Advanced concepts of Reinforcement learning

a practical guide

Simon Hirlaender IDA LAB

simon.hirlaender@plus.ac.at

Artificial intelligence and Human Interfaces Digital and Analytical Sciences University of Salzburg

What's the goal

Learn how to make **good** decisions under uncertainty

Goals of today

- We don't necessarily develop new algorithms!
- Learn how to:
	- identify and set up RL problems
	- apply RL appropriately
	- \rightarrow deal with common problems
- RL is not easy, don't expect to understand or solve things immediately

Stop,Think, Apply!

- Pick the right problems!
	- Ask: does this have a chance of solving an important problem? Does my optimization problem have a chance to be solved? Do I solve the right problem?

RL - what is it today?

- What is addressed by RL: position in AI, community of researchers applying tools, data-driven dynamic programming
- Little knowledge of probabilistic mechanism how data and rewards change over time
- Probe and learn dynamics to find control

B. Recht, 2018

AI and optimization viewpoint

How to approach RL

- Pick the right problems (important and solvable)!
	- What is my goal?
	- What are my observables and my actions?
- Model the problem appropriately
- Training and evaluation of RL
- Are there better alternatives?

The entire problem

SB: 1, 3, 10, 17

RL4AA Advanced Lecture February 2023 and 8 Simon Hirlaender

The entire problem

Markov decision process - MDP

Common set-up

Partially observable Markov decision process - POMDP

Wellcome to POMDPs

RL4AA Advanced Lecture February 2023 11 11 Simon Hirlaender

Problem design - capture the right thing

- We want to solve an SDM problem: Information \rightarrow Decision \rightarrow Information \rightarrow Decision \rightarrow ...
- Such problems are generally be stochastic!
- Consequently we build a feedback system not planing too far in the future:
	- We define a state $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2} \dots)$, as a function holding sufficient statistics until time step t for a decision - (example pong)
	- We look for a decision based on s_t via: $a_t = \pi_t(s_t)$ the policy optimise an expected aggregate of future rewards

• Rarely the observation o is the state s , the world state is, but often we assume it is!

12

• Generally POMDP - today MDPs!

POMDPs and non stationarity

- POMDP generally P-Space hard (not on average)
- To find a proper state we have to solve the additional prediction $\text{problem } s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2} \dots)$
- In the non-stationary, finite horizon formulation the MDP has the form $(S, A, \{P\}_h, \{r\}_h, H, \rho_0) \Rightarrow$ Value-functions $Q_h(s, a)$ get time $\text{dependent} \Rightarrow \text{similar form of Bellman equations}$
- We can incorporate time into state e.g. $\tilde{s} = (s, h) \Rightarrow$ standard MDP
- Generally Bellman equation nice in discounted, stationary formulation \Rightarrow this is what we usually see and most libraries build on this formulation

Remarks on MDPs

- Mainly we have POMDPs
	- ➡ Try to find a state which provides sufficient statistics to solve your problem (internal representation of the agent) - not world state
- Why is MDP so popular?
	- It always possible to make an MDP by including sufficient information
	- What if not Markov?
		- What happens? Q-learning example
		- Montecarlo No need for Markov assumption
		- History inclusion RNNs, LSTMs
- Extreme: Bandits \rightarrow no states (little knowledge about state)

The problem modelling

MDP - the ingredients

- MDP discounted version: $(S, A, R, P, \rho_0, \gamma)$
	- → $P(s', r | s, a) = P(S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a)$ dynamics function
	- ➡ Mainly defined by system (and my state and reward definition)
- What do I want to solve? What's the objective function? How to reach the goal? The expectation of reward in the future!

