

Introduction to Reinforcement Learning

Andrea Santamaría García

21/02/2023

1st collaboration workshop on Reinforcement Learning for Autonomous Accelerators

Control the plasma in a tokamak fusion reactor

View from inside the tokamak

Plasma state reconstruction

ChatGPT: Optin Language Mode for Dialogue

Methods

We trained this model using Reinforcement Learning (RLHF), using the same methods as InstructGPT, bu in the data collection setup. We trained an initial mo fine-tuning: human AI trainers provided conversatio both sides-the user and an AI assistant. We gave th model-written suggestions to help them compose the this new dialogue dataset with the InstructGPT data transformed into a dialogue format.

To create a reward model for reinforcement learning comparison data, which consisted of two or more mo by quality. To collect this data, we took conversation with the chatbot. We randomly selected a model-wri several alternative completions, and had AI trainers reward models, we can fine-tune the model using Pr Optimization. We performed several iterations of thi

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA'23) **3**

Deep Learning Networks

- § Convolutional Neural Networks
- § Recurrent Neural Networks
- § Long Short-Term Memory **Networks**
- § Autoencoders
- § Deep Boltzmann Machine
- § Deep Belief Networks

Bayesian Algorithms

- § Naive Bayes
- § Gaussian Naive Bayes
- § Bayesian Network
- § Bayesian Belief Network
- § Bayesian optimization

Regularization, dimensionality reduction, ensemble, evolutionary algorithms, computer vision, recommender systems, …

this slide is not exhaustive

Reinforcement learning more than machine learning

Psychology (classical conditioning) **Neuroscience** (reward system) **Economics** (game theory) **Mathematics** (operations research) **Engineering** (optimal control, planning)

Reinforcement learning

understanding how the human brain learns makes deci

The RL problem

Reward hypothesis

all goals can be described by the maximization of expected cumulative sum of a received scalar signal "Reward is enough"

an agent must learn through trial-and-error interactions with a dynamic environment

How to cumulate reward?

Model

agent's representation of the environment

Agent Which behaviors perform well in this environment?

Policy agent's behaviour function
(how the agent picks its actions)

Estimate the utility of taking actions in particular states of the environment (evaluation of the policy)

Value function $how good each state$ and/or action are

 \triangleright **Prediction**: evaluate the future given a policy \triangleright **Control**: optimize the future (find the best policy)

Challenges in RL

Trade-off between exploitation and exploration

- Actions may have long-term consequences
- Reward might be delayed (does not happen immediately)

should the agent sacrifice immediate reward to gain more long term reward?

The agent needs to:

- **► Exploit** what it has already experienced in order to obtain reward now
- **Explore** the environment to select better actions in the future by sacrificing known reward now

…and both cannot be pursued exclusively without failing at the task

Must:

- § Be able to **sense the state** of its environment to some extent
- Be able to **take actions** that affect that state
- **Have a goal** or goals relating to the state of the environment

Markov Decision Processes

Sensation

" "Free-Will

Motivation

Include this 3 elements without trivializing any of them

Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

A Markov Decision Process is a 5-tuple:

$$
(\mathcal{S}, \mathcal{A}, \mathcal{P}_{SS}^a, \mathcal{R}_S^a, \gamma) \quad \text{ } \mathcal{S} \text{ = finite set of states}
$$

State information used to determine what happens next

A state transition can be:

- Deterministic $s_{t+1} = f(\mathcal{H}_t)$
- Stochastic $s_{t+1} {\sim} \mathbb{P}(s_{t+1}|\tau_t)$

Trajectory sequence of states and

 $\tau = (s_0, a_0, s_1, a_1, s_2, a_2, ...)$

Environment state (S^e): environment's internal representation, usually not visible to the agent

Agent state (S^a) **: agent's internal representation,** used by the RL algorithm to pick the next action

Observation (O): partial description of a state, which may omit information

Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

A Markov Decision Process is a 5-tuple:

$$
(\mathcal{S}, \mathcal{A}, \mathcal{P}_{SS}^a, \mathcal{R}_S^a, \gamma) \quad \text{ } s \text{ = finite set of states}
$$

information used to determine what happens next

A state transition can be:

