Project B3b: Anomaly searches in jet physics

Luigi Favaro

CRC annual meeting - Aachen 01/03/2023 Based on "A Normalized AutoEncoder for LHC triggers" - Dillon, Favaro, Krämer, Plehn, Sorrenson

Universität HEIDELBERG Zukunft. Seit 1386.

Model-agnostic searches & ML

Two big families:

Autoencoders (AE)

Anomaly score: MSE(x, x')

Luigi Favaro - Project B3b: Anomaly searches in jet physics

Classification without labels (CWOLA)

 $\mathbb{R}^{d_{\mathbf{x}}}$

 χ'

CRC annual meeting - 01/03/2023

Machine Learning oriented observable for jet tagging: $p_{\theta}(x)$

Machine Learning oriented observable for jet tagging: $p_{\theta}(x)$

- Auto-Encoders can easily tag complex signals;
- the opposite is not generally true \rightarrow 'complexity bias'

Machine Learning oriented observable for jet tagging: $p_{\theta}(x)$

- Auto-Encoders can easily tag complex signals;
- the opposite is not generally true \rightarrow 'complexity bias'

Robustness test: inverse training

- take a background and a signal signature
- train an AE on the direct and inverse task

Machine Learning oriented observable for jet tagging: $p_{\theta}(x)$

- Auto-Encoders can easily tag complex signals;
- the opposite is not generally true \rightarrow 'complexity bias'

Robustness test: inverse training

- take a background and a signal signature
- train an AE on the direct and inverse task

Example: QCD tagging

Expected phase space regions with only QCD jets, see e.g. τ_3/τ_2

Contrastive Learning approach

An interesting approach to the problem is **Contrastive Learning** (CLR):

- phrase the objective loss as a contrastive loss with
 - positive samples
 - negative samples
- shape a non-degenerate energy landscape

Contrastive Learning approach

An interesting approach to the problem is **Contrastive Learning** (CLR):

- phrase the objective loss as a contrastive loss with
 - positive samples
 - negative samples
- shape a non-degenerate energy landscape

Contrastive Learning approach

An interesting approach to the problem is **Contrastive Learning** (CLR):

- phrase the objective loss as a contrastive loss with
 - positive samples
 - negative samples
- shape a non-degenerate energy landscape

Normalized Auto-Encoders

Normalized Auto-Encoders

Building a NAE:

- define two neural networks like an usual Auto-Encoder;
- encode features in a low-dimensional latent space;
- set the latent space to a spherical hyper-surface \mathbb{S}^{d_z} ;
- use the reconstruction error as anomaly score, MSE(x, x').

[Autoencoding under normalization constraints, Yoon S. et al. arXiv:2105.05735] [A Normalized Autoencoder for LHC triggers, Dillon B. et al. arXiv:2206.14225]

Luigi Favaro - Project B3b: Anomaly searches in jet physics

We need to explore the anomaly score space during training \rightarrow looking for a normalized distribution

CRC annual meeting - 01/03/2023

Define a Boltzmann probability distribution and use the MSE as energy function:

$$\Omega = \int_{x} e^{-E_{\theta}(x)} dx$$

[Autoencoding under normalization constraints, Yoon S. et al. arXiv:2105.05735] [A Normalized Autoencoder for LHC triggers, Dillon B. et al. arXiv:2206.14225]

Luigi Favaro - Project B3b: Anomaly searches in jet physics

We need to explore the anomaly score space during training \rightarrow looking for a normalized distribution

 $p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{\Omega}$

 $E_{\theta}(x, x') = \|x - x'\|_{2}$

CRC annual meeting - 01/03/2023

We need to explore the anomaly score space during training \rightarrow looking for a normalized distribution

Define a Boltzmann probability distribution and use the MSE as energy function:

$$\Omega = \int_{x} e^{-E_{\theta}(x)} dx$$

we can train by minimizing the **negative log-likelihood** of the probability distribution:

$$\mathcal{L} = -\log p_{\theta}(x) = E_{\theta}(x) + \log \Omega$$

[Autoencoding under normalization constraints, Yoon S. et al. arXiv:2105.05735] [A Normalized Autoencoder for LHC triggers, Dillon B. et al. arXiv:2206.14225]

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{\Omega}$$

$$E_{\theta}(x, x') = ||x - x'||_2$$

Consider the gradients of the loss function:

$\nabla_{\theta} \log \Omega$

+

CRC annual meeting - 01/03/2023

Consider the gradients of the loss function:

$$\nabla_{\theta} \mathscr{L} = \nabla_{\theta} E_{\theta}(x)$$

Minimizes the usual AE reconstruction error;

Consider the gradients of the loss function:

$$\nabla_{\theta} \mathscr{L} = \nabla_{\theta} E_{\theta}(x)$$

Minimizes the usual AE reconstruction error;