RL and optimization

- All said falls into the domain of optimization:
	- An optimiser tries to find the arguments of a function to maximise the function value (optimization is greedy!)
	- ➡ RL algorithms look to find a mapping (the policy) from states to actions maximising the expected cumulative reward rather than just a single optimal function value
		- If parametric function approximation is used, we try to find the values of the parameters of the approximated function (either a value function or the policy directly) to obtain this mapping (this a classical optimisation problem).
- RL is comparable to calculus of variation (its origin is in classical mechanics - HJB equation) instead of function optimization

Optimization

maximise_{A_i}
$$
\sum_{t=0}^{T} R(S_t, A_t, W_t)
$$

subject to: $S_{t+1} = f(S_t, A_t, W_t)$

RL

maximise $_{\pi_t}\! \mathbb{E}_{W_t}\![$ *T* ∑ *t*=0 R_t (*S*_t, *A*_t, *W*_t)] subject to: $S_{t+1} = f(S_t, A_t, W_t)$ $A_t = \pi_t(S_t, S_{t-1}, \ldots)$

Feedback structure takes noise into account

Often optimization is performed only for one step horizon: maximise $_{a}R(\mathcal{\cdot} \cdot,a,W_{t})$

Episodic training: we probe the system

- The system generates noisy trajectories: $\tau_i = o_{0,i}, a_{0,i}, o_{1,i}, r_{1,i}, a_{1,i}, o_{2,i}, r_{2,i}, \ldots$
- From these probes we learn, but how?

Learning from episodes

- Rarely we have a full online learning problem
- The problem either is naturally episodic or we train in an episodic manner and are reset (adding absorbing state): $\tau_i = o_{0,i} \sim \rho_0, a_{0,i}, o_{1,i}, r_{1,i}, a_{1,i}, o_{2,i}, r_{2,i}, \ldots$
- Design the episodic training:
	- \rightarrow Is it an infinite horizon problem \rightarrow stability forever?
	- Is it a finite horizon problem with stationary dynamics?
- What is the role of ρ_0 ?
- What is the role of a finite maximum length?
- Exploration (finite time in infinite problem) not part of the problem

19

*ρ*0

• $(S, A, R, P, \rho_0, \gamma)$

Reward design and shaping

$$
\bullet \; (S, A, R, P, \rho_0, \gamma)
$$

- **• The reward includes the goal and how to reach the goal!**
- There is an equivalence class of problem formulations leading to the same goal \rightarrow differences in algorithmic efficiency
	- **Example: Negative/Positive/Normalised Reward**
- **• Generally probabilistic:** $P(r | s, a, s') = \sum P(r, s' | S_t = s, A_t = a)$ *s*′
- Can be formulated in dependence of s and a or given as a direct feedback signal
- To improve exploration or to solve sparse reward problems reward shaping during training!

The discounting *γ* - a hyperparameter?

- $(S, A, R, P, \rho_0, \gamma)$
- Generally we don't need discounting
- Introduced due to mathematical convenience: convergence of cumulative sum of rewards as alternative to mean reward: $\sum_{i=1}^{n} \gamma^{i} R_{i} \leq$ ____, when *N* 1

∑ *t* $\gamma^t R_t \leq$ $1 - \gamma$

 $R_{\scriptscriptstyle f}$ is bounded in [0,1]

- Can be used influence training performance
- Not needed in naturally episodic problems!

- Capture the right problem
- Formulate the MDP appropriately
- (Problem equivalent) Design has impact on RL algorithm
- Problem I solve = Designed MDP + Reward objective

The entire problem

About Machine Learning

SB: 9

RL and decision theory

Information \rightarrow decision \rightarrow Information \rightarrow decision \rightarrow Information \rightarrow ...

- One step horizon offline RL \Rightarrow Prediction $\mathbb{P}(Y_i | X_i)$ pattern recognition or supervised learning (SL)
- One step horizon RL \Rightarrow active Learning e.g. system identification
- RL is a multi step **optimization** problem we learn about the dynamics of the world

Prediction

- Function approximation (FA):
	- Parametric compact approximation of a function using a parametrised $f(x) \approx \hat{f}(x, \bar{\theta})$, where $\bar{\theta}$ are parameters to be adapted

- Fixed representational power
- Constant computationally complexity fixed set of parameters
- Example: Artificial neural networks (ANNs), linear approximations…
- Non-parametric memory based:

$$
f(x) \approx \hat{f}(x, \text{D}) = \sum_{\text{Data}} k(x, x')g(x')
$$

- No fixed representational power
- Parameters are not learned directly
- Computationally complexity grows with data
- Example: Gaussian processes, Kernel-based methods,…