- Deterministic $s_{t+1} = f(\mathcal{H}_t)$ **Stochastic** $s_{t+1} \sim \mathbb{P}(s_{t+1} | \tau_t)$
-

Trajectory sequence of states and

 $\tau = (s_0, a_0, s_1, a_1, s_2, a_2, ...)$

Markov state / property A state is Markov if and only if:

$$
\mathbb{P}[s_{t+1}|s_t] = \mathbb{P}[s_{t+1}|s_{1,\dots,t}]
$$

- The state is a sufficient statistic of the future
- The future is independent of the past, given the present
- Once the state is known, the history may be discarded

state transitions of an MDP satisfy the Markov property

Fully observable environments $\mathcal{O}_t = \mathcal{S}_t^a = \mathcal{S}_t^e$

- § Agent directly observes environment state
- § Necessary condition to formalize an RL problem with an MDP

Partially observable environments $\delta_t^a \neq \delta_t^e$

Agent constructs its own state representation:

- Complete trajectory:
- \blacksquare Beliefs of environment state:
- Recurrent neural networks:

$$
\begin{aligned} \mathcal{S}_t^a &= \tau_t \\ \mathcal{S}_t^a &= (\mathbb{P}[\mathcal{S}_t^e = s_1], \dots, \mathbb{P}[\mathcal{S}_t^e = s_n]) \\ \mathcal{S}_t^a &= \sigma(w_0 \mathcal{O}_t + w_s \mathcal{S}_{t-1}^a) \end{aligned}
$$

 \rightarrow Partially observable MDP

Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

A Markov Decision Process is a 5-tuple:
$$
(\mathcal{S}, \mathcal{A}, \mathcal{P}_{ss}^a, \mathcal{R}_s^a, \gamma)
$$

State transition model / probability **Predicts the next state** (dynamics of the environment)

$$
\mathcal{P}_{SS'}^a = \mathbb{P}[\mathcal{S}_{t+1} = s' | \mathcal{S}_t = s, \mathcal{A} = a] \text{ Probability of ending in state s' aftertaking action a while being in state s}
$$

Transition probabilities from all states and successor states

16 Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA'23)

Non-deterministic environment

Taking the same action in the same state on two different occasions may result in different next states

 ϵ ϵ $- \rightarrow$

Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

A Markov Decision Process is a 5-tuple:
$$
(\mathcal{S}, \mathcal{A}, \mathcal{P}_{ss}^a, \mathcal{R}_s^a, \gamma)
$$

The goal is to maximize the return

- The discount factor $\gamma \in [0, 1)$ avoids infinite returns (sum converges)
- It values immediate reward over delayed reward (human-like)
- It deals with uncertainty about the future (no perfect model of env.)

Side notes:

- There are also undiscounted Markov processes if all sequences terminate (episodic)
- Model-based: there is an expectation of a reward (but not in model-free)

- Policy π completely defines how the agent will behave
- It's a distribution over actions given a certain state

Deterministic: $a=\pi(s)$

Stochastic:
$$
\pi(a|s) = \mathbb{P}[\mathcal{A}_t = a|\mathcal{S}_t = s]
$$

Probability of taking a specific action by being in a specific state **Categorical** (discrete action spaces)

Given an MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π :

$$
\mathcal{P}_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \, \mathcal{P}_{s,s'}^{a} \qquad \mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \, \mathcal{R}_{s}^{a}
$$

Value function Estimation of expected

future reward

A way to compare policies

- Used to choose between states depending on how much reward we expect to get
- Depends on the agent's behavior (policy)

State-value function

Expected return starting from state s and following policy π (evaluates the policy)

$$
\mathcal{V}_{\overline{\mathcal{D}}}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]
$$
_{given policy}

Action-value function

Expected return starting from state s , taking action a , and following policy π

$$
Q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid \mathcal{S}_t = s, \mathcal{A}_t = a]
$$

"Q function"

Bellman optimality equation

The state-value function can be decomposed into:

- **•** immediate reward R_{t+1}
- **•** discounted value of next state $\gamma v(S_{t+1})$

$$
\mathcal{V}(s) = \mathbb{E}[G_t | S_t = s]
$$

\n
$$
= \mathbb{E}[\mathcal{R}_{t+1} + \gamma \mathcal{R}_{t+2} + \gamma^2 \mathcal{R}_{t+3} ... | S_t = s]
$$

