
Andrea Santamaría García

Introduction to
Reinforcement Learning

21/02/2023

1st collaboration workshop on Reinforcement Learning for Autonomous Accelerators

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)2

Control the plasma in a
tokamak fusion reactor

https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control
https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)

Segmentation of data
computer learns without prior information about the data

Real-time decisions
computer learns through trial and error

Classification, prediction, forecasting
computer learns by example

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING

REINFORCEMENT
LEARNING

MACHINE
LEARNING

• Medical diagnosis
• Fraud (anomaly) detection
• Market segmentation
• Pattern recognition

• Spam detection
• Weather forecasting
• Housing prices prediction
• Stock market prediction

• Self-driving cars
• Make financial trades
• Gaming (AlphaGo)
• Robotics manipulation

3

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)4

Deep Learning Networks
§ Convolutional Neural Networks
§ Recurrent Neural Networks
§ Long Short-Term Memory

Networks
§ Autoencoders
§ Deep Boltzmann Machine
§ Deep Belief Networks

M
ac

hi
ne

 L
ea

rn
in

g
§ Neural networks (e.g. stochastic gradient

descent, backpropagation)
§ Support Vector Machine
§ K-nearest neighbor
§ Decision Tree algorithms (e.g. Classification and

Regression Tree)
§ Random Forest (ensemble)
§ Uni or multivariate, linear or logistic

§ K-means
§ K-medians
§ Expectation Maximization (EM)
§ Hierarchical clustering

§ Apriori algorithm
§ Eclat algorithm

Bayesian Algorithms
§ Naive Bayes
§ Gaussian Naive Bayes
§ Bayesian Network
§ Bayesian Belief Network
§ Bayesian optimization

Regularization,
dimensionality reduction,
ensemble, evolutionary
algorithms, computer vision,
recommender systems, …

Learning style Task Popular algorithms

§ Value based (Q-learning)
§ Policy based
§ Actor critic

§ Policy gradient or actor-critic
§ Model-free or model based

Supervised
Learning

Classification

Regression

Unsupervised
Learning

Clustering

Association

Reinforcement
Learning

Control

Prediction

We know the input & output
(labeled data)

We only know the input
(unlabeled data)

this slide is not exhaustive

discrete variables

continuous variables

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)5

https://arxiv.org/pdf/1810.06339.pdf

https://arxiv.org/pdf/1810.06339.pdf

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)6

Reinforcement learning

Psychology (classical conditioning)
Neuroscience (reward system)
Economics (game theory)
Mathematics (operations research)
Engineering (optimal control, planning)

BEHAVIOR
LEARNING

more than machine learning

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)7

Reinforcement learning
understanding how the human brain learns makes decisions

ht
tp

s:/
/w

ww
.de

ep
m

ind
.co

m
/p

ub
lic

ati
on

s/p
lay

ing
-at

ari
-w

ith
-

de
ep

-re
inf

or
ce

m
en

t-le
arn

ing

ht
tp

s:/
/ar

xiv
.or

g/
ab

s/1
70

7.0
22

86

https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://arxiv.org/abs/1707.02286

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)8

Reward hypothesis
all goals can be described by the maximization of expected cumulative
sum of a received scalar signal

Reward
scalar feedback signalℛ!
that indicates how well the

agent is doing at step 𝑡

The RL problem

Goal
maximization of

cumulative reward
through selected actions

Agent
executes action

à receives observation
à receives scalar reward

an agent must learn through trial-and-error
interactions with a dynamic environment

“Reward is enough”

https://www.sciencedirect.com/science/article/pii/S0004370221000862

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)9
Icons from the noun project

The RL problem

Reward

Agent

Goal

Actions
§ Bark
§ Jump
§ Bite
§ Sit

Environment

Ob
se

rv
at

io
n

Pe
rc

ep
tio

n

interactive
dynamic

interacts with its environment in discrete time steps 𝑡

1

1

1
1

1

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)10

Agent Which behaviors perform well in this environment?

Estimate the utility of taking actions in particular states
of the environment (evaluation of the policy)

How to cumulate reward?

agent's behaviour function
(how the agent picks its actions)Policy

how good each state
and/or action areValue function

Model
agent's representation of

the environment
Ø Prediction: evaluate the future given a policy
Ø Control: optimize the future (find the best policy)

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)11

Challenges in RL

• Actions may have long-term consequences
• Reward might be delayed (does not happen immediately)

Trade-off between exploitation and exploration

should the agent sacrifice immediate reward to gain more long term reward?

