PROJECT B1E:

POWER CORRECTIONS IN COLLIDER PROCESSES

[GUIDO BELL, MICHAL CZAKON, KIRILL MELNIKOV]

ANNUAL CRC MEETING

Tremendous progress in perturbative QCD calculations in past decade

 $d\sigma^{\text{part}} = d\sigma_{\text{LO}}^{\text{part}} + \alpha_{\text{s}} d\sigma_{\text{NLO}}^{\text{part}} + \alpha_{\text{s}}^2 d\sigma_{\text{NNLO}}^{\text{part}} + \alpha_{\text{s}}^3 d\sigma_{\text{N}^3\text{LO}}^{\text{part}} + \mathcal{O}(\alpha_{\text{s}}^4)$

Similar progress in understanding logarithmic corrections to all orders

$$d\sigma^{\text{part}} = \exp\left\{\frac{1}{\alpha_{\text{s}}} g_{\text{LL}}(\alpha_{\text{s}}\text{L}) + g_{\text{NLL}}(\alpha_{\text{s}}\text{L}) + \alpha_{\text{s}} g_{\text{NNLL}}(\alpha_{\text{s}}\text{L}) + \alpha_{\text{s}}^{2} g_{\text{N}^{3}\text{LL}}(\alpha_{\text{s}}\text{L}) + \dots\right\}$$

For some observables the theory predictions are nowadays reaching %-level accuracy

 \Rightarrow are there other classes of corrections?

For some observables the theory predictions are nowadays reaching %-level accuracy

- \Rightarrow are there other classes of corrections?
- electroweak corrections

automated NLO calculations for multi-particle final states

computation of mixed QCD-electroweak corrections

implementation of electroweak Sudakov factors in event generators

For some observables the theory predictions are nowadays reaching %-level accuracy

- \Rightarrow are there other classes of corrections?
- electroweak corrections
- parton distribution functions

long-term goal to develop N³LO PDFs with reliable uncertainties

consistent implementation of QED effects

For some observables the theory predictions are nowadays reaching %-level accuracy

- \Rightarrow are there other classes of corrections?
- electroweak corrections
- parton distribution functions
- power corrections

power corrections are highly process- and observable dependent

we currently only have a very limited understanding of power corrections

I will distinguish between perturbative and non-perturbative power corrections

Non-perturbative power corrections

R-ratio

One of the simplest observables in QCD

$$R(Q) = \frac{\sigma_{e^+e^- \to \text{hadrons}}(Q)}{\sigma_{e^+e^- \to \mu^+\mu^-}(Q)}$$

Using dispersion relations it can be related to the hadronic vacuum polarisation

$$\Pi(-Q^2) \sim \dots \qquad + \dots$$

the R-ratio is currently known to N⁴LO

[Baikov, Chetyrkin, Kühn, Rittinger 12]

But how good is the partonic description?

Operator product expansion

In the Euclidean region with $Q^2 \gg \Lambda^2$

$$\Pi(-Q^2) \sim C_1(Q) + rac{1}{Q^4} \Big\{ C_{ar q q}(Q) \left\langle \Omega \big| m_q ar q q \big| \Omega
ight
angle + C_{GG}(Q) \left\langle \Omega \big| G^A_{\mu
u} G^{A,\mu
u} \big| \Omega
ight
angle \Big\} + \dots$$

- non-perturbative corrections scale as $(\Lambda/Q)^4$
- operator definition of non-perturbative matrix elements
- non-perturbative parameters accessible to lattice QCD and sum rule calculations

Unfortunately, the picture is far more complicated for other observables ...

Renormalon calculus

In DR the Wilson coefficients are sensitive to power corrections

 \Rightarrow IR sensitivity manifests as a factorial growth in the perturbative expansion

$$C_1 = \sum_{n=0}^{\infty} c_n \, \alpha_s^{n+1} \qquad \Rightarrow \qquad \mathcal{B}[C_1](t) = \sum_{n=0}^{\infty} c_n \, \frac{t^n}{n!}$$

 \Rightarrow shows up as a $t = -2/eta_0 > 0$ renormalon in the Borel plane

 \Rightarrow ambiguity in the Borel integral

$$C_{1} = \int_{0}^{\infty} dt \ e^{-t/\alpha_{s}} \mathcal{B}[C_{1}](t) \qquad \Rightarrow \qquad \delta C_{1} \ \sim \ e^{\frac{2}{\beta_{0}\alpha_{s}(Q)}} \ \sim \ \left(\frac{\Lambda}{Q}\right)^{4}$$

