

Niky Bruchon

CERN SY-RF-BR

niky.bruchon@cern.ch gitlab.cern.ch/nbruchon researchgate.net

RL activities:

- Investigation of model-free and modelbased RL algorithms to improve the FERMI FEL performance
- Custom OpenAI-Gym environment for developing and testing

Interests:

- Autonomous accelerator (one button machine)
- Real-world and online optimization problems
- Reinforcement Learning applications
- Simulation to real word transfer
- Sample efficiency

RL STUDIES ON RL TECHNIQUES TO IMPROVE FERMI FEL PERFORMANCE

Problem: transverse overlapping of the electron and laser beams to optimize the light radiation intensity

Performance in the training/identification phase		Performance in the test phase		
Algorithm	Data points	${f Algorithm}$	Episode length (mean)	Final intensity (mean)
Q-learning NAF NAF2	$3128 \\ 1074 \\ 824 \\ 450 \\ 500 \\ 1024 \\ 1024$	Q-learning NAF NAF2 AE-Dyna with TRPO AE-Dyna with SAC Gradient Ascent	11.28 2.56 2.64	- 1.0019
AE-Dyna with TRPO AE-Dyna with SAC Gradient Ascent iLQR			2.64 4.46 3.28 3.82	$\begin{array}{c} 0.9995 \\ 1.0150 \\ 1.0427 \\ 0.9911 \\ \end{array}$
•		iLQR	2.54	1.0019

Conclusions

Two different tasks have been successfully faced:

- Attainment of the optimal working point
- II. Recovery of the optimal working point after machine drifts

[1] Feasibility investigation on several reinforcement learning techniques to improve the performance of the FERMI free-electron laser

AUTOMATIC SETUP OF THE SPS CONTROLLED LONGITUDINAL EMITTANCE BLOW-UP

RL4AA'23