The agent needs to:
ü Exploit what it has already experienced in order to obtain reward now
ü Explore the environment to select better actions in the future by

sacrificing known reward now
…and both cannot be pursued exclusively without failing at the task

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)12

Must:

§ Be able to sense the state of its environment to some extent

§ Be able to take actions that affect that state

§ Have a goal or goals relating to the state of the environment

The agent

Sensation

“Free-will”

Motivation

Markov Decision Processes
Include this 3 elements without

trivializing any of them

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)13

Mathematical framework for modelling sequential decision making
Markov Decision Process (MDP)

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫!!!
" , ℛ!

" , 𝛾)
State information used to determine

what happens next

𝑠#$% = 𝑓(ℋ#)

sequence of states and
actions until time 𝑡Trajectory

Environment state (𝓢𝒆): environment’s internal
representation, usually not visible to the agent
Agent state (𝓢𝒂): agent’s internal representation,
used by the RL algorithm to pick the next action
Observation (𝓞):partial description of a state,
which may omit information

𝜏 = (𝑠!, 𝑎!, 𝑠", 𝑎", 𝑠#, 𝑎#, …)

𝒮 = finite set of states

A state transition can be:
• Deterministic

• Stochastic 𝑠#$%~ℙ(𝑠#$%|𝜏#)

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)14

Mathematical framework for modelling sequential decision making
Markov Decision Process (MDP)

State

𝑠#$% = 𝑓(ℋ#)

𝒮 = finite set of states

A state transition can be:
• Deterministic

• Stochastic 𝑠#$%~ℙ(𝑠#$%|𝜏#)

Markov state / property
A state is Markov if and only if:

ℙ 𝑠#$% 𝑠# = ℙ 𝑠#$% 𝑠%,…,#
• The state is a sufficient statistic of the future
• The future is independent of the past, given the present
• Once the state is known, the history may be discarded

state transitions of an MDP satisfy the Markov property

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫!!!
" , ℛ!

" , 𝛾)

sequence of states and
actions until time 𝑡Trajectory

𝜏 = (𝑠!, 𝑎!, 𝑠", 𝑎", 𝑠#, 𝑎#, …)

information used to determine
what happens next

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)15

Fully observable environments

Partially observable environments

§ Agent directly observes environment state
§ Necessary condition to formalize an RL problem with an MDP

𝒪# = 𝒮#+ = 𝒮#,

Agent constructs its own state representation:

§ Complete trajectory:
§ Beliefs of environment state:
§ Recurrent neural networks:

𝒮!$ = 𝜏!
𝒮!$ = (ℙ 𝒮!% = 𝑠& , … , ℙ 𝒮!% = 𝑠')
𝒮!$ = 𝜎(𝑤(𝒪! + 𝑤)𝒮!*&$)

𝒮#+ ≠ 𝒮#,

à Partially observable MDP

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)16

Markov Decision Process (MDP)
Mathematical framework for modelling sequential decision making

Predicts the next state
(dynamics of the environment)State transition model / probability

𝒫778+ = ℙ 𝒮#$% = 𝑠′ 𝒮# = 𝑠,𝒜 = 𝑎 Probability of ending in state 𝑠′ after
taking action 𝑎 while being in state 𝑠

𝒫 =
𝒫%% ⋯ 𝒫%9
⋮ ⋱ ⋮
𝒫9% ⋯ 𝒫99

Transition probabilities from all states and successor states

∑=1
If probabilities change overtime

= non-stationary Markov process

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫!!!
" , ℛ!

" , 𝛾)

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)17

Non-deterministic environment
Taking the same action in the same state on two different
occasions may result in different next states

𝑡 = 𝑡; 𝑡 = 𝑡; + 𝜏

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)18

Markov Decision Process (MDP)
Mathematical framework for modelling sequential decision making

The goal is to maximize the return
• The discount factor 𝛾 ∈ [0, 1) avoids infinite returns (sum converges)
• It values immediate reward over delayed reward (human-like)
• It deals with uncertainty about the future (no perfect model of env.)

Return Total discounted reward
from time step 𝑡

𝒢# = ℛ#$%+ 𝛾ℛ#$< +⋯
= ∑#=;> 𝛾#ℛ#$%
“infinite-horizon discounted return”

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫!!!
" , ℛ!

