

KIT@CMS: From Detector R&D to Physics Results

SJTU-KIT Collaborative Research Workshop "Particles and the Universe" Karlsruhe, September 6–8, 2017

Ulrich Husemann, Institute of Experimental Particle Physics, Karlsruhe Institute of Technology

www.kit.edu

The LHC and the CMS Experiment

Overview

- analysis Detector pe Conputing sd0 10232
- KIT contributions to **full life cycle** of CMS experiment at the CERN LHC:
 - Detector research and development (R&D)
 - Detector operation
 - Algorithms and Grid computing
 - Physics analysis

Preparing for the Future **DETECTOR R&D**

4 07/09/2017

CMS Activities at KIT

Detectors for CMS: Past

1/3 of the petals for the end-cap of the current CMS silicon strip tracker (installed: 2007)

Detectors for CMS: Present

350 modules for the upgrade of the CMS barrel pixel detector (installed: spring 2017)

Bump Bonding

Assembly

Detectors for CMS: Future

2000 p_T modules and track trigger electronics for the HL-LHC upgrade (data-taking from 2026)

Getting the Data On Tape **DETECTOR OPERATIONS**

CMS Activities at KIT

Detector Control System

KIT responsible for development and maintenance of **Detector Control System** ("slow control") for the CMS tracker

Tracker Temperature Map

Diamond Beam Monitors

- Safety system: protect against beam incidents endangering CMS
- Technology: single-crystalline and poly-crystalline diamond sensors
- Production: chemical vapor deposition (CVD)

CVD Diamond Sensor

Tracker Alignment

- Positions of sensors in CMS tracker must be known within O(10–20 μm), much better than mechanical precision and survey data
- Solution: precision alignment using tracks from cosmic rays and pp collision

Processing the Data ALGORITHMS AND GRID COMPUTING

GridKa: The German Tier-1 Center

10% of Worldwide LHC Computing Grid (WLCG):

- 27,400 CPU cores, 200 file servers → 112M CPU hours/year
- Storage: 25 petabytes disk space, 26 petabytes tape capacity
- Experiments supported: ALICE, ATLAS, CMS, LHCb, BABAR, Belle/Belle 2, Compass, Auger
- IT education for physicists: annual GridKa school

Scientific Computing R&D

Dynamic utilization of opportunistic resources (e.g. cloud service)

High-throughput data analysis utilizing data locality (caches)

Exploring novel deep learning techniques (e.g. based on Google's TensorFlow) on today's powerful CPUs and GPUs

The Scientific Harvest **PHYSICS ANALYSIS**

CMS Activities at KIT

Jets & Strong Coupling Constant

Improved precision of **gluon density** in the proton with dijet data

Precise determination of **strong coupling constant** *α*^s and extended test of its running **up to 2 TeV** with jet data

Forward Physics

- Dedicated measurements at large pseudorapidities → (very) forward
- Connection to ultra-high energy cosmic rays: improved modeling
- Global likelihood analysis: multivariate, high-dimensional sampling, optimization

Top Quarks

- Long history of landmark topquark physics results from KIT, e.g. tt production asymmetry
- Recent example: single topquark production cross section (ratio of t and \overline{t} in the *t* channel)

Top-Higgs Associated Production

- tt + Higgs: access to top-quark Yukawa coupling
- Single top + Higgs: search for anomalous tH couplings

CMS Activities at KIT

g

q

CMS Activities at KIT

Ulrich Husemann Institute of Experimental Particle Physics

Higgs-Boson Decays to Tau Leptons

 $H \rightarrow \tau \tau$; first channel to establish

95% CL Excluded:

12.9 fb⁻¹ (13 TeV)

± 1 streeted

22

07/09/2017

pairs of vector bosons

Search for **massive resonances** (e.g. excited quarks, heavy W'/Z', gravitons) decaying to

Pairs of Vector Bosons

Novel reconstruction techniques for "boosted" vector bosons Candidate Z jet

> CMS Experiment at LHC, CERN Data recorded: Mon Jul 18 19:59:10 2016 CEST Run/Event: 276950 / 1080730125 Lumi section: 573

CMS Activities at KIT

Anti-kT R=0.8 ie 1374 GeV 0.79 0.43

> 94.8 0.29

Summary and Conclusions

- The LHC: today's **flagship** of accelerator-based particle physics
- KIT: **deeply involved** in the CMS experiment at the LHC
 - Detector R&D operations computing data analysis
 - Key detector expertise: silicon tracking detectors, fast electronics
 - **Computing**: WLCG Tier1 center GridKa, cloud resources
 - Advanced **algorithms**, e.g. machine learning
 - Broad physics interests: from precision standard-model physics to searches for Higgs bosons (and more) beyond the standard model