\n
$$
= \mathbb{E}[\mathcal{R}_{t+1} + \gamma (\mathcal{R}_{t+2} + \gamma \mathcal{R}_{t+3} ...)| S_t = s]
$$

\n
$$
= \mathbb{E}[\mathcal{R}_{t+1} + \gamma G_{t+1} | S_t = s]
$$

\n
$$
= \mathbb{E}[\mathcal{R}_{t+1} + \gamma G_{t+1} | S_t = s]
$$

\n
$$
= \mathbb{E}[\mathcal{R}_{t+1} + \gamma V(S_{t+1}) | S_t = s]
$$

\n
$$
\mathcal{V}(s) = \mathcal{R}_s + \gamma \sum_{s' \in S} \mathcal{P}_{s,s'} \mathcal{V}(s')
$$

Bellman expectation equation

Considering the policy π we get:

$$
\mathcal{V}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s \in \mathcal{S}} \mathcal{P}_{s,s'}^a \mathcal{V}(s') \right)
$$

Direct solution only for small MDPs

 \triangleright System of S simultaneous linear equations with S unknowns

Other ways of solving it:

- \triangleright Iteratively (dynamic programming)
- \triangleright Sampling (Monte-Carlo evaluation)
- \triangleright Approximation (temporal-difference learning)

Example: gridworld

The agent needs to get from state **0** to state **15** to get out of the maze

Actions $\mathcal{A} = (\uparrow, \downarrow, \leftarrow, \rightarrow)$

Deterministic env: $\mathcal{P}^a_{S,S'}=1$

no discount γ

25 Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA'23)

how much value this policy has?

Example: gridworld

26 Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA'23)

how much value this po

Dynamic programming algorithms turn the Bellman eq.

into update rules

- § **Prediction**: what's the value for a specific policy? ✅
- § **Control**: which policy gives as much reward as possible? \rightarrow the policy with more value!

For any MDP:

- There exists an optimal policy π_* that is better or equal to all other policies $\pi_* \geq \pi \,\forall \pi$
- All optimal policies achieve the optimal value function $\mathcal{V}_{\pi_*} = \mathcal{V}_*(s)$ and $Q_{\pi_*} = Q_*(s, a)$

So…do I have to calculate the value of every policy and compare them?

 $|{\mathcal{A}}|$ $|{\mathcal{S}}|$ deterministic policies in an MDP

 $4^{11} \approx 4$ million policies for simple gridworld example

Bellman optimality equations

$$
\mathcal{V}_{\pi*}(s) = \mathbb{E}_{\pi*}[G_t | S_t = s] = \max_{\pi} \mathcal{V}_{\pi}(s) \quad \forall s \in S
$$

$$
\mathcal{Q}_{\pi*}(s) = \max_{\pi} \mathcal{Q}_{\pi}(s) \quad \forall s \in S, a \in \mathcal{A}
$$

 ${\mathcal P}_{_{S,S}}\big({\mathcal V}_{*}({s}')$

Optimal value functions

By replacing the optimal policy on the Bellman equations we get:

 π_* assigns probability 1 to the action that receives the highest value

maximum value over every next possible state

$$
Q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s, s'}^a \max_{a'} Q_*(s', a')
$$

 $v_*(s) = \max \left(R_s + \gamma \right)$

 \overline{a}

Nonlinear (max), no closed-form solution

Ø Dynamic programming solutions only applicable if the dynamics of the system $\mathcal P$ are known

Determining an optimal policy

$$
\boldsymbol{\mathcal{V}}_*(\boldsymbol{s}) = \max_{a} \left(\mathcal{R}_{\boldsymbol{s}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'} \, \mathcal{V}_*(s') \right)
$$

maximum over all actions

For any state we look at each available action and take the one that maximizes the argument

$$
\pi_*(s) = \underset{a}{\text{argmax}} \left(\mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'} \, \mathcal{V}_*(s') \right)
$$
\n
$$
\underset{\text{achieves that maximum}}{\text{particular action that}}
$$
\n
$$
\underset{\text{(greedy action)}}{\text{and } \text{matrix}}
$$

$$
\boldsymbol{\pi}_*(\boldsymbol{s}) = \operatorname*{argmax}_{a} Q_*
$$

29 Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA'23)