" , 𝛾)

Side notes:
• There are also undiscounted Markov processes if all sequences

terminate (episodic)
• Model-based: there is an expectation of a reward (but not in model-free)

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)19

Policy Map from state
to action

§ Policy 𝜋 completely defines how the agent will behave
§ It’s a distribution over actions given a certain state

Given an MDP 𝒮,𝒜,𝒫, ℛ, 𝛾 and a policy 𝜋:

Categorical (discrete action spaces)
Gaussian (continuous action spaces)

ob
se

rv
at

io
n

pr
ob

ab
ili

ti
es

pe

r
ac

ti
on

𝒫),),- = C
$.𝒜

𝜋 𝑎 𝑠 𝒫),),$ ℛ)
- = C

$.𝒜

𝜋 𝑎 𝑠 ℛ)
$

Deterministic:
Stochastic:

𝑎 = 𝜋 𝑠
𝜋 𝑎 𝑠 = ℙ[𝒜! = 𝑎|𝒮! = 𝑠]

Probability of taking a specific
action by being in a specific state

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)20

Value function Estimation of expected
future reward

§ Used to choose between states depending on how
much reward we expect to get

§ Depends on the agent’s behavior (policy)

𝒱E 𝑠 = 𝔼E 𝒢# 𝒮# = 𝑠]

State-value function

Action-value function

𝒬E 𝑠, 𝑎 = 𝔼E 𝒢# 𝒮# = 𝑠, 𝒜#= 𝑎]

Expected return starting from
state 𝑠 and following policy 𝜋
(evaluates the policy)

Expected return starting from state 𝑠 ,
taking action 𝑎 , and following policy 𝜋

given policy

A way to compare policies

”Q function”

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)21

Bellman optimality equation
The state-value function can be decomposed into:
§ immediate reward 𝓡𝒕1𝟏
§ discounted value of next state 𝜸 𝒗(𝓢𝒕1𝟏)

𝒱 𝑠 = 𝔼 𝒢# 𝒮# = 𝑠]
= 𝔼 ℛ!1& + 𝛾 ℛ!13 + 𝛾3 ℛ!14… 𝒮! = 𝑠]

= 𝔼 ℛ!1& + 𝛾 (ℛ!13 + 𝛾 ℛ!14…) 𝒮! = 𝑠]

= 𝔼 ℛ!1& + 𝛾 𝒢!1& 𝒮! = 𝑠]

= 𝔼 ℛ!1&+ 𝛾 𝒱(𝒮!1&) 𝒮! = 𝑠]

𝔼 f = 𝔼(𝔼(f))

𝒱 𝑠 = ℛ7 + 𝛾 @
7(∈𝒮

𝒫7,7(𝒱(𝑠′)

Reward you expect
to get from being in
your current state

Expected value of
wherever state
you land next

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)22

Bellman expectation equation
Considering the policy 𝜋 we get:

𝒱 𝑠 = @
+∈𝒜

𝜋 (𝑎|𝑠) ℛ7+ + 𝛾@
78∈𝒮

𝒫7,78+ 𝒱 𝑠′

Direct solution only for small MDPs
Ø System of 𝒮 simultaneous linear equations with 𝒮 unknowns

Other ways of solving it:
Ø Iteratively (dynamic programming)
Ø Sampling (Monte-Carlo evaluation)
Ø Approximation (temporal-difference learning)

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)23

The agent needs to get from state 0 to
state 15 to get out of the maze

Example: gridworld

🥳

😐

𝒜 = (↑, ↓,←,→)

𝒫7,78+ = 1

↓

↓

↓

→→

→

States Rewards

Actions

Deterministic env:

no discount 𝛾

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)24

Example: gridworld
𝜋 𝑎 𝑠 = ℙ[𝒜! = 𝑎|𝒮! = 𝑠] 𝜋 𝑎 𝑠 = ℙ ↑, ↓,←,→ 𝒮! = 0.25

random policy

Policy

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)25

Example: gridworld
Value function

Solving simultaneously linear set of equations:
Ø environment's dynamics are completely known

𝒱 𝑠 = ,
!∈𝒜

𝜋 (𝑎|𝑠) ℛ$
! + 𝛾,

$%∈𝒮

𝒫$,$%! 𝒱 𝑠′

𝜋 → 𝒱- = policy evaluation
how much value this policy has?

