $>$ 25 GeV		1

One $Z \rightarrow \mu\mu$ candidate with the following criteria

Corrections

2016preVFP	2016postVFP	2017	2018
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
Data (kScaleDT) + MC (kSpreadMC)			
Data + MC with $\Delta R(\mu, \gamma) < 0.1$			
1	1	1	1
1	\checkmark	1	not needed
Data + MC (All recommended for each year)			
1	1	1	1
V7	V7	V5	V5
V3	V3	V2	V2
	2016preVFP	2016preVFP 2016postVFP \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Data (kScaleDT) + MC Data + MC with $\Delta R($ \checkmark \checkmark \checkmark Data + MC (All recommend \checkmark \checkmark V7 V7 V3 V3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Karlsruhe Institute of Technology

Analysis Overview

- Measurement of the jet associated Z-boson production cross-section differentially in three obervables p^Z_T, y_b, y^{*} for full Run 2 data
- $Z(\rightarrow \mu\mu)$ + Jet analysis for 2016 and 2017 with preliminary data (T. Berger 2019 [1] and M. Schnepf 2022 [2])

Updates Compared to pre-UL Analysis

- Updated code/inputs to UL (IDs, SFs, corrections, ...)
- Extensive code review of all modules
 - $\rightarrow~$ Found and fixed some minor bugs, no significant effects
- Framework cross check with Brussels with 2018 data → Conclude agreement withn numerical uncertainties
- Updated home-brewed unfolding and uncertainty handling to CMS (UL-)recommendations
 - \rightarrow Preparation for the paper
- Verified higher event count per lumi in 2017 for UL data, as previously observed
 - Talk at the SMP Meeting during CMS week (28.06.2022) https://indico.cern.ch/event/1171502/
 - Similar results by Lumi POG
 - Confirmed by Brussels group ($Z \rightarrow ee$ results still pending)
 - However, effect almost within uncertainties \rightarrow No show stopper for the publication

Unfolded Cross-Sections 2017

Unfolded Cross-Sections Legacy EOY 2017

Unfolded Cross-Sections 2016postVFP

2016postVEP (L = 16.8fb⁻¹

+ Data aMC@NLO + P8

> Data Stat. Data Stat. ⊕ Syst.

> > 1000

p∦ / GeV

2016postVFP (L = 16.86-

JEC JER

PUJetID ---- Muon SFs

— L1 Prefiring

1000

pf / GeV

Lumi

 \leq

30/21 07.11.2022 C. Verstege: 3D Z+Jet Cross-Section Measurement

Institute of Experimental Particle Physics

Unfolded Cross-Sections 2016preVFP

1

6

1000

pf / GeV

1000

p₹/ GeV

Unfolded Cross-Sections Legacy EOY 2016

Previous Results - Reco level

Comparison of Run II 2016 and 2017 end-of-year data at reconstruction level

- Expectation: 2016 and 2017 data yield same cross-sections within uncertainties
- Observation: Systematic shift in 2017 data towards higher cross-sections

Taken from Matthias Schnepf [2] first presented in SMP V+Jet Meeting 23.07.2021

 $\rightarrow\,$ If effect is understood in MC, unfolded cross-sections expected to be clean

Previous Results - 2017/2016 Unfolded

Comparison of Run II 2016 and 2017 end-of-year unfolded data

- Expectation: Same cross-section for 2016 and 2017 within uncertainties
- Observation: Systematic shift in 2017 data towards higher cross-section

From Matthias Schnepf first presented in SMP V+Jet Meeting 23.07.2021

ightarrow Detailed Ultra-Legacy reevaluation of full Run 2 data (ightarrow this Thesis)

References

- Thomas Berger. "Jet energy calibration and triple differential inclusive cross section measurements with Z
 (→μμ) + jet events at 13 TeV recorded by the CMS detector". PhD thesis. Karlsruher Institut f
 ür
 Technologie (KIT), 2019. 139 pp. DOI: 10.5445/IR/1000104286.
- [2] Matthias Schnepf. "Dynamic Provision of Heterogeneous Computing Resources for Computation- and Data-intensive Particle Physics Analyses". PhD thesis. Karlsruher Institut f
 ür Technologie (KIT), 2022. 129 pp. DOI: 10.5445/IR/1000143165.