

Astronomy in SJTU, and Weak Lensing Measurement

Jun Zhang (张骏) (SJTU)

Collaborators:

Fuyu Dong, Yingke Li, Xiangchong Li, Tianhuan Lu, Xiaohu Yang, Pengjie Zhang, Wentao Luo (SJTU); Nobuhiko Katayama (IPMU); Dezi Liu, Zuhui Fan (PKU); Liping Fu (SHNU); Guoliang Li (PMO). .

KIT, Sep 7, 2017

Outline:

- Introduction & Motivation
- The Fourier_Quad method
- Application on the CFHTlens data

Outline:

- Introduction & Motivation
- The Fourier_Quad method
- Application on the CFHTlens data

Cosmic Energy Budget

Credit: NASA/WMAP

Department of Astronomy of SJTU

• Full Professors

Yipeng Jing

Bin Wang

Xiaohu Yang

Haiguang Xu

Le Zhang

Ying Zu

Dangbo Liu

Chengze Liu

Yu Yu

Zhigang Li

Jun Zhang

Pengjie Zhang

Large Scale Structure

Gravitational Lensing

A Schematic Outline of the Cosmic History

Reionization complete, the Universe becomes transparent again

The Solar System forms

Today: Astronomers figure it all out!

Cosmic Reionization

S.G. Djorgovski et al. & Digital Media Center, Caltech

Cluster Physics

Gravity Theories

According to GR, lights from distant sources are deflected by gravity, causing the lensing effect. This visible effect can be used to probe the cosmic structures on large scales, leading to clues for possible new physics !!

Application of Weak Lensing

- probing the density growth history
- probing the distance-redshift relation
- probing the nature of dark matter/energy
- Testing the theory of GR on cosmic scales

Subaru HSC LSST

WFIRST

EUCLID

Huterer et al. (2006)

Shear TEsting Program I

Author	Key	Method
Bridle & Hudelot	SB	Im2shape (Bridle et al. 2001)
Brown	MB	KSB+ [Bacon et al. (2000) pipeline]
Clowe	C1 & C2	KSB+
Dahle	HD	K2K (Kaiser 2000)
Hetterscheidt	MH	KSB+ [Erben et al. (2001) pipeline]
Heymans	CH	KSB+
Hoekstra	HH	KSB+
Jarvis	MJ	Bernstein & Jarvis (2002) Rounding kernel method
Kuijken	KK	Shapelets to 12 th order <u>Kuijken (2006)</u>
Margoniner	VM	Wittman et al. (2001)
Nakajima	RN	Bernstein & Jarvis (2002) Deconvolution fitting method
Schrabback	TS	KSB+ [Erben et al. (2001) + modifications]
Van Waerbeke	LV	KSB+

Heymans et al., 2006, MNRAS, 368, 1323

Massey et al., 2007, MNRAS, 376, 13

Bridle et al., 2009, Annals of Applied Statistics, 3, 6

Kitching et al., 2011, Annals of Applied Statistics, 5, 2231

Mandelbaum et al., 2014, ApJS, 212, 5

Shear TEsting Program II

Author	Key	Method
Bergé	JB	Shapelets (Massey & Refregier 2005)
Clowe	C1	KSB+ (same PSF model used for all galaxies)
Clowe	C2	KSB+ (PSF weight size matched to galaxies')
Hetterscheidt	MH	KSB+
Hoekstra	HH	KSB+
Jarvis	MJ	Bernstein & Jarvis (2002)
Jarvis	MJ2	Bernstein & Jarvis (2002) (new weighting scheme)
Kuijken	KK	Shapelets (Kuijken 2006)
Mandelbaum	RM	Reglens (Hirata & Seljak 2003)
Nakajima	RN	Bernstein & Jarvis (2002) (deconvolution fitting)
Paulin-Henriks	son SP	KSB+
Schirmer	MS1	KSB+ (scalar shear susceptibility)
Schirmer	MS2	KSB+ (tensor shear susceptibility)
Schrabback	TS	KSB+
Semboloni	ES1	KSB+ (shear susceptibility fitted from population)
Semboloni	ES2	KSB+ (shear susceptibility for individual galaxies)

KSB+ Method:

$$Q_{ij}(x^{o}, y^{o}) = \frac{\int d^{2}\vec{\theta} \cdot W(\vec{\theta}) f^{o}(\vec{\theta}) \theta_{i} \theta_{j}}{\int d^{2}\vec{\theta} \cdot W(\vec{\theta}) f^{o}(\vec{\theta})}$$
$$\binom{\varepsilon_{1}}{\varepsilon_{2}} = \frac{1}{Q_{11} + Q_{22}} \binom{Q_{11} - Q_{22}}{2Q_{12}}$$
$$\Gamma_{\alpha} = \left(P^{\gamma}\right)_{\alpha\beta}^{-1} \left[\varepsilon_{\beta} - P_{\beta\mu}^{sm} p_{\mu}\right]$$

Heymans et al. (2006)

BJ02 Method:

Shapelets Method:

Bayesian Galaxy Shape Measurement Method: (Lensfit)

$$\chi^{2} = \sum_{i} \left[\frac{y_{i} - SBg_{i} - S(1 - B)f_{i}}{\sigma_{i}} \right]^{2}$$

Miller et al. (2013)

Challenges & Opportunities

Lensing is Low: Cosmology, Galaxy Formation, or New Physics?

