Luigi Favaro

Project B3b: Anomaly searches in jet physics

CRC annual meeting - Aachen 01/03/2023 Based on "A Normalized AutoEncoder for LHC triggers" - Dillon, Favaro, Krämer, Plehn, Sorrenson

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

Two big families:

Model-agnostic searches & ML

Autoencoders (AE) Classification without labels (CWOLA)

Luigi Favaro - Project B3b: Anomaly searches in jet physics CRC annual meeting - 01/03/2023

Anomaly score: MSE (*x*, *x*′)

Machine Learning oriented observable for jet tagging: $p_{\theta}(x)$

Machine Learning oriented observable for jet tagging: $p_{\theta}(x)$

- Auto-Encoders can easily tag complex signals;
- the opposite is not generally true \rightarrow 'complexity bias'

Machine Learning oriented observable for jet tagging: $p_{\theta}(x)$

- Auto-Encoders can easily tag complex signals;
- the opposite is not generally true \rightarrow 'complexity bias'

Robustness test: inverse training

- take a background and a signal signature
- train an AE on the direct and inverse task

Machine Learning oriented observable for jet tagging: $p_{\theta}(x)$

Luigi Favaro - Project B3b: Anomaly searches in jet physics CRC annual meeting - 01/03/2023

Example: QCD tagging

Expected phase space regions with only QCD jets, see e.g. τ_3/τ_2

- Auto-Encoders can easily tag complex signals;
- the opposite is not generally true \rightarrow 'complexity bias'

Robustness test: inverse training

- take a background and a signal signature
- train an AE on the direct and inverse task

Contrastive Learning approach

An interesting approach to the problem is **Contrastive Learning** (CLR):

- phrase the objective loss as a contrastive loss with
	- **• positive samples**
	- **• negative samples**
- shape a non-degenerate energy landscape

Contrastive Learning approach

An interesting approach to the problem is **Contrastive Learning** (CLR):

- phrase the objective loss as a contrastive loss with
	- **• positive samples**
	- **• negative samples**
- shape a non-degenerate energy landscape

Contrastive Learning approach

An interesting approach to the problem is **Contrastive Learning** (CLR):

- phrase the objective loss as a contrastive loss with
	- **• positive samples**
	- **• negative samples**
- shape a non-degenerate energy landscape

Normalized Auto-Encoders

Normalized Auto-Encoders

- define two neural networks like an usual Auto-Encoder;
- encode features in a low-dimensional latent space;
- set the latent space to a spherical hyper-surface \mathbb{S}^{d}_{z} ;
- use the reconstruction error as anomaly score, $MSE(x, x')$.

Building a NAE:

[Autoencoding under normalization constraints, Yoon S. et al. arXiv:2105.05735] [A Normalized Autoencoder for LHC triggers, Dillon B. et al. arXiv:2206.14225]

Training a NAE

Luigi Favaro - Project B3b: Anomaly searches in jet physics CRC annual meeting - 01/03/2023

We need to explore the anomaly score space during training \rightarrow **looking for a normalized distribution**

$$
\Omega = \int_{x} e^{-E_{\theta}(x)} dx
$$

[Autoencoding under normalization constraints, Yoon S. et al. arXiv:2105.05735] [A Normalized Autoencoder for LHC triggers, Dillon B. et al. arXiv:2206.14225]

Training a NAE

Define a Boltzmann probability distribution and use the MSE as energy function:

Luigi Favaro - Project B3b: Anomaly searches in jet physics CRC annual meeting - 01/03/2023

We need to explore the anomaly score space during training \rightarrow **looking for a normalized distribution**

 $e^{-E_{\theta}(x)}$ Ω

 $E_{\theta}(x, x') = ||x - x'||_2$

$$
p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{\Omega}
$$

$$
\Omega = \int_{x} e^{-E_{\theta}(x)} dx
$$

$$
e^{-E_{\theta}(x)} dx \qquad E_{\theta}(x, x') = ||x - x'||_2
$$

$$
\mathcal{L} = -\log p_{\theta}(x) = E_{\theta}(x) + \log \Omega
$$

we can train by minimizing the **negative log-likelihood** of the probability distribution:

[Autoencoding under normalization constraints, Yoon S. et al. arXiv:2105.05735] [A Normalized Autoencoder for LHC triggers, Dillon B. et al. arXiv:2206.14225]

Training a NAE

We need to explore the anomaly score space during training \rightarrow **looking for a normalized distribution**

Define a Boltzmann probability distribution and use the MSE as energy function:

Consider the gradients of the loss function:

