

Heavy Flavour Physics at SJTU

Wei Wang Shanghai Jiao Tong University

2017 SJTU-KIT Collaborative Research Workshop "Particles and the Universe"

LHCb: Tsinghua, GUCAS, CCNU Bellell: IHEP, Beihang

Particle Theory 3 Professors + 4 Associate Professors + 3 Postdo

Xiao-Gang He

Xiangdong Ji

Hong-Jian He

Wei Wang

Pei-Hong Gu

Jun Gao

Yue Zhao

Outline

>Heavy Flavour Physics

>Theoretical HFP Activities at SJTU

Finite Width Problem in B decays

>Weak Decays of Doubly heavy baryons

➢Possible connection to HFP Group at KIT

Fundamental Particles

Quark Mass Hierarchy

Heavy Flavour Physics: B Physics

• Bound states of b and light quarks mesons : B^-, B^0, B_s^0 baryons : $\Lambda_b, \Xi_b^-, \Xi_b^0$

Heaviest stable bound states in QCD (>5.2GeV)

Rich spectrum, many decay channels

 Important source of information about CP violation, CKM parameters and new physics

Where do we study heavy flavour?

(Super) Flavor Factories

Integrated luminosity of B factories

On resonance : $Y(5S): 121 \text{ fb}^{-1}$ $Y(4S): 711 \text{ fb}^ Y(3S): 3 \text{ fb}^{-1}$ $Y(2S): 25 \text{ fb}^{-1}$ $\Upsilon(1S): 6 \text{ fb}^{-1}$ **Off reson./scan:** $\sim 100 {\rm ~fb^{-1}}$

 $\sim 550 \text{ fb}^{-1}$ On resonance: $Y(4S): 433 \text{ fb}^ Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ **Off resonance:** $\sim 54 \text{ fb}^{-1}$

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

10⁹ events, leading to Nobel Prize in 2008

10¹¹ events, what will happen?

Experimental prospect is very promising!

Why HFP?

C:Matter-AntiMatter

CP

One needs C and CP violation in PP.

ビージェンズ CP Asymmetry in Hadron System

- In Kaon system, the CP asymmetry (CPA) can reach roughly 0.2%
- In D decays, CPA at 1% is often argued to be New physics.
- Direct CPA in B decays:

 $A_{cp}(B \rightarrow K^{+}\pi^{-}) = (-8.2 \pm 0.6)\%; A_{cp}(B \rightarrow \pi^{+}\pi^{-}) = (31 \pm 5)\%$

• In B decays, $sin(2\beta) = 67.2\%!$ Large mixing CPA

B physics → Ideal Platform to study CPA

Why HFP?

- In the past decades, particle physics
 goes into two directions:
 high energy + high precision
- High Energy: LEP, Tevatron, LHC, ...
 New particles: W, Z, top, Higgs, ...
- High Precision: B factories , BES, LHCb, Belle-II, ... New phenomena

Why HFP?

$B \rightarrow K^*|^+|^-: Indirect Search for NP$

• Within the SM, these processes proceed via loop diagrams like

Why HFP: Forward-backward asymmetry

- θ_I: angle of emission between K^{*0} and μ⁻ in di-lepton rest frame
- θ_{K*}: angle of emission between K^{*0} and K⁻ in di-meson rest frame.
- ϕ : angle between the two planes
- q²: dilepton invariant mass square

$$A_{\rm FB}(q^2) = \frac{P_{\rm F}(q^2) - P_{\rm B}(q^2)}{P_{\rm F}(q^2) + P_{\rm B}(q^2)}$$

A.Ali, et. al, hep-ph/9910221

LHCb: 1512.04442 (3fb⁻¹) ABSZ: 1503.05534

In PP, 5σ deviation is a sign for an important discovery.

Why HFP: High Precision

- QCD Radiative corrections
- High Power corrections

 $\alpha_s/\pi \sim 10\% \rightarrow (\alpha_s/\pi)^2 \sim 1\%$ $\Lambda/m_b \sim 20\% \rightarrow (\Lambda/m_b)^2 \sim 4\%$

Mismatch between theory and data

$$\Gamma_{K^*}/m_{K^*} \sim 6\% \to (\Gamma_{K^*}/m_{K^*})^2 \sim 1\%$$

1. Chiral Dynamics and S-wave Contributions in Semileptonic B decays Michael Döring (Bonn U. & Bonn U., HISKP), Ulf-G. Meißner (JCHP, Julich & IAS, Julich & Bonn U. & Bonn U., HISKP), Wei Wang (Bonn U. & Bonn U., HISKP). Jul 3, 2013. 34 pp. Published in JHEP 1310 (2013) 011 DOI: 10.1007/JHEP10(2013)011 e-Print: arXiv:1307.0947 [hep-ph] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service Detailed record - Cited by 43 records

Why HFP: Finite Width Problem

K* (50 MeV): $B \rightarrow K^{*}I^{+}I^{-}$ is a four-body process.