Alexie Leauthaud^{1,2}, Shun Saito³, Stefan Hilbert^{4,5}, Alexandre Bæ Martin White⁶, Shadab Alam^{7,8}, Peter Behroozi^{6,9}, Kevin Bundy Thomas Erben¹¹, Catherine Heymans⁸, Hendrik Hildebrandt¹¹, R Lance Miller¹², Bruno Moraes¹³, Maria E. S. Pereira¹⁴, Sergio A. Fabian Schmidt³, Huan-Yuan Shan¹⁸, Matteo Viel^{19,20}, Francisco ¹Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, San ²Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba, 277-8583, Japan ³Maz-Planck-Institut für Astrophysik, Karl-Schwarzschild-Starße 1, D-85740 Garching bei München, Gerr ⁴Ezzellenzcluster Universe, Boltzmannstr. 2, 85748 Garching, Germany ⁵Ludwig-Maximilians-Universität, Universitäts-Sternwarte, Scheinerstr. 1, 81679 München, Germany ⁶Department of Physics, University of California, Berkeley, CA 94720 ⁷McWilliams. ⁸The Scottisl **Problems with KiDS**

George Efstathiou and Pablo Lemos

Kavli Institute for Cosmology Cambridge and Institute of Astronomy, Madingley Road,

4 July 2017

O] 3 Jul 201

2016

00

Ž

5

 \sim

⁹Hubble Felle

ABSTRACT

The Kilo-Degree Survey (KiDS) has been used straints on the amplitude of the matter powe redshift. Some of these analyses have claimed mology at the ~ 2 - 3 σ level, perhaps indica is consistent with other low redshift probes c redshift space distortions and the combined spectra. Here we perform consistency tests of t for various cuts of the data at $\gtrsim 3\sigma$ significa understood, we argue that it is premature tc KiDS.

Figure 4. A plot of fluctuation scale S₈ (a robust functional form of σ_8) vs. matter density Ω_m from the DES Cosmology results – Figure 10 of the paper. Assumed here is a likelihood model with /\CDM (w=-1), with darker contours depicting 68% confidence level intervals. DES Y1 results (weak lensing, clustering, blue) are a 'slight' departure from the Planck results (CMB, no lensing, green), but with combined datasets one can see stronger constraints on the cosmological parameters.

Outline:

- Introduction & Motivation
- The Fourier_Quad method
- Application on the CFHTlens data

The Fourier_Quad Method

Zhang, Luo, Foucaud, 2015

Test Results

$$g_1^{measured} = (1+m_1)g_1^{input} + c_1$$

$$g_2^{measured} = (1+m_2)g_2^{input} + c_2$$

					Case 1	Case 2	Case 3
SNR=20	000-100	1007405	100	SNR = 20	$m_1(10^{-3}):-0.2\pm0.2$	-0.2 ± 0.1	-0.08 ± 0.05
					$c_1(10^{-5}):-1.0\pm0.7$	-0.6 ± 0.4	0.0 ± 0.2
	March Property	Martin Property		SNR = 10	-0.6 ± 0.6	-0.4 ± 0.4	-0.1 ± 0.1
	and sold of the				-2.6 ± 2.1	-1.6 ± 1.2	0.0 ± 0.4
			1000	SNR = 5	-2.2 ± 2.3	-1.1 ± 1.2	0.0 ± 0.2
SNR=10	AGA 1958	AGA . 1888	100		-7.9 ± 7.9	-4.6 ± 4.1	0.1 ± 0.8
	1. 1. 1. 1.			SNR = 20	$m_2(10^{-3}):-0.2\pm0.2$	-0.3 ± 0.1	-0.3 ± 0.05
		Contraction of the			$c_2(10^{-5}): 1.4 \pm 0.7$	1.1 ± 0.4	0.3 ± 0.2
	A. 1000	1.1.1.1.1.1		SNR = 10	-0.3 ± 0.6	-0.4 ± 0.4	-0.4 ± 0.1
SNR-5	1000000	10121-002			3.7 ± 2.1	2.6 ± 1.2	0.6 ± 0.4
SINC-5	000.000	200 - AND		SNR = 5	-0.7 ± 2.3	-0.9 ± 1.2	-0.6 ± 0.2
	1.54.5	1 Mar 1 - 5		\	10.6 ± 7.9	6.6 ± 4.1	1.2 ± 0.8
	Case 1	Case 2	Case 3				