Without knowing anything about power corrections in the OPE

Comparison

Factorisation

- + based on a rigorous expansion for $\Lambda \ll {\it Q}$ in QCD
- + operator definitions of non-perturbative parameters
- highly process dependent
- no OPE for processes with jet-like signatures

Renormalon calculus

- + universal approach for large class of observables
- + amounts to perturbative calculation with dressed gluon
- model dependent (may blur universality aspects and even miss some effects)
- can currently only be applied to processes without gluons at Born level

e^+e^- event shapes

Thrust
$$T = \max_{\vec{n}} \frac{\sum_{i} |\vec{k_i} \cdot \vec{n}|}{\sum_{i} |\vec{k_i}|}$$

Factorisation in the two-jet region ($\tau = 1 - T$)

$$rac{d\sigma}{d au} \simeq H(Q) \int dp_L^2 \, dp_R^2 \, dk \; J(p_L^2) \; J(p_R^2) \; \mathcal{S}(k) \; \delta\Big(au - rac{p_L^2 + p_R^2}{Q^2} - rac{k}{Q}\Big)$$

 \Rightarrow dominant non-perturbative correction results in a shift

[Lee, Sterman 06]

$$rac{d\sigma}{d au}(au) \stackrel{ extsf{NP}}{\longrightarrow} rac{d\sigma}{d au} igg(au - extsf{c}_ au rac{\Omega_1}{Q}igg)$$

- linear power correction $\sim (\Lambda/Q)$
- operator definition $\Omega_1 = \langle \Omega | S_{\bar{n}}^{\dagger} S_n^{\dagger} \mathcal{E}_T(0) S_n S_{\bar{n}} | \Omega \rangle$
- ► calculable observable-dependent coefficient $c_{\tau} = 2$, $c_{C} = 3\pi$, ...

α_s extractions

Global fit to thrust and C-parameter distributions

[Hoang, Kolodrubetz, Mateu, Stewart 15]

- $\alpha_s(m_Z) = 0.1128 \pm 0.0012$ (thrust)
- \sim 4 σ below PDG world average
- ⇒ need better understanding of power corrections in 3-jet region [Luisoni, Monni, Salam 20]

First analysis based on renormalon calculus

[Caola, Ferrario R., Limatola, Melnikov, Nason, Ozcelik 22]

- uses $q\bar{q}\gamma$ as a proxy for 3-jet configurations
- includes decay of dressed gluon into massless partons
- no operator definition of non-perturbative parameter
- \Rightarrow can this be combined with a factorisation-based approach?

LHC observables

Little is known about power corrections at hadron-hadron colliders

 \Rightarrow use renormalon calculus to identify observables with linear power corrections

First systematic study of linear power corrections*

[Caola et al 21]

- for massless particles virtual corrections do not generate linear corrections
- collinear emissions (usually) do not generate linear corrections either
- linear corrections are associated with soft gluon emissions
- * remember that renormalon calculus applies only to Born processes without gluons

Outlook part I

Main findings

- hadronically inclusive observables do not receive linear power corrections
- even true for single top production (provided one uses a short-distance top mass)

[Makarov, Melnikov, Nason, Ozcelik 23]

• no linear power corrections to Z-boson p_T distribution

Project B1e:

- study additional processes with massive quarks in renormalon model
- explore ways to incorporate non-abelian interactions into renormalon calculus
- investigate connections to SCET (e.g. for event-shape studies in 3-jet region)

Perturbative power corrections I

Back to the perturbative world

Power corrections associated with ratio of two perturbative scales

 $\Rightarrow \text{ leading power resums } \left[\frac{\ln^n \tau}{\tau} \right]_+ \text{, but what about } \ln^n \tau \text{ terms at subleading power?}$

SCET provides the ingredients to study these corrections

- effective Lagrangian known to $\mathcal{O}(\lambda^2)$
- subleading-power operator bases
- anomalous dimensions of subleading hard / jet / soft functions

Key problem

SCET factorisation theorems involve matrix elements of non-local operators

 \Rightarrow convolutions of hard coefficient functions with jet and soft functions