Problem

Solving the problem

RL4AA Advanced Lecture February 2023 27 Simon Hirlaender

Most common issues RL - algorithmic side

- Sample efficiency
- Stability
- Run time
- Hyperparameter tuning
- Exploration

Remarks on RL

- Trial and error
- Only rewards (labels of visited state, actions)
- Policy decides what we learn usually censored
- Only valid estimates of things sufficiently learned

Special cases

- We know $P(s', r | s, a)$ and the MDP is finite frame work of dynamic problem can be used (Bellman update is exact):
	- Good theoretic properties
	- ➡ Playground of classical control theory
	- If large, we use sampling: approximative dynamic programming
- If $P(s', r | s, a)$ is known, the dynamics is linear and we design a quadratic dependence of s and a of the reward: analytical solutions (the popular Linear Quadratic Regulator -LQR). Stationary dynamics \rightarrow Bellman \rightarrow Ricatti equation - static state feedback.
- Alternative solution methods?
	- ➡ E.g. linear programming

Hidden Markov Models - POMDPs

- Linear POMDP: believe state $O_t = h_t(S_t, A_t, W_t)$
	- Static output feedback is NP hard (linear in O and dynamics)
	- General POMDPs are PSPACE hard
- There are ways out separation principle:
	- \blacktriangleright Filtering $\hat{s}_t = f(\{o_t\})$ prediction problem ̂
	- Action based on certainty equivalence
	- Optimal filtering if dynamics are linear and noise is Gaussian Kalman filtering - general belief propagation - LQG

- Kalman filtered state duality between estimation and control
- \blacktriangleright Estimate state with prediction $S_t = h(\tau_t)$, τ_t are time lags

General cases

- $P(s', r | s, a)$ unknown \rightarrow approximative methods
- MDP finite: approximative dynamic programming
- General MDPs: Continuous A , S spaces
	- Value function approximated with FA
	- Policy approximated with FA
	- Model of the MDP (learn from data or from simulator) use certainty equivalence
	- ➡ Trained in a stochastic fashion

Policy based

RL4AA Advanced Lecture February 2023 33 Simon Hirlaender

Direct policy search

- RL as derivative free optimization:
	- \rightarrow $\text{maximise}_{z\in\mathbb{R}^d}R(z) \Rightarrow \text{maximise}_{p(z)}\,\mathbb{E}_p[R(z)]$
	- \blacktriangleright Parametrise a distribution $p(z; \theta) \Rightarrow$ maximise $_{p(\theta)} \mathbb{E}_{p(z; \theta)}[R(z)]$
	- Likelihood trick estimate the derivative:

$$
\nabla_{\theta} J(\theta) = \int R(z) \nabla_{\theta} p(z; \theta) dz = \int R(z) \frac{\nabla_{\theta} p(z; \theta)}{p(z; \theta)} p(z; \theta) dz
$$

•
$$
= \int R(z) \nabla_{\theta} \log p(z; \theta) p(z; \theta) dz = \mathbb{E}_{p(z; \theta)} [R(z) \frac{\text{Score function}}{\nabla_{\theta} \log p(z; \theta)}]
$$

• Unbiased gradient estimate of *J*, if sample efficiently from $p(z; \theta)$ and $\log p(z; \theta)$

34

High variance

Probabilistic trajectories

- Objective if episodic: $J(\theta) = V^{\pi_{\theta}}(s_0) := V(\theta)$
	- Stochastic search: pure random search, Simplex, Bayesian optimization

- → Sampling of $A_t \sim p(\cdot | \tau_t; \theta)$
	- Handle probabilistic policies (example)
	- High dimensional and continuous action spaces
	- Reinforce algorithm considers temporal structure
- \Rightarrow Finite difference approximation $\hat{=}$ Reinforce algorithm

Value based

The value-function is introduced to compare policies

RL4AA Advanced Lecture February 2023 36 36 Simon Hirlaender

Basis of Q-Learning - Temporal difference (TD) learning

• If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference learning. (Sutton and Barto, p.113)

$$
V^{\pi}(s) = \mathbb{E}_{\pi}[\sum_{t} \gamma^{t} R_{t+1} | S_t = s] = \mathbb{E}_{\pi} [R_{t+1} + \gamma V(s') | S_t = s]
$$