Rewriting the gradient of the loss function:

 $\nabla_{\theta} \mathscr{L} = \mathbb{E} \left[\nabla E_{\theta}(\mathbf{x}) \right]_{x \sim p_{data}} - \mathbb{E} \left[\nabla E_{\theta}(\mathbf{x}) \right]_{x \sim p_{\theta}}$

positive energy: gradient descent step

negative energy: gradient ascent step

CRC annual meeting - 01/03/2023

Consider the gradients of the loss function:

$$\nabla_{\theta} \mathscr{L} = \nabla_{\theta} E_{\theta}(x)$$

Minimizes the usual AE reconstruction error;

Rewriting the gradient of the loss function:

 $\nabla_{\theta} \mathscr{L} = \mathbb{E} \left[\nabla E_{\theta}(\mathbf{x}) \right]_{x \sim p_{data}} - \mathbb{E} \left[\nabla E_{\theta}(\mathbf{x}) \right]_{x \sim p_{\theta}}$

positive energy: gradient descent step

• negative energy: gradient ascent step

at equilibrium: $p_{\theta}(x) = p_{data}(x)$

Normalization

... but why does this work?

Luigi Favaro - Project B3b: Anomaly searches in jet physics

Everything is really general...

Normalization

Everything is really general...

... but why does this work?

Luigi Favaro - Project B3b: Anomaly searches in jet physics

Ω high-dimensional space \rightarrow approx. high dimensional integral

 \bigwedge Input space is high dimensional \rightarrow sampling from p_{θ} ?

CRC annual meeting - 01/03/2023

Sampling from p_A

Sampling is done via two Langevin Markov chains:

- latent space: using the energy $H_{\theta} = E_{\theta}(g(z), f(g(z)));$
- input space: through the distribution $p_{\theta}(x)$.

$$x_{t+1} = x_t + \lambda_t \nabla_x \log p_{\theta}(x) + \sigma_t \epsilon \qquad \epsilon \sim \mathcal{N}(0, 1)$$

* small number of steps $\mathcal{O}(100)$, constrained into low energy regions by taking $\lambda > \sigma$

Results: decoder manifold

We can study what happens during training:

- 2D projection of the latent space;
- decoder manifold for tops is more complex

Results: decoder manifold

We can study what happens during training:

- 2D projection of the latent space;
- decoder manifold for tops is more complex
- inducing an underlying metric via $\log \Omega$;
- after training both QCD and top jets are mapped in high reconstruction regions of the decoder manifold;

CRC annual meeting - 01/03/2023

5.8805.1454.4103.6752.9402.2051.470

6.615

- 0.735
- 0.000

Results: QCD vs top tagging

- AE trained on jet images fails at tagging QCD jets;
- an AE is able to interpolate the simpler QCD features;
- NAE explicitly penalizes well-reconstructed regions not in the training dataset;
- nice performance on both tasks, symmetric training.

Signal		NAE	AE [1]	DVA
	AUC	$\epsilon_{\scriptscriptstyle B}^{-1}(\epsilon_{\scriptscriptstyle S}=0.2)$	AUC	AU
top (AE)	0.875	68	0.89	0.8
top (NAE)	0.91	80		
QCD (AE)	0.579	12	-	0.7
QCD (NAE)	0.89	350		

AutoEncoders not invariant to data preprocessing

[What's anomalous in LHC jets?, Buss, Dillon, Finke, Krämer et al. arXiv:2301.04660]

AutoEncoders not invariant to data preprocessing

[What's anomalous in LHC jets?, Buss, Dillon, Finke, Krämer et al. arXiv:2301.04660]

Create a representation space highly discriminative towards anomalous features during training

AutoEncoders not invariant to data preprocessing [What's anomalous in LHC jets?, Buss, Dillon, Finke, Krämer et al. arXiv:2301.04660]

A **Contrastive Learning** approach to data representation: Self-supervision

- start from raw data (e.g. constituents)
- use pseudo-labels derived from data
- define observables as an optimization task
- invariant to symmetries
- highly discriminative

- Create a representation space highly discriminative towards anomalous features during training

AutoEncoders not invariant to data preprocessing [What's anomalous in LHC jets?, Buss, Dillon, Finke, Krämer et al. arXiv:2301.04660]

A Contrastive Learning approach to data representation: Self-supervision

- start from raw data (e.g. constituents)
- use pseudo-labels derived from data
- define observables as an optimization task
- invariant to symmetries
- highly discriminative

First application to reconstructed objects:

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]

Luigi Favaro - Project B3b: Anomaly searches in jet physics

- Create a representation space highly discriminative towards anomalous features during training

AnomalyCLR

Outlook

Normalized Auto-Encoders allow for:

- an energy-based description of an Auto-Encoder
- robust auto-encoder for anomaly detection

 \rightarrow no complexity bias

- reconstruction error and log-likelihood are directly related:
 - \rightarrow it could be used as a density estimation tool
- the dependence on an implicit bias is greatly reduced
- Example results: QCD vs top and BSM jet tagging

Future directions:

- Benchmarking NAEs for trigger applications
- Introduce self-supervision paradigm in NAE training

Luigi Favaro - Project B3b: Anomaly searches in jet physics

GitHub: heidelberg-hepml/normalized-autoencoders

Outlook

Self-supervision: extracting features from unlabelled data through pseudo-tasks

- Allows us to build highly expressive physical representations
- Can be used for anomaly detection tasks
- Recently demonstrated at events level (ADC 2021)

Future directions:

- Self-supervision for semi-visible jet tagging
- Robust estimation of p(x) in the representation space

Thanks for your attention!

Model-agnostic searches & ML

- Are we leaving stones unturned? Can we answer this question only via direct searches?
- Anomaly searches: define background from the data and find "anomalous" events

a known problem in Machine Learning (or not?)

- looking for group anomalies
- robust anomaly detection tool
- level of agnosticism
- performing analysis (bump hunt, ABCD, ...)

Already many interesting challenges/applications of ML techniques

Images for Jet tagging

Anomaly detection \longrightarrow as few as possible assumptions.

Preprocessing used to include known symmetries:

- center in (η, ϕ)
- rotate the principle axis
- normalize pixels

Average image:

Sampling from the model

- Sampling is done via Metropolis-Adjusted Langevin* (MALA) Markov chains; • given the dimensionality of the input space the initialization of the MCMC do matter:

On-Manifold Initialization \rightarrow use latent space information

$$z_{t+1} = z_t + \lambda_t \nabla_z \log q_\theta(z)$$

Luigi Favaro - Project B3b: Anomaly searches in jet physics

- Latent space chains are defined by On-Manifold distribution and On-Manifold energy:
 - $\epsilon \sim \mathcal{N}(0,1)$ $() + \sigma_t \epsilon$

On-manifold distribution:

On-manifold energy:

 $H_{\theta}(z) = E_{\theta}(g(z))$

Self-supervision

- Neural Networks are not invariant to physical symmetries in data
- Typically solved through "pre-processing"

Our goal: control the training to ensure we learn physical quantities

What the representations should have: invariance to certain transformations of the jets/events

- CLR: map raw data to a new representation/observables
- Self-supervision: during training we use pseudo-labels, not truth labels

AnomalyCLR on events

Dataset: mixture of SM events

 $W \rightarrow l \nu$ (59.2%) $Z \rightarrow ll$ (6.7%) $t\bar{t}$ production (0.3%) QCD multijet (33.8 %)

The events are represented in format: (19, 3) entries

- 19 particles: MET, 4 electrons, 4 muons, and 10 jets
- 3 observables: p_T , η , ϕ
- $|\eta| < [3, 2.1, 4]$ for e, μ, j respectively

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]

Luigi Favaro - Project B3b: Anomaly searches in jet physics

BSM benchmarks

$$\begin{array}{l} A \rightarrow 4l \\ LQ \rightarrow b\nu \\ h_0 \rightarrow \tau\tau \\ h_+ \rightarrow \tau\nu \end{array}$$

Enhancing discriminative features

unsupervised training \longrightarrow no signals available during training

Representations may not be sensitive to BSM features:

- physical augmentations: alignment between positive pairs
- anomalous augmentations: discriminative power of possible BSM features

Physical augmentations:

- azimuthal rotations
- η, ϕ smearing
- energy smearing

Anom. augmentations are motivated by non-SM features \longrightarrow model-agnosticism is preserved

 $\eta' \sim \mathcal{N}\left(\eta, \sigma(p_T)\right)$ $\phi' \sim \mathcal{N}\left(\phi, \sigma(p_T)\right)$

 $p_T \sim \mathcal{N}(p_T, f(p_T)), \qquad f(p_T) = \sqrt{0.052p_T^2 + 1.502p_T^2}$

Anomalous augmentations

Loss function:

 $\mathscr{L}_{AnomCLR+} = -\log e^{[s(z_i, z_i') - s(z_i, z_i^*)]/\tau} = \frac{s(z_i)}{2}$

Anomalous augmentations:

- multiplicity shifts:
 - add a random number of particles, update MET
 - split existing particles, keeping total p_T and MET fixed
- p_T and MET shifts

Each augmentation increase sensitivity to BSM-like features

$$\frac{z_i, z_i^*) - s(z_i, z_i)}{\tau}$$

CRC annual meeting - 01/03/2023

Results: improved sensitivity

Results: SIC CURVES

Effect of anomalous augmentations

