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Precision calculations

Tremendous progress in perturbative QCD calculations in past decade

I dσpart = dσpart
LO + αs dσpart

NLO + α2
s dσpart

NNLO + α3
s dσpart

N3LO
+O(α4
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Precision calculations

Similar progress in understanding logarithmic corrections to all orders

I dσpart = exp

{
1
αs

gLL(αsL) + gNLL(αsL) + αs gNNLL(αsL) + α2
s gN3LL(αsL) + . . .

}
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Precision calculations

For some observables the theory predictions are nowadays reaching %-level accuracy

⇒ are there other classes of corrections?

I electroweak corrections

I automated NLO calculations for multi-particle final states

I computation of mixed QCD-electroweak corrections

I implementation of electroweak Sudakov factors in event generators

I parton distribution functions

I long-term goal to develop N3LO PDFs with reliable uncertainties

I consistent implementation of QED effects

I power corrections

I power corrections are highly process- and observable dependent

I we currently only have a very limited understanding of power corrections

I I will distinguish between perturbative and non-perturbative power corrections
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Non-perturbative power corrections
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R-ratio

One of the simplest observables in QCD

I R(Q) =
σe+e−→hadrons(Q)

σe+e−→µ+µ− (Q)

Using dispersion relations it can be related to the hadronic vacuum polarisation

I Π(−Q2) ∼ + + . . .

I the R-ratio is currently known to N4LO [Baikov, Chetyrkin, Kühn, Rittinger 12]

But how good is the partonic description?
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Operator product expansion

In the Euclidean region with Q2 � Λ2

I Π(−Q2) ∼ C1(Q) +
1

Q4

{
Cq̄q(Q)

〈
Ω
∣∣mq q̄q

∣∣Ω〉+ CGG(Q)
〈
Ω
∣∣GA
µνGA,µν ∣∣Ω〉}+ . . .

I non-perturbative corrections scale as (Λ/Q)4

I operator definition of non-perturbative matrix elements

I non-perturbative parameters accessible to lattice QCD and sum rule calculations

Unfortunately, the picture is far more complicated for other observables ...
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Renormalon calculus

In DR the Wilson coefficients are sensitive to power corrections

I C1 = + + . . .

⇒ IR sensitivity manifests as a factorial growth in the perturbative expansion

I C1 =
∞∑

n=0

cn α
n+1
s ⇒ B[C1](t) =

∞∑
n=0

cn
tn

n!

⇒ shows up as a t = −2/β0 > 0 renormalon in the Borel plane

⇒ ambiguity in the Borel integral

I C1 =

∫ ∞
0

dt e−t/αs B[C1](t) ⇒ δC1 ∼ e
2

β0αs (Q) ∼
(

Λ

Q

)4

Without knowing anything about power corrections in the OPE . . .
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Comparison

Factorisation

I + based on a rigorous expansion for Λ� Q in QCD

I + operator definitions of non-perturbative parameters

I − highly process dependent

I − no OPE for processes with jet-like signatures

Renormalon calculus

I + universal approach for large class of observables

I + amounts to perturbative calculation with dressed gluon

I − model dependent (may blur universality aspects and even miss some effects)

I − can currently only be applied to processes without gluons at Born level
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e+e− event shapes

Thrust T = max
~n

∑
i |~ki · ~n|∑

i |~ki |

Factorisation in the two-jet region (τ = 1− T )

I
dσ
dτ
' H(Q)

∫
dp2

L dp2
R dk J(p2

L) J(p2
R) S(k) δ

(
τ −

p2
L + p2

R
Q2

−
k
Q

)
⇒ dominant non-perturbative correction results in a shift [Lee, Sterman 06]

I
dσ
dτ

(τ)
NP−→

dσ
dτ

(
τ − cτ

Ω1

Q

)
I linear power correction ∼ (Λ/Q)

I operator definition Ω1 =
〈
Ω
∣∣S†n̄ S†n ET (0) SnSn̄

∣∣Ω〉
I calculable observable-dependent coefficient cτ = 2 , cC = 3π , . . .
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αs extractions

Global fit to thrust and C-parameter distributions [Hoang, Kolodrubetz, Mateu, Stewart 15]
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⇒ need better understanding of power corrections in 3-jet region
[Luisoni, Monni, Salam 20]

First analysis based on renormalon calculus [Caola, Ferrario R., Limatola, Melnikov, Nason, Ozcelik 22]
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I uses qq̄γ as a proxy for 3-jet configurations

I includes decay of dressed gluon into massless partons

I no operator definition of non-perturbative parameter

⇒ can this be combined with a factorisation-based approach?
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LHC observables

Little is known about power corrections at hadron-hadron colliders

⇒ use renormalon calculus to identify observables with linear power corrections

First systematic study of linear power corrections* [Caola et al 21]