Experimental cuts by LHCb:

LHCb-CONF-2015-002

$$m_{K^*} - \delta_m < m_{K\pi} < m_{K^*} + \delta_m \quad \delta_m = 100 \text{MeV}$$

$$\int_{(m_{K^*}-\delta_m)^2}^{(m_{K^*}+\delta_m)^2} dm_{K\pi}^2 |L_{K^*}(m_{K\pi}^2)|^2 = 0.56$$

L denotes the distribution function of Kπ system from K* Narrow width limit (theoretical results):

$$\int dm_{K\pi}^2 |L_{K^*}(m_{K\pi}^2)|^2 = \mathcal{B}(K^{*+} \to K^0 \pi^+) = \frac{2}{3}$$

Why HFP: Finite Width Problem

Experimental cuts by LHCb:

$$m_{K^*} - \delta_m < m_{K\pi} < m_{K^*} + \delta_m \quad \delta_m = 100 \text{MeV}$$

We expect the S-wave:

Doring, Meissner, WW, 1307.0947

$$\int_{(m_{K^*}-\delta_m)^2}^{(m_{K^*}+\delta_m)^2} dm_{K\pi}^2 |L_S(m_{K\pi}^2)|^2 = 0.17$$

It is mandatory to include the S-wave: $B \rightarrow (K\pi)_S l^+ l^-$

Why HFP: Finite Width Problem

 χPT effective field theory based on the two assumptions

- π 's are the Goldstone boson of $SU(3)_L \otimes SU(3)_R \rightarrow SU(3)_V$
- (chiral) power counting i.e. the theory has a small expansion parameter: $p^2 / \Lambda_{\chi SB}^2$: $\Lambda_{\chi SB} \sim 4\pi F_{\pi} \sim 1.2 \text{ GeV}$

$$\mathcal{L}_{\Delta S=0} = \mathcal{L}_{\Delta S=0}^{2} + \mathcal{L}_{\Delta S=0}^{4} + \dots = \frac{F_{\pi}^{2}}{4} \underbrace{\langle D_{\mu}UD^{\mu}U^{\dagger} + \chi U^{\dagger} + U\chi^{\dagger} \rangle}_{K \to \pi..} + \underbrace{\sum_{i}^{K \to \pi..}}_{i} + \dots$$
Fantastic chiral prediction $A_{\pi\pi} \sim (s - m_{\pi}^{2})/F_{\pi}^{2}$ Weinberg, Colangelo *et al*

$$\mathcal{L}_{\Delta S=1} = \mathcal{L}_{\Delta S=1}^2 + \mathcal{L}_{\Delta S=1}^4 + \dots = G_8 F^4 \underbrace{\langle \lambda_6 D_\mu U^\dagger D^\mu U \rangle}_{K \to 2\pi/3\pi} + \underbrace{G_8 F^2 \sum_i N_i W_i}_{K^+ \to \pi^+ \gamma \gamma, K \to \pi l^+ l^-} + \dots$$

ChiPT limited to low energies

Unitarized χPT and phase shift

twice-subtracted Omnes solution matched onto χPT

Imaginary part Real part Magnitude

 $B_s \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

PQCD: Wang, Li, WW, Lu, 1502.15104

26

酒交通大学

Weak decays of doubly heavy baryons

1. Observation of the doubly charmed baryon Ξ_{cc}^{++}

LHCb Collaboration (Roel Aaij (CERN) *et al.*). Jul 5, 2017. 19 pp. LHCB-PAPER-2017-018, CERN-EP-2017-156 e-Print: **arXiv:1707.01621** [hep-ex] | PDF

<u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>CERN Document Server; ADS Abstract Service; Link to conference slides; Interactions.org article</u> <u>Detailed record</u> - <u>Cited by 27 records</u>

Connections with HFP theory Group

Institut für Theoretische Teilchenphysik

Prof. Dr. Ulrich Nierste Prof. Dr. Matthias Steinhauser Robert Ziegler

Institut für Kernphysik **Prof. Dr. Monika Blanke**

Dr. Teppei Kitahara

Conclusion

➢Finite Width Problem in B decays

>Weak decays of Doubly heavy baryons

➢Possible connections with HFP Group at KIT

Thank you very much for your attention

Vielen Dank!

Experimental Prospect

10E

x10³⁵

9 month

20 days