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)26

Example: gridworld
Value function 𝒱 𝑠 = ,

!∈𝒜

𝜋 (𝑎|𝑠) ℛ$
! + 𝛾,

$%∈𝒮

𝒫$,$%! 𝒱 𝑠′

Solving iteratively:
Ø Bellman equation becomes an update rule

𝒱()* 𝑠 ← ,
!∈𝒜

𝜋 (𝑎|𝑠) ℛ$
! + 𝛾,

$%∈𝒮

𝒫$,$%! 𝒱(𝑠′

𝝅 → 𝓥𝝅 = policy evaluation
how much value this policy has?

C
ou
rs
er
a

https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/iterative-policy-evaluation-ICAfp

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)27

Dynamic programming algorithms turn the Bellman eq.
into update rules

§ Prediction: what’s the value for a specific policy?
§ Control: which policy gives as much reward as possible?

à the policy with more value!

✅

Va
lue

State

𝜋(
𝜋&
𝜋3

𝜋 ≥ 𝜋, 𝑖𝑓 𝒱- 𝑠 ≥ 𝒱-, , ∀ 𝑠𝜖𝒮

𝝅∗ ≥ 𝜋3 ≥ 𝜋& ≥ 𝜋(
𝝅∗

For any MDP:
• There exists an optimal policy 𝝅∗ that is better

or equal to all other policies 𝜋∗ ≥ 𝜋 ∀𝜋
• All optimal policies achieve the optimal value

function 𝒱/∗ = 𝒱∗(𝑠) and 𝑄/∗ = 𝑄∗(𝑠, 𝑎)

So…do I have to calculate the value of
every policy and compare them?

|𝒜| |𝒮| deterministic policies in an MDP
4** ≈ 4million policies for simple gridworld example

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)28

Bellman optimality equations

𝒱"∗ 𝑠 = 𝔼"∗ 𝒢! 𝒮! = 𝑠]
𝜋

= max𝒱"(𝑠) ∀ 𝑠𝜖𝒮

𝒬"∗ 𝑠 = max𝒬"(𝑠) ∀ 𝑠𝜖𝒮, 𝑎𝜖𝒜
𝜋

By replacing the optimal policy on the Bellman equations we get:

𝓥∗ 𝒔 = max ℛ) + 𝛾 C
)!∈𝒮

𝒫),)! 𝒱∗(𝑠′)
𝑎

𝓠∗ 𝒔, 𝒂 = ℛ)
$ + 𝛾 C

)!∈𝒮

𝒫),)!
$ max 𝒬∗(𝑠,, 𝑎′)

𝑎′

maximum value over
every next possible state

Ø Nonlinear (max), no closed-form solution
Ø Dynamic programming solutions only

applicable if the dynamics of the system 𝒫
are known

𝜋∗ assigns probability 1 to
the action that receives the

highest value

Optimal value functions

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)29

Determining an optimal policy

𝑎
𝓥∗ 𝒔 = max ℛ) + 𝛾 C

)!∈𝒮

𝒫),)! 𝒱∗(𝑠′)

For any state we look at each available
action and take the one that
maximizes the argument

maximum over all actions

𝝅∗ 𝒔 = argmax ℛ) + 𝛾 C
)!∈𝒮

𝒫),)! 𝒱∗(𝑠′)
𝑎

particular action that
achieves that maximum

(greedy action)

“one-step lookahead”

🥳

↓

↓

↓

→→

→

𝝅∗ 𝒔 = argmax𝒬∗
𝑎

↓
↓

↓
↓

→↓

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)30

Policy improvement & iteration

𝝅 ′ 𝒔 = argmax ℛ) + 𝛾 C
)!∈𝒮

𝒫),)! 𝒱-(𝑠′)

Let’s consider a value function 𝒱- that is non-optimal, and we
select an action that is greedy with respect to it:

𝑎

§ If the action has a higher value, the policy is better
§ 𝒱∗ is the unique solution to the Bellman optimality eq.
§ If this greedy operation does not change 𝒱, then it

converged to the optimal policy because it satisfies the
Bellman optimality eq.