I for massless particles virtual corrections do not generate linear corrections

I collinear emissions (usually) do not generate linear corrections either

I linear corrections are associated with soft gluon emissions

* remember that renormalon calculus applies only to Born processes without gluons
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Outlook part I

Main findings

I hadronically inclusive observables do not receive linear power corrections

I even true for single top production (provided one uses a short-distance top mass)
[Makarov, Melnikov, Nason, Ozcelik 23]

I no linear power corrections to Z -boson pT distribution

Project B1e:

I study additional processes with massive quarks in renormalon model

I explore ways to incorporate non-abelian interactions into renormalon calculus

I investigate connections to SCET (e.g. for event-shape studies in 3-jet region)
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Perturbative power corrections I
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Back to the perturbative world

Power corrections associated with ratio of two perturbative scales

I thrust in the two-jet region µH ∼ Q

µJ ∼
√
τQ

µS ∼ τQ


µ2

S

µ2
J
∼

µ2
J

µ2
H
∼ τ

⇒ leading power resums
[

lnn τ
τ

]
+

, but what about lnn τ terms at subleading power?

SCET provides the ingredients to study these corrections

I effective Lagrangian known to O(λ2)

I subleading-power operator bases

I anomalous dimensions of subleading hard / jet / soft functions
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Key problem

SCET factorisation theorems involve matrix elements of non-local operators

⇒ convolutions of hard coefficient functions with jet and soft functions

At subleading power it happens that these convolutions diverge at the endpoints

∫ 1

0
dz h(z) j(z) =

∫ 1

0
dz z−ε z−1−ε 6=

∫ 1

0
dz
[
1− ε ln z + . . .

][
−

1
ε
δ(z) +

1
z+

+ . . .
]

⇒ convolution and renormalisation of EFT operators do not commute

⇒ prevents one from using RG techniques at subleading power
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A specific example

Bottom-quark contribution to H → γγ

I

H

γ

γ

b

b

b

I scale hierachy mb � MH

I subleading power due to helicity suppression

Bare factorisation theorem

is spoilt by endpoint divergences

[Liu, Neubert 19]

I Mb(H → γγ) ∼ H1
〈
O1
〉

I + 2
∫ 1

0

dz
z

H̄2(z)
〈
O2(z)

〉
I + H3

∫ ∞
0

d`−
`−

∫ ∞
0

d`+

`+
J(MH`+) J(MH`−) S(`+`−)

I in the endpoint regions the two terms describe the same physics

⇒ is there a way to combine these contributions?
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A specific example

Bottom-quark contribution to H → γγ

I

H

γ

γ

b

b

b

I scale hierachy mb � MH

I subleading power due to helicity suppression

Bare factorisation theorem is free from endpoint divergences [Liu, Neubert 19]

I Mb(H → γγ) ∼ (H1+∆H1)
〈
O1
〉

I + 2
∫ 1

0

dz
z

{
H̄2(z)

〈
O2(z)

〉
−

r
H̄2(z)

〈
O2(z)

〉z
0
−

r
H̄2(z)

〈
O2(z)

〉z
1

}

I + H3

∫ MH

0

d`−
`−

∫ MH

0

d`+

`+
J(MH`+) J(MH`−) S(`+`−)

I rearrangement based on refactorisation conditions [Böer 18; Liu, Neubert 19]

I
r

H̄2(z)
〈
O2(z)

〉z
0

= lim
z→0

H̄2(z)
〈
O2(z)

〉
=

H3

2

∫ ∞
0

d`+

`+
J(MH`+) J(z M2

H ) S(`+z MH )
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A counterexample

Muon-electron scattering in backward direction

I

I scale hierachy me ∼ mµ �
√

s (t ≈ −s, u ≈ 0)

I leading power QED process

Bare factorisation theorem

is spoilt by endpoint divergences

[GB, Böer, Feldmann 22]

I F1(λ) =

∫ 1

0

dx
x

∫ 1

0

dy
y

fc(x) H(xy) fc̄(y)

I +

∫ 1

0

dx
x

∫ 1

0

dy
y

∫ ∞
0

dρ
ρ

∫ ∞
0

dω
ω

fc(x) J(xρ) S(ρω) J(ωy) fc̄(y)

I + fc ⊗ J ⊗ S ⊗ J ⊗ S ⊗ J ⊗ fc̄ + . . .