- Estimated via sampling: TD(0) error
- $\hat{V}(S_t) \leftarrow \hat{V}(S_t) \alpha \left[R_{t+1} + \gamma \hat{V}(S_{t+1}) \hat{V}(S_t) \right]$ $V(S_t) \leftarrow V(S_t)$ ̂ ̂ ̂ ̂ $\zeta(S_t)$) Learn rate Bootstrapping = estimating from estimator
- Can be used in episodic an non-episodic scenarios
- Immediate update of the estimator
- If probabilities known exact update

Q-learning - issues

Bellman equation: Bellman-operator is a contraction operator (L^2 norm) - converges to a fixed point Here - stochastic approximation: $Q^*(s, a) = \mathbb{E}[R_t + \max_{t \in [0, T]} a_t]$ *a*′ *Q**(*s*′ , *a*′)]] $\hat{Q}(s, a) \approx \hat{Q}(s, a) + \alpha [R_t - \max_a]$ *a*′ $\hat{Q}(s', a')$]

•
$$
\pi(s) = \operatorname{argmax}_a Q(s, a)
$$

- Two immediate consequences:
	- ➡ Maximisation bias (expectation and maximisation don't commute)

- ➡ Bias through bootstrapping
- Inefficient update (compare to e.g. SL)
- If FA is used contraction property might lost
- Might diverge **deadly triad**:
	- \rightarrow FA
	- **Bootstrapping**
	- Off-policy

Deep approximate dynamic programming

- Value dominated
- Tries to mitigate maximisation bias (double networks)
- Stabilises training of networks trough tricks (random batches from replay buffer, target network, action noise) - (DDPG, TD3)

39

• More recent: distributional learning (D4PG), truncating trajectories (TQC)

• …

Modern algorithms

- Interplay of Bias and Variance
- Policy dominated: add baseline the critic!
- DDPG: maximisation operator in Bellman equation is approximated - the actor!

Modern landscape

- Bias-Variance trade-off
- Regulated via Policy based and Value based methods
- Policy gradient regulated via update-length of value function

Value vs policy dominated

- SAC Soft Q learning stochastic
- D4PG Distributional Q-Learning

42

• MPO

Summary

- Value based: Approximate bellman updates biased
- Policy based: high variance but stable
- Modern actor critic algorithms: bias-variance tradeoff

Model of the MDP

Separation heuristics

RL4AA Advanced Lecture February 2023

44

Simon Hirlaender

Modelling the MDP

- We can have a **simulation** $\hat{P}(r, s' | s, a)$ which models the real (true) MPD *P*(*r*,*s*′|*s*, *a*)
- We can learn the MDP from real data using FA
- During training the RL algorithm we use $\hat{P}(r, s' | s, a)$ as it would be $P(r, s' | s, a)$ and hope to solve the problem (certainty equivalence)
- We can use a mixture of both
- Deal with consequences, try to learn $\hat{P}(r, s' | s, a)$ as accurate as possible (system identification)

Train a good MDP

- What degrees of freedom to excite to learn the control problem?
- Model the uncertainties appropriately
	- Learn a model capturing the epistemic and aleatoric uncertainty (the noise)

- Take the epistemic uncertainty appropriately into account
- Examples: ensembles of ANNs, Bayesian ANNs, GPs...
- Having a model allows for planning
	- ➡ Horizon is critical!
	- Safety constrains can be taken into account

AWAKE Simulation Benchmark

Correctors (magnets)

$$
R = -\left(\sum_{i} \Delta x_i^2\right)^{\frac{1}{2}}
$$

• 10 magnets =
$$
\{k_1, k_2, ... k_{10}\}
$$

• 10 positions = $\{\Delta x_1, \Delta x_2...\Delta x_{10}\}$

Target: trajectory steering - correct the trajectory in as little steps as possible.