At subleading power it happens that these convolutions diverge at the endpoints

$$\int_0^1 \mathrm{d}z \ h(z) \, j(z) \, = \, \int_0^1 \mathrm{d}z \ z^{-\varepsilon} \ z^{-1-\varepsilon} \, \neq \, \int_0^1 \mathrm{d}z \left[1-\varepsilon \ln z + \dots\right] \left[-\frac{1}{\varepsilon}\delta(z) + \frac{1}{z_+} + \dots\right]$$

- \Rightarrow convolution and renormalisation of EFT operators do not commute
- \Rightarrow prevents one from using RG techniques at subleading power

A specific example

Bottom-quark contribution to $H \rightarrow \gamma \gamma$

- ▶ scale hierachy $m_b \ll M_H$
- subleading power due to helicity suppression

Bare factorisation theorem

$$\begin{split} \mathcal{M}_{b}(H \to \gamma \gamma) &\sim H_{1} \left\langle O_{1} \right\rangle \\ &+ 2 \int_{0}^{1} \frac{dz}{z} \, \bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle \\ &+ H_{3} \int_{0}^{\infty} \frac{d\ell_{-}}{\ell_{-}} \int_{0}^{\infty} \frac{d\ell_{+}}{\ell_{+}} \, J(M_{H}\ell_{+}) \, J(M_{H}\ell_{-}) \, \mathcal{S}(\ell_{+}\ell_{-}) \end{split}$$

[Liu, Neubert 19]

A specific example

Bottom-quark contribution to $H \rightarrow \gamma \gamma$

• scale hierachy $m_b \ll M_H$

subleading power due to helicity suppression

Bare factorisation theorem is spoilt by endpoint divergences

[Liu, Neubert 19]

$$\begin{split} \mathcal{M}_{b}(H \to \gamma \gamma) &\sim H_{1} \left\langle O_{1} \right\rangle \\ &+ 2 \int_{0}^{1} \frac{dz}{z} \, \bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle \\ &+ H_{3} \int_{0}^{\infty} \frac{d\ell_{-}}{\ell_{-}} \int_{0}^{\infty} \frac{d\ell_{+}}{\ell_{+}} \, J(M_{H}\ell_{+}) \, J(M_{H}\ell_{-}) \, \mathcal{S}(\ell_{+}\ell_{-}) \end{split}$$

in the endpoint regions the two terms describe the same physics

 \Rightarrow is there a way to combine these contributions?

A specific example

Bottom-quark contribution to $H \rightarrow \gamma \gamma$

scale hierachy $m_b \ll M_H$

subleading power due to helicity suppression

Bare factorisation theorem is free from endpoint divergences

[Liu, Neubert 19]

$$\begin{split} \mathcal{M}_{b}(H \to \gamma \gamma) &\sim \left(H_{1} + \Delta H_{1}\right) \left\langle O_{1} \right\rangle \\ &+ 2 \int_{0}^{1} \frac{dz}{z} \left\{ \bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle - \left[\left[\bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle \right] \right]_{0} - \left[\left[\bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle \right] \right]_{1} \right\} \\ &+ H_{3} \int_{0}^{M_{H}} \frac{d\ell_{-}}{\ell_{-}} \int_{0}^{M_{H}} \frac{d\ell_{+}}{\ell_{+}} J(M_{H}\ell_{+}) J(M_{H}\ell_{-}) S(\ell_{+}\ell_{-}) \end{split}$$

rearrangement based on refactorisation conditions

[Böer 18; Liu, Neubert 19]

$$\left[\!\left[\bar{H}_{2}(z)\left\langle O_{2}(z)\right\rangle\right]\!\right]_{0} = \lim_{z \to 0} \bar{H}_{2}(z)\left\langle O_{2}(z)\right\rangle = \frac{H_{3}}{2} \int_{0}^{\infty} \frac{d\ell_{+}}{\ell_{+}} J(M_{H}\ell_{+}) J(zM_{H}^{2}) S(\ell_{+}zM_{H})$$

Muon-electron scattering in backward direction

► scale hierachy $m_e \sim m_\mu \ll \sqrt{s}$ $(t \approx -s, \ u \approx 0)$

leading power QED process

Bare factorisation theorem

[GB, Böer, Feldmann 22]

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) f_{\overline{c}}(y)$$

+
$$\int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\infty} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J(x\rho) S(\rho\omega) J(\omega y) f_{\overline{c}}(y)$$

