

RL projects & interests

> 2019: first RL steps on LEIR together with Simon

> Now

Sample-efficient RL with quantum Boltzmann machines trained on D-Wave hardware

➢ Future

- Continue N. Madysa's LEIR Schottky RL project
- Hierarchical RL: student's project

Other ML / control experience

- Adaptive sampling / Bayesian exploration
- Conditional GANs
- Clustering
- Automatic tune adjustment using numerical optimizers

Free energy based RL (FERL)

RL with quantum Boltzmann machines

Q-learning

Various function approximators for Q(s, a)

- Traditionally: look-up table
- DQN: feed-forward neural net
- FERL: quantum Boltzmann machine (QBM)

Why FERL

- Better learning efficiency?
 - more **cost-effective** for beam operations
- > **No FERL** algorithm exists for **continuous control**

Free energy based RL (FERL)

RL with quantum Boltzmann machines

Inspired by classical actor-critic scheme, developed a hybrid algorithm for continuous state-action space
Intuition: if critic lograns more officiantly, can provide

Intuition: if critic learns more efficiently, can provide more valuable feedback early on during training

Trained on D-Wave quantum annealer and tested on CERN's AWAKE beam line

Training our algorithm on a quantum computer

Trajectory steering on simulated AWAKE e⁻ beam line