Consider the gradients of the loss function:

$$
\nabla_{\theta} \mathcal{L} = \nabla_{\theta} E_{\theta}(x)
$$

Consider the gradients of the loss function:

$$
\nabla_{\theta} \mathcal{L} = \nabla_{\theta} E_{\theta}(x)
$$

Rewriting the gradient of the loss function:

 $\nabla_{\theta} \mathcal{L} = \mathbb{E} [\nabla E_{\theta}(\mathbf{x})]_{x \sim p_{data}} - \mathbb{E} [\nabla E_{\theta}(\mathbf{x})]_{x \sim p_{\theta}}$

• positive energy: gradient descent step

• negative energy: gradient ascent step

at equilibrium: $p_{\theta}(x) = p_{data}(x)$

Consider the gradients of the loss function:

$$
\nabla_{\theta} \mathcal{L} = \nabla_{\theta} E_{\theta}(x)
$$

Rewriting the gradient of the loss function:

 $\nabla_{\theta} \mathcal{L} = \mathbb{E} [\nabla E_{\theta}(\mathbf{x})]_{x \sim p_{data}} - \mathbb{E} [\nabla E_{\theta}(\mathbf{x})]_{x \sim p_{\theta}}$

• positive energy: gradient descent step

• negative energy: gradient ascent step

Normalization

Everything is really general…

… but why does this work?

Normalization

Ω *high-dimensional space* → *approx. high dimensional integral*

\bigwedge *Input space is high dimensional* \rightarrow sampling from p_{θ} ?

Everything is really general…

… but why does this work?

$$
x_{t+1} = x_t + \lambda_t \nabla_x \log p_\theta(x) + \sigma_t \epsilon \qquad \qquad \epsilon \sim \mathcal{N}(0,1)
$$

* small number of steps $\mathcal{O}(100)$, constrained into low energy regions by taking $\lambda > \sigma$

Sampling from p_A

Sampling is done via two Langevin Markov chains:

- latent space: using the energy $H_{\theta} = E_{\theta}(g(z), f(g(z)))$;
- input space: through the distribution $p_{\theta}(x)$.

- 2D projection of the latent space;
- decoder manifold for tops is more complex

Results: decoder manifold

We can study what happens during training:

0*.*000 0*.*735 1*.*470 2*.*205 2*.*940 3*.*675 4*.*410 5*.*145 5*.*880 6*.*615

- 2D projection of the latent space;
- decoder manifold for tops is more complex
- inducing an underlying metric via $\log \Omega$;
- after training both QCD and top jets are mapped in high reconstruction regions of the decoder manifold;

Results: decoder manifold

We can study what happens during training:

Results: QCD vs top tagging

- AE trained on jet images fails at tagging QCD jets;
- an AE is able to interpolate the simpler QCD features;
- NAE explicitly penalizes well-reconstructed regions not in the training dataset;
- nice performance on both tasks, symmetric training.

75

AutoEncoders not invariant to data preprocessing

[What's anomalous in LHC jets?, Buss, Dillon, Finke, Krämer et al. arXiv:2301.04660]

Create a **representation space** highly discriminative towards anomalous features during training

Luigi Favaro - Project B3b: Anomaly searches in jet physics CRC annual meeting - 01/03/2023

AutoEncoders not invariant to data preprocessing

[What's anomalous in LHC jets?, Buss, Dillon, Finke, Krämer et al. arXiv:2301.04660]

A **Contrastive Learning** approach to data representation: Self-supervision

- start from raw data (e.g. constituents)
- use pseudo-labels derived from data
- define observables as an optimization task
- invariant to symmetries
- highly discriminative
-
- Create a **representation space** highly discriminative towards anomalous features during training
	-

AutoEncoders not invariant to data preprocessing [What's anomalous in LHC jets?, Buss, Dillon, Finke, Krämer et al. arXiv:2301.04660]

A **Contrastive Learning** approach to data representation: Self-supervision

- start from raw data (e.g. constituents)
- use pseudo-labels derived from data
- define observables as an optimization task
- invariant to symmetries
- highly discriminative
-
- Create a **representation space** highly discriminative towards anomalous features during training
	-

AnomalyCLR

First application to reconstructed objects:

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]

Luigi Favaro - Project B3b: Anomaly searches in jet physics CRC annual meeting - 01/03/2023

AutoEncoders not invariant to data preprocessing [What's anomalous in LHC jets?, Buss, Dillon, Finke, Krämer et al. arXiv:2301.04660]

Normalized Auto-Encoders allow for:

- an energy-based description of an Auto-Encoder
- robust auto-encoder for anomaly detection