Muon-electron scattering in backward direction

scale hierachy
$$m_e \sim m_\mu \ll \sqrt{s}$$
 $(t pprox -s, \ u pprox 0)$

leading power QED process

Bare factorisation theorem is spoilt by endpoint divergences

[GB, Böer, Feldmann 22]

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) f_{\bar{c}}(y)$$

+
$$\int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\infty} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J(x\rho) S(\rho\omega) J(\omega y) f_{\bar{c}}(y)$$

Muon-electron scattering in backward direction

scale hierachy
$$m_e \sim m_\mu \ll \sqrt{s}$$
 ($t \approx -s, u \approx 0$)
leading power QED process

Bare factorisation theorem is spoilt by endpoint divergences

[GB, Böer, Feldmann 22]

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) \left\{ f_{\bar{c}}(y) - \left[\left[f_{\bar{c}}(y) \right] \right]_{0} \right\}$$
$$+ \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\sqrt{s}} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J(x\rho) S(\rho\omega) J(\omega y) f_{\bar{c}}(y)$$

Muon-electron scattering in backward direction

Bare factorisation theorem is spoilt by endpoint divergences

[GB, Böer, Feldmann 22]

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) \left\{ f_{\bar{c}}(y) - \left[\!\!\left[f_{\bar{c}}(y)\right]\!\!\right]_{0} \right\}$$
$$+ \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\sqrt{s}} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J(x\rho) S(\rho\omega) J(\omega y) \left\{ f_{\bar{c}}(y) - \left[\!\!\left[f_{\bar{c}}(y)\right]\!\!\right]_{0} \right\}$$
$$+ f_{c} \otimes J \otimes S \otimes J \otimes S \otimes J \otimes S \otimes J \otimes f_{\bar{c}} + \dots$$

 \Rightarrow generates iterated pattern of endpoint-divergent convolution integrals

Muon-electron scattering in backward direction

Double logarithms descend from consistency relation

[GB, Böer, Feldmann 22]

$$F_{1}(\lambda) = \mathcal{F}_{1}(z) = 1 + z \int_{0}^{1} d\xi \int_{0}^{1} d\eta \, \mathcal{F}_{1}(\xi^{2}z) \, \theta(1 - \xi - \eta) \, \mathcal{F}_{1}(\eta^{2}z)$$

in terms of the logarithmic variables

$$z = \frac{\alpha}{2\pi} \ln^2 \lambda^2$$
, $\xi = \frac{\ln x}{\ln \lambda^2}$, $\eta = \frac{\ln y}{\ln \lambda^2}$

 \Rightarrow generates a modified Bessel function

[Gorshkov, Gribov, Lipatov, Frolov 66]

$$F_{1}(\lambda) = \frac{l_{1}(2\sqrt{z})}{\sqrt{z}} = 1 + \frac{z}{2} + \frac{z^{2}}{12} + \frac{z^{3}}{144} + \mathcal{O}(z^{4})$$

Outlook part II

Why is this relevant?

- generic feature of $2 \rightarrow 2$ processes and beyond
- closely related to factorisation of hadronic matrix elements in exclusive B decays
- $\Rightarrow \mu e$ scattering provides a simple setup to study generic structure of endpoint singularities

Project B1e:

- resummation beyond double-logarithmic approximation
- cross-check resummed results against fixed-order calculation
- apply the technology to related QCD processes

Perturbative power corrections II

Slicing methods

Power corrections are also relevant for fixed-order calculations

Compute unresolved contribution with methods from factorisation

beam and soft functions

numerical efficiency

Two strategies

Design a resolution variable with small power corrections

[Buonocore et al 22]

at NLO k_T^{ness}-slicing seems to be less sensitive to

power corrections than jettiness-slicing

 \Rightarrow Why? And is this also true at NNLO?

Control the dominant power corrections analytically

[Ebert et al 18]

> at NLO the cutoff can be significantly relaxed if

power corrections are included analytically

• at NNLO so far only the $\tau \ln^3 \tau$ terms are known

Outlook part III

Project B1e:

- compute NNLO power corrections for q_T and 0-jettiness slicing
- extend the method to processes with jets
- understand structure of power corrections for other slicing variables

Conclusions

Project B1e addresses power corrections to collider processes from various angles

- non-perturbative power corrections
 - \Rightarrow renormalon calculus, factorisation
- resummation at subleading power
 - \Rightarrow endpoint singularities, consistency relations
- power corrections to slicing techniques
 - \Rightarrow analytic NNLO calculations