Zhang, Luo, Foucaud, 2015

Team	Class	Weighting scheme	Calibration philosophy	Limitations	Nbranch	Rank	Exact PSF?	New software	Time per galaxy	
Amalgam@IAP	Maximum likelihood	Inverse variance	Ellipticity penalty	None	16	2	Yes	Some	0.1–1 s	
BAMPenn	Bayesian Fourier	Implicit	$p(\varepsilon)$ from deep data	Variable shear	2	-	Yes	Yes	< 1 s	
EPFL_gfit	Maximum likelihood	Constant + rejection	None	None	8	6	Yes	Yes	1–3 s	
CEA-EPFL	Maximum likelihood	Various	None	None	20	3	Yes	Yes	1–3 s	
CEA_denoise	Moments	Constant	None	None	8	-	Yes	No	0.03 s	
CMU experimenters	Stacking	Constant	External simulations	Variable shear	2	N/A	Yes	Some	0.03 s	
COCS (im3shape)	Maximum likelihood	Constant	External simulations	None	12	N/A	Yes	Yes	1 s	
E-HOLICS	Moments	Constant + rejection	External simulations	None	12	8	Yes	No	1–3 s	
EPFL_HNN	Neural network	Constant	None	None	7	-	Yes	Yes	2-3 s	
EPFL_KSB	Moments	Inverse variance	None	None	4	-	Yes	No	0.001-0.002 s	
EPFL_MLP / EPFL_MLP_FIT	Neural network	Constant	None	None	5	-	Yes	Yes	2-3 s	
FDNT	Fourier moments	Inverse variance	External simulations	None	12	N/A	Yes	Some	$\sim 1 \ s$	
Fourier_Quad	Fourier moments	Various	None	None	6	5	Yes	No	0.001-0.002 s	
HSC/LSST-HSM	Moments	Inverse variance	External simulations	None	4	N/A	Yes	Some	0.05 s	
MBI	Bayesian hierarchical	Implicit	Inferred $p(\varepsilon)$	Variable shear, PSF	4	9	No	Some	10 s	
MaltaOx (LensFit)	Partially Bayesian	Inverse variance	Self- calibration	None	3	7	Yes	Some	0.05 s	
MegaLUT	Supervised ML	Constant + rejection	External simulations	None	16	4	Yes	Some	0.02 s	
MetaCalibration	Moments + self-calibration	Inverse variance	Self- calibration	Variable shear	1	N/A	Yes	Yes	0.3 s	
Wentao_Luo	Moments	Inverse variance	None	None	4	-	Yes	Yes	1-2 s	
ess	Bayesian model-fitting	Implicit	$p(\varepsilon)$ from deep data	Variable shear	2	-	No	Yes	1 s	
sFIT	Maximum likelihood	Inverse variance	External simulations (iterative)	None	20	1	Yes	Yes	0.8 s	Mandelbaum et al. (2015)

<

Some Recent Progress

Li & Zhang, 2016, ApJ, 830, 116

JZ, Zhang, Luo, 2017, ApJ, 834, 8

-0.01800(2)

0.01101(2)

PDF-SYM (8 bins)

APPROACHING THE CRAMER-RAO BOUND IN WEAK LENSING WITH PDF SYMMETRIZATION

C-R BOUND	Examples		
$0 = \frac{d}{d\hat{a}} \sum \ln P(x_i - \hat{g})$	$P_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$	$N_T \sigma_1^2$ (Ave) = 1,	$N_T \sigma_1^2(\mathrm{CR}) = 1,$
$\sum_{i}^{a,g} \frac{\partial^2 \ln P(x_i - \hat{q})}{\partial x_i}$	$P_2(x) = \frac{2}{\pi} (1 + x^2)^{-2}$	$N_T \sigma_2^2$ (Ave) = 1,	$N_T \sigma_2^2(\mathrm{CR}) = 0.5,$
$\sigma_{\hat{g}}^{-2} = -\sum_{i} \frac{-(i-j)}{\partial \hat{g}^{2}}$	$P_3(x) = \frac{ x ^{-2/3}}{3\sqrt{2\pi}} \exp\left(-\frac{ x ^{2/3}}{2}\right)$	$N_T \sigma_3^2(\text{Ave}) = 15,$	$N_T \sigma_3^2(\mathrm{CR}) \to 0.$

The results of signal recovery	(input value is 0.01) for 10^7	data points of three types of PDF's
--------------------------------	-------------------------------------	-------------------------------------