Example: Model based policy optimization

- Dyna style algorithm
- Model: Bayesian ANN bootstrapped ensemble
- RL algorithm: SAC
- Short roll-outs from real interactions
- Monotonic behaviour
- Many hyper-parameters

https://arxiv.org/abs/1906.08253

250 မိုး 200
မှ 150
မွ 150 $\frac{1}{2}$ 100 cumm 50 2° 10 30 40° 30 ep_l length 20 30 40° 0.0 ep_reward -0.2 -0.6 20 30 40° 10 #episodes

Adapted from https://arxiv.org/abs/1805.12114

AWAKE simulation

48

50

50

Example: Model predictive control (MPC)

- If convergence quickly no long term planning needed - solve infinite horizon problem with short term planning (open loop)
- Plans action sequence (optimisation) and takes first action only then replan
- Might retrain MDP model each step

• Solves the infinite optimization problem $(W_t$ =random variable):

$$
\begin{aligned}\n\text{maximise}_{\pi_t} &\mathbb{E}[\sum_{t=0}^{\infty} R_t(S_t, A_t, W_t)] \\
&\text{Final cost} \\
&\approx \text{maximise}_{\pi_t} &\mathbb{E}_{W_t}[\sum_{t=0}^{T} R_t(S_t, A_t, W_t) + \frac{\text{Final cost}^{\text{normal cost}}}{[V(S_{T+1})]}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{subject to: } S_{t+1} &= f(S_t, A_t, W_t) \\
A_t &= \pi_t(S_t, S_{t-1}, \dots), \qquad S_0 = s\n\end{aligned}
$$

•
•

MPC with Gaussian Processes

- Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
- Few shot RL learning on AWAKE

Summary

- Modelling the MDP certainty equivalence
- Modelling epistemic and and aleatoric error
- Short horizons and feedbacks avoid model bias
- With a model safety concerns can be considered

General comments on RL

Exploration/Exploitation

- You only can estimate things you have sufficiently learned!
- Finite MDP: ε greedy, what does this mean?
- Gaussian noise continuous actions
- Boltzmann exploration
- Theory: Bandit algorithms to study trade-offs (Book)

Sample-Complexity

ALZBURG

Use existing data?

• On-policy, off-policy, offline training

https://arxiv.org/format/2005.01643

Some training tips

- How to measure the performance of RL algorithms?
	- Take different seeds!
	- Return per episode on validation during training
	- Episode length
- How to set up your algorithmic environment?
	- Only start to implement, if there is no established library
	- Debugging is tricky in Monte-Carlo experiments, start simple and slowly increase complexity

- More in our tutorial
- The solution is on MDP + objective function

Limitations

- Stability
- Safety
- Sample-efficiency
- Sufficient observability
- **Interpretability**
- …

Summary

- Exploration/Exploitation
- Sample-efficiency
- On-policy, off-policy, offline RL
- Training
- Limitations

Advanced topics - outlook

Beyond the classical MDP

Contextual MDPs

Multi task RL Meta RL

Common learning can improve sample efficiency Accelerates learning enormously

RL4AA Advanced Lecture February 2023 61 61 Simon Hirlaender

Example: Meta-RL

- Awake simulation, varying quads
- Few shot stable adaption
- TRPO with some guarantees

RL4AA Advanced Lecture February 2023 62 62 Simon Hirlaender 62

Further advanced topics

- **• Meta RL**
- **• Multi task RL**
- Contextual RL
- Multi-agent RL
- Hierarchical RL
- Distributional RL
- Inverse RL/Imitation learning

Summary

- Overview of designing correct problem
- Function approximation
- Different RL solution approaches: Value, Policy, MDP-model

- RL algorithmic challenges
- Beyond classical RL

Selected Literature

General:

➡ Reinforcement Learning: An Introduction <http://incompleteideas.net/book/the-book-2nd.html>

Deep Reinforcement Learning: Fundamentals, Research and Applications<https://link.springer.com/book/10.1007/978-981-15-4095-0>

<https://rltheorybook.github.io/>

• POMDPs:

➡ Algorithms for Decision Making <https://algorithmsbook.com/>

Decision Making Under Uncertainty: Theory and Application:<http://web.stanford.edu/group/sisl/public/dmu.pdf>

➡ ,Markov Decision Processes: Discrete Stochastic Dynamic Programming: <https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316887>

Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions:<https://onlinelibrary.wiley.com/doi/book/10.1002/9781119815068>