Images from http://incompleteideas.net/book/ebook/node46.html

𝜋& → 𝒱-& → 𝜋3 → ⋯ → 𝜋∗
evaluation

improvement

http://incompleteideas.net/book/ebook/node46.html

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)31

Dynamic programming algorithms turn the Bellman eq.
into update rules

Off-policy learning
On-policy: improve and evaluate the policy being used to select actions
Off-policy: improve and evaluate a different policy from the one used to select actions

Ø Learn a target policy 𝜋 (optimal policy) while…
Ø …selecting actions from behavior policy 𝑏 (exploratory policy)

Provides another strategy for continuous exploration (experiences a larger # of states)

Sample-based version

Temporal difference

Sarsa

Q-learning

when we don’t know 𝒫

Problem Bellman equation Algorithm

Prediction Expectation equation Iterative policy evaluation

Control Expectation equation + greedy policy Policy iteration

Control Optimality equation Value iteration

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)32

Temporal difference learning
§ TD learning is learning a prediction from another, later learned prediction

Ø learning a guess from a guess (you don’t know the true 𝒱)

§ Difference between both predictions = temporal difference
§ No 𝒫 model needed (unlike in dynamic programming)

Q-learning

Learning method specialized for
multi-step prediction learning

§ Allows you to estimate the value function before the episode is finished
§ Making long-term predictions is exponentially complex

Ø Memory scales with the #steps of the prediction
§ TD model = standard model of reward systems in the brain

𝒱 𝑠 ← 𝒱 𝑠 + α[ℛ + 𝛾𝒱 𝑠, − 𝒱 𝑠]

Off-policy TD control

𝒬 𝑠, 𝑎 ← 𝒬 𝑠, 𝑎 + α[ℛ + 𝛾max𝒬 𝑠′, 𝑎 − 𝒬 𝑠, 𝑎]

Converges to the optimal value function as
long as the agent continues to explore
sampling the state-action space

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)33

Overview of RL methods
Tabular solution methods

Ø Iterative (dynamic programming)
Ø Sample-based (Monte-Carlo evaluation)
Ø Temporal-difference learning

§ Used to solve finite MDPs
§ Value functions are stored as arrays (tables)
§ Methods can often find exact solutions

Approximate solution methods
Ø Value-based
Ø Policy-based

§ Approximate value by function
parametrized by a weight vector
--> neural networks (learning!)

§ Applicable to partially observable
problems

In real-life situations, we cannot store the values of each possible state in an array,
especially in continuous problems

Ø Autonomous driving: array per possible image the camera sees?

Ø Policy gradient
Ø Actor-critic

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)34

Approximate solution methods

Value-based
contains a value function,

policy is implicit

Policy-based
does not store the value
function, only the policy

Actor-critic
stores both the policy

and value function

Policy gradient
optimizes parametrized

policies with gradient descent

DQN, NAF

§ Convergence guarantees
§ Sensitive to stepsize choice
§ Poor sample efficiency
§ Large variance

ACER, A2C/A3C, SAC
PPO, TD3,

DDPG

§ Sample efficient
§ Computationally fast
§ Unstable (bias, don’t know true 𝒱)

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)35

Description Policy Action space State space Operator

DQN Deep Q Network Off-policy Discrete Continuous Q-value

DDPG Deep Deterministic
Policy Gradient Off-policy Continuous Continuous Q-value

A3C
Asynchronous

Advantage Actor-
Critic Algorithm

On-policy Continuous Continuous Advantage

TRPO Trust Region Policy
Optimization On-policy Continuous Continuous Advantage

PPO Proximal Policy
Optimization On-policy Continuous Continuous Advantage

TD3
Twin Delayed Deep
Deterministic Policy

Gradient
Off-policy Continuous Continuous Q-value

SAC Soft Actor Critic Off-policy Continuous Continuous Advantage

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)36

The agent simply relies on some
trial-and-error experience for

action selection

Predictive model:
“what will happen if I

take this action?”

• The environment is initially unknown
• The agent interacts with the environment
• The agent improves its policy

• The environment is known
• The agent performs internal

computations with its model without
external interaction
• The agent improves its policy

Model-free Model-based

all algorithms from previous slide

Andrea Santamaria Garcia – Introduction to Reinforcement Learning (RL4AA‘23)37

Thank you for
your attention!
What questions do you
have for me?

All icons from this talk from TheNounProject

§ Sutton & Barto book
§ https://arxiv.org/pdf/cs/9605103.pdf
§ Reinforcement learning lectures by David Silver
§ https://spinningup.openai.com/en/latest/
§ Coursera RL specialization
§ https://arxiv.org/pdf/1810.06339.pdf

Let’s connect! andrea.santamaria@kit.edu / @ansantam

http://incompleteideas.net/book/RLbook2018.pdf
https://arxiv.org/pdf/cs/9605103.pdf
https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://spinningup.openai.com/en/latest/
https://www.coursera.org/specializations/reinforcement-learning
https://arxiv.org/pdf/1810.06339.pdf
mailto:andrea.santamaria@kit.edu
https://twitter.com/ansantam