Policy improvement & iteration

Let's consider a value function \mathcal{V}_{π} that is non-optimal, and we select an action that is greedy with respect to it:

$$
\boldsymbol{\pi}'(\boldsymbol{s}) = \underset{a}{\text{argmax}} \left(\mathcal{R}_{\boldsymbol{s}} + \gamma \sum_{\boldsymbol{s}' \in \boldsymbol{\mathcal{S}}} \mathcal{P}_{\boldsymbol{s},\boldsymbol{s}'} \, \mathcal{V}_{\boldsymbol{\pi}}(\boldsymbol{s}') \right)
$$

- § If the action has a higher value, the policy is better
- ν_* is the unique solution to the Bellman optimality eq.
- **•** If this greedy operation does not change ν , then it converged to the optimal policy because it satisfies the Bellman optimality eq.

starting $V \pi$

 $\pi_1 \rightarrow \mathcal{V}_{\pi 1} \rightarrow \pi_1$

π

 $\frac{1}{\pi} = \frac{geedy(V)}{eV}$

improve

eva

imp

evaluation

Dynamic programming algorithms turn the Bellman eq.

into update rules

when we don't know P

Off-policy learning

On-policy: improve and evaluate the policy being used to select actions **Off-policy**: improve and evaluate a different policy from the one used to select actions

- \triangleright Learn a target policy π (optimal policy) while...
- \triangleright ... selecting actions from behavior policy *b* (exploratory policy)

Provides another strategy for continuous exploration (experiences a larger # of states)

Temporal difference learning

- Learning method specialized for multi-step **prediction learning**
- TD learning is learning a prediction from another, later learned prediction \triangleright learning a guess from a guess (you don't know the true ν)

 $V(s) \leftarrow V(s) + \alpha [\mathcal{R} + \gamma \mathcal{V}(s') - \mathcal{V}(s)]$

- Difference between both predictions $=$ temporal difference
- No P model needed (unlike in dynamic programming)
	- § Allows you to estimate the value function before the episode is finished
	- Making long-term predictions is exponentially complex
		- \triangleright Memory scales with the #steps of the prediction
	- TD model = standard model of reward systems in the brain

Q-learning Off-policy TD control

 $Q(s, a) \leftarrow Q(s, a) + \alpha [\mathcal{R} + \gamma \max Q(s', a) - Q(s, a)]$

Converges to the optimal value function as long as the agent continues to explore sampling the state-action space

Overview of RL methods

Tabular solution methods

- \triangleright Iterative (dynamic programming)
- \triangleright Sample-based (Monte-Carlo evaluation)
- \triangleright Temporal-difference learning
- § Used to solve finite MDPs
- § Value functions are stored as arrays (tables)
- Methods can often find exact solutions

In real-life situations, we cannot store the values of each possible state in an array, especially in continuous problems

 \triangleright Autonomous driving: array per possible image the camera sees?

Approximate solution methods

- **►** Value-based ► Policy gradient
	-
- Ø Policy-based Ø Actor-critic
- § Approximate value by function parametrized by a weight vector --> **neural networks (learning!)**
- § Applicable to partially observable problems

Approximate solution methods

Value-based

contains a value function, policy is implicit

- § Sample efficient
- DQN, NAF
- § Computationally fast
- Unstable (bias, don't know true ν)

Policy-based

does not store the value function, only the policy

The agent simply relies on some trial-and-error experience for action selection

- The environment is initially unknown
- The agent interacts with the environment
- The agent improves its policy
	- all algorithms from previous slide

Model-free Model-based

Predictive model: "what will happen if I take this action?"

- The environment is known
- The agent performs internal computations with its model without external interaction
- The agent improves its policy

Thank you for your attention! What questions do you have for me?

- Sutton & Barto book
- § https://arxiv.org/pdf/cs/9605103.pdf
- **Reinforcement learning lectures by David Silver**
- § https://spinningup.openai.com/en/latest/
- Coursera RL specialization
- § https://arxiv.org/pdf/1810.06339.pdf

Let's connect! andrea.santamaria@kit.edu / @ansantam