→ no complexity bias

- reconstruction error and log-likelihood are directly related:
	- → it could be used as a density estimation tool
- the dependence on an implicit bias is greatly reduced
- Example results: QCD vs top and BSM jet tagging

- Benchmarking NAEs for trigger applications
- Introduce self-supervision paradigm in NAE training

Outlook

Luigi Favaro - Project B3b: Anomaly searches in jet physics CRC annual meeting - 01/03/2023

GitHub: heidelberg-hepml/normalized-autoencoders

Future directions:

Outlook

Self-supervision: extracting features from unlabelled data through pseudo-tasks

- Allows us to build highly expressive physical representations
- Can be used for anomaly detection tasks
- Recently demonstrated at events level (ADC 2021)

- Self-supervision for semi-visible jet tagging
- Robust estimation of $p(x)$ in the representation space

Future directions:

Thanks for your attention!

Model-agnostic searches & ML

- Are we leaving stones unturned? Can we answer this question only via direct searches?
- **Anomaly searches**: define background from the data and find "anomalous" events

- •looking for group anomalies
- robust anomaly detection tool
- •level of agnosticism
- performing analysis (bump hunt, ABCD, ...)

a known problem in Machine Learning (or not?)

Already many interesting challenges/applications of ML techniques

Images for Jet tagging

Anomaly detection \longrightarrow as few as possible assumptions.

Preprocessing used to include known symmetries:

- center in (η, ϕ)
- rotate the principle axis
- normalize pixels

Average image:

Sampling from the model

- Latent space chains are defined by On-Manifold distribution and On-Manifold energy:
	- $\sigma_t + \sigma_t \epsilon$ *c* ~ *N*(0,1)
- Sampling is done via Metropolis-Adjusted Langevin* (MALA) Markov chains; • given the dimensionality of the input space the initialization of the MCMC do matter:
-

On-Manifold Initialization \rightarrow use latent space information

$$
z_{t+1} = z_t + \lambda_t \nabla_z \log q_\theta(z)
$$

On-manifold distribution:

On-manifold energy:

 $H_{\theta}(z) = E_{\theta}(g(z))$

Self-supervision

- Neural Networks are not invariant to physical symmetries in data
- Typically solved through "pre-processing"

- CLR: map raw data to a new representation/observables
- Self-supervision: during training we use pseudo-labels, not truth labels

Our goal: control the training to ensure we learn physical quantities

What the **representations** should have: invariance to certain transformations of the jets/events

AnomalyCLR on events

Dataset: mixture of SM events

 $W \to l \nu$ (59.2%) $Z \rightarrow ll$ (6.7%) $t\bar{t}$ production (0.3%) QCD multijet (33.8 %)

- 19 particles: MET, 4 electrons, 4 muons, and 10 jets
- 3 observables: p_T , η , ϕ
- $|\eta|$ < [3, 2.1, 4] for *e*, μ , *j* respectively

BSM benchmarks

$$
A \rightarrow 4l
$$

\n
$$
LQ \rightarrow b\nu
$$

\n
$$
h_0 \rightarrow \tau\tau
$$

\n
$$
h_+ \rightarrow \tau\nu
$$

The events are represented in format: (19, 3) entries

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]

Enhancing discriminative features

unsupervised training \longrightarrow no signals available during training

Representations may not be sensitive to BSM features:

- physical augmentations: alignment between positive pairs
- anomalous augmentations: discriminative power of possible BSM features

- azimuthal rotations
- *η*, *φ* smearing
- energy smearing

Physical augmentations:

$$
p_T \sim \mathcal{N}(p_T, f(p_T)), \qquad f(p_T) = \sqrt{0.052p_T^2 + 1.502p_T^2}
$$

Anom. augmentations are motivated by non-SM features \longrightarrow **model-agnosticism is preserved**

-
-

 $\eta' \thicksim \mathcal{N}(\eta, \sigma(p_T))$

 $\phi' \sim \mathcal{N}\big(\phi, \sigma(p_T)\big)$

Anomalous augmentations

Loss function:

 $\mathscr{L}_{AnomCLR} = -\log e^{[s(z_i, z'_i) - s(z_i, z_i^*)] / \tau} =$ *s*(*zi*

- multiplicity shifts:
	- add a random number of particles, update MET
	- split existing particles, keeping total $p_T^{}$ and MET fixed
- p_T and MET shifts

$$
\frac{z_i, z_i^*) - s(z_i, z_i)}{\tau}
$$

Anomalous augmentations:

Each augmentation increase sensitivity to BSM-like features

Results: improved sensitivity

Results: SIC CURVES

Effect of anomalous augmentations