⇒ generates iterated pattern of endpoint-divergent convolution integrals

Double logarithms descend from consistency relation [GB, Böer, Feldmann 22]

I F1(λ) = F1(z) = 1 + z
∫ 1

0
dξ
∫ 1

0
dη F1(ξ2z) θ(1− ξ − η) F1(η2z)

in terms of the logarithmic variables z =
α

2π
ln2 λ2 , ξ =

ln x
lnλ2

, η =
ln y
lnλ2

⇒ generates a modified Bessel function [Gorshkov, Gribov, Lipatov, Frolov 66]

I F1(λ) =
I1(2
√

z)
√

z
= 1 +

z
2

+
z2

12
+

z3

144
+O(z4)
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I F1(λ) = F1(z) = 1 + z
∫ 1

0
dξ
∫ 1

0
dη F1(ξ2z) θ(1− ξ − η) F1(η2z)

in terms of the logarithmic variables z =
α

2π
ln2 λ2 , ξ =

ln x
lnλ2

, η =
ln y
lnλ2

⇒ generates a modified Bessel function [Gorshkov, Gribov, Lipatov, Frolov 66]

I F1(λ) =
I1(2
√

z)
√

z
= 1 +

z
2

+
z2

12
+

z3

144
+O(z4)
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A counterexample

Muon-electron scattering in backward direction

I

I scale hierachy me ∼ mµ �
√

s (t ≈ −s, u ≈ 0)

I leading power QED process

Bare factorisation theorem is spoilt by endpoint divergences [GB, Böer, Feldmann 22]

I F1(λ) =

∫ 1

0

dx
x

∫ 1

0

dy
y

fc(x) H(xy)

{
fc̄(y)−

r
fc̄(y)

z

0

}

I +

∫ 1

0

dx
x

∫ 1

0

dy
y

∫ √s

0

dρ
ρ

∫ ∞
0

dω
ω

fc(x) J(xρ) S(ρω) J(ωy) fc̄(y)

I + fc ⊗ J ⊗ S ⊗ J ⊗ S ⊗ J ⊗ fc̄ + . . .

⇒ generates iterated pattern of endpoint-divergent convolution integrals

Double logarithms descend from consistency relation [GB, Böer, Feldmann 22]

I F1(λ) = F1(z) = 1 + z
∫ 1

0
dξ
∫ 1

0
dη F1(ξ2z) θ(1− ξ − η) F1(η2z)

in terms of the logarithmic variables z =
α

2π
ln2 λ2 , ξ =

ln x
lnλ2

, η =
ln y
lnλ2

⇒ generates a modified Bessel function [Gorshkov, Gribov, Lipatov, Frolov 66]

I F1(λ) =
I1(2
√

z)
√

z
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z
2

+
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+
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144
+O(z4)

P R O J E C T B 1 E : P O W E R C O R R E C T I O N S I N C O L L I D E R P R O C E S S E S G U I D O B E L L

A N N UA L C R C M E E T I N G – A A C H E N M A R C H 2 0 2 3



Outlook part II

Why is this relevant?

I generic feature of 2→ 2 processes and beyond

I closely related to factorisation of hadronic matrix elements in exclusive B decays

⇒ µe scattering provides a simple setup to study generic structure of endpoint singularities

Project B1e:

I resummation beyond double-logarithmic approximation

I cross-check resummed results against fixed-order calculation

I apply the technology to related QCD processes
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Perturbative power corrections II
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Slicing methods

Power corrections are also relevant for fixed-order calculations

I σ(X)

︸ ︷︷ ︸
=

∫
0

dτ
dσ(X)

dτ
=

∫ τcut

0
dτ

dσ(X)

dτ︸ ︷︷ ︸
+

∫
τcut

dτ
dσ(X)

dτ︸ ︷︷ ︸
Nk LO soft + collinear emissions Born + 1 resolved jet

to Born process at Nk LO at Nk−1LO

Compute unresolved contribution with methods from factorisation

I
∫ τcut

0
dτ

dσ(X)

dτ
=

∫ τcut

0
dτ

dσ(X)

dτ

∣∣∣∣
LP︸ ︷︷ ︸

+ O(τcut)

︸ ︷︷ ︸
requires Nk LO hard, jet, crucial to improve the

beam and soft functions numerical efficiency
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Two strategies

Design a resolution variable with small power corrections [Buonocore et al 22]
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0.30

I at NLO kness
T -slicing seems to be less sensitive to

I power corrections than jettiness-slicing

⇒ Why? And is this also true at NNLO?

Control the dominant power corrections analytically [Ebert et al 18]

10-5 10-4 10-3 10-2
10-5

10-4

10-3

10-2

10-1

I at NLO the cutoff can be significantly relaxed if

I power corrections are included analytically

I at NNLO so far only the τ ln3 τ terms are known
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Outlook part III

Project B1e:

I compute NNLO power corrections for qT and 0-jettiness slicing

I extend the method to processes with jets

I understand structure of power corrections for other slicing variables
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Conclusions

Project B1e addresses power corrections to collider processes from various angles

I non-perturbative power corrections

I ⇒ renormalon calculus, factorisation

I resummation at subleading power

I ⇒ endpoint singularities, consistency relations

I power corrections to slicing techniques

I ⇒ analytic NNLO calculations
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