Results:	Averaging	PDF-SYM (2 bins)	PDF-SYM (8 bins)	PDF-SYM (16 bins)	PDF-SYM (32 bins)
P_1	0.0102(3)	0.0104(4)	0.0101(3)	0.0100(4)	0.0102(3)
P_2	0.0099(3)	0.0101(2)	0.0101(2)	0.0100(2)	0.0101(2)
P_3	0.011(1)	0.0099999998(2)	0.0099999998(1)	0.0099999998(1)	0.00999999999(2)

$N_T \sigma^2$:	Averaging	PDF-SYM (2 bins)	PDF-SYM (8 bins)	PDF-SYM (16 bins)	PDF-SYM (32 bins)
P_1	1.0	1.6	1.1	1.2	0.96
P_2	0.99	0.61	0.52	0.50	0.57
P_3	15	5×10^{-13}	2×10^{-13}	2×10^{-13}	3×10^{-13}

JZ, Zhang, Luo, 2017, ApJ, 834, 8

APPROACHING THE CRAMER-RAO BOUND IN WEAK LENSING WITH PDF SYMMETRIZATION

 $g_1 = 0.02277, g_2 = -0.01386$

Results of $[g_1, g_2]$:	10 ⁵ RW Galaxies	$9 \times 10^4 \text{ RW} + 10^4 \text{ Ring}$
Averaging	[0.0226(6), -0.0130(6)]	[0.0231(6), -0.0132(6)]
PDF-SYM (8 bins)	[0.0225(7), -0.0129(6)]	[0.02278(8), -0.01392(7)]

JZ, Zhang, Luo, 2017, ApJ, 834, 8

APPROACHING THE CRAMER-RAO BOUND IN WEAK LENSING WITH PDF SYMMETRIZATION

The recovered shear-shear correlations. The inputs are $\langle g_t^{(1)}g_t^{(2)}\rangle = 10^{-4}$ and $\langle g_{\times}^{(1)}g_{\times}^{(2)}\rangle = -10^{-4}$.

Results of $[\langle g_t^{(1)} g_t^{(2)} \rangle, \langle g_{\times}^{(1)} g_{\times}^{(2)} \rangle](10^{-4})$:	Averaging	PDF-SYM (8×8 bins)
4×10^7 RW Gal. Pairs	[1.09(8), -1.00(8)]	[1.09(8), -1.01(9)]
4×10^7 Ring Gal. Pairs	[1.05(7), -1.08(7)]	[1.002(5), -1.002(5)]
4×10^7 Gal. Pairs with 90% RW and 10% Ring	[1.09(8), -1.02(8)]	[0.99(3), -1.00(3)]
1.6×10^8 Ring Gal. Pairs with noise and 10% stars	[0.97(4), -1.05(4)]	[1.000(3), -1.001(3)]

JZ, Zhang, Luo, 2017, ApJ, 834, 8

Outline:

- Introduction & Motivation
- The Fourier_Quad method
- Application on the CFHTlens data

CFHT l ens

 Table 1. Characteristics of the final CFHTLenS co-added science data (see the text for an explanation of the columns).

Filter	expos. time [s]	$m_{ m lim}$ [AB mag]	seeing ["]
		5- σ lim. mag.	
		in a 2‼0 aperture	
$u^{*}(u.MP9301)$	$5 \times 600 (3000)$	25.24 ± 0.17	0.88 ± 0.11
g'(g.MP9401)	5×500 (2500)	25.58 ± 0.15	0.82 ± 0.10
r'(r.MP9601)	4×500 (2000)	24.88 ± 0.16	0.72 ± 0.09
i'(i.MP9701)	7×615 (4305)	24.54 ± 0.19	0.68 ± 0.11
y'(i.MP9702)	7×615 (4305)	24.71 ± 0.13	0.62 ± 0.09
z'(z.MP9801)	6×600 (3600)	23.46 ± 0.20	0.70 ± 0.12

- http://www.cfhtlens.org
- Erben et al (2012)
- Heymans et al (2012)
- Miller et al (2012)

Test with Field Distortion

OO00000000 0000000 0000000000000000 O | O \bigcirc O $\cap \mid \cap$ \cap $O \mid O$ $O \mid O$ \cap 0000 Ο \bigcirc \bigcirc 0000 $\circ \circ$ \mathcal{O} O0

Dong et al. in preparation

Test with Field Distortion

We Processed

THELI Processed

Original Image

Stacked Source PS

Mask Image

Source Distribution

About PSF Interpolation

About PSF Interpolation

Chipwise Polynomial n = 1

Shepard

Lu, et al., 2017, AJ in press

Preliminary Results on Cluster Lensing

From Lensfit Method

From Our Method

Cluster catalog from Ford et al.(2015)

Preliminary Results on Cluster Lensing

Dong et al. in preparation

Stay Tuned ! Thank You !