Solving Beautiful Puzzles

K. Keri Vos

Maastricht University & Nikhef

Testing the Standard Model

Passed all tests up to 100 GeV

- Flavour symmetry broken by Yukawa couplings to the Higgs field
- Origin of mixing between families described by unitary CKM matrix
- Visualized by unitary triangles
- Dominant source of CP violation (antiparticle-particle asymmetry)

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Flavour symmetry broken by Yukawa couplings to the Higgs field
- Origin of mixing between families described by unitary CKM matrix
- Visualized by unitary triangles
- Dominant source of CP violation (antiparticle-particle asymmetry)

$$\begin{pmatrix} \mathbf{V_{ud}} & V_{us} & v_{ub} \\ V_{cd} & \mathbf{V_{cs}} & V_{cb} \\ v_{td} & V_{ts} & \mathbf{V_{tb}} \end{pmatrix}$$

Our understanding of Flavour is unsatisfactory

Thanks to Marcella Bona for providing the 2021 plots

$$ar{
ho} + iar{\eta} = -rac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

Thanks to Marcella Bona for providing the 2021 plots

$$\overline{ar{
ho}+iar{\eta}=-rac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}}$$

Huge amounts of data + theory advances = Precision frontier Tiny deviations from SM predictions constrain effects of New Physics

SM or beyond?

Challenge:

Disentangle SM long-distances effects from the effects of new interactions

SM or beyond?

Challenge:

Disentangle SM long-distances effects from the effects of new interactions

• Some puzzles related to *B* decays

SM or beyond?

Challenge:

Disentangle SM long-distances effects from the effects of new interactions

- Some puzzles related to B decays
- Revise previous assumptions: reliable theory uncertainties
- Look for the cleanest observables/methods

Puzzles in Flavour Physics

Puzzles in semileptonic decays

• Inclusive versus Exclusive

Disentangle SM long-dist

• V_{cb} and V_{ub}

Challenge:

• LFUV in R_D and R_{D*}

Puzzles in nonleptonic decays

- Missing CP violation
- $B \rightarrow \pi K$ puzzle

effects fre heffects

• $B \rightarrow D\pi$ puzzle

 V_{cb}

ctions

Puzzles in semileptonic decays: V_{ub} and V_{cb}

Exclusive versus Inclusive Theory

• Theory (Weak interaction): Transitions between quarks/partons

Exclusive versus Inclusive Theory

Figure from Marzia Bordone

- Theory (Weak interaction): Transitions between quarks/partons
- Observation: Transitions between hadrons

Challenge:

- Dealing with QCD at large distances/small scales
- Parametrize fundamental mismatch in non-perturbative objects
 - Calculable: Lattice or Light-cone sumrules
 - Measurable: from data

Longstanding Puzzle

2021 compilations

Inclusive $B \to X_c$ decays or the power of the heavy quark

Inclusive Decays

Inclusive $B \rightarrow X_c \ell \nu$: Heavy Quark Expansion (HQE)

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of iD
- operators contain chains of covariant derivatives $\langle B|\mathcal{O}_i^{(n)}|B\rangle = \langle B|\bar{b}_v(iD_\mu)\dots(iD_{\mu_n})b_v|B\rangle$

Inclusive Decays

Inclusive $B \rightarrow X_c \ell \nu$: Heavy Quark Expansion (HQE)

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of iD
- operators contain chains of covariant derivatives $\langle B|\mathcal{O}_i^{(n)}|B\rangle = \langle B|\bar{b}_v(iD_\mu)\dots(iD_{\mu_n})b_v|B\rangle$
- HQE parameters extracted from lepton energy and hadronic mass moments

Decay rate

 Γ_i are power series in $\mathcal{O}(\alpha_s)$

$$\Gamma = \Gamma_0 + \frac{1}{m_b}\Gamma_1 + \frac{1}{m_b^2}\Gamma_2 + \frac{1}{m_b^3}\Gamma_3 \cdots$$

- Γ_0 : decay of the free quark (partonic contributions), $\Gamma_1 = 0$
- Γ_2 : μ_π^2 kinetic term and the μ_G^2 chromomagnetic moment

$$2M_{B}\mu_{\pi}^{2} = -\langle B|\bar{b}_{v}iD_{\mu}iD^{\mu}b_{v}|B\rangle$$

$$2M_{B}\mu_{G}^{2} = \langle B|\bar{b}_{v}(-i\sigma^{\mu\nu})iD_{\mu}iD_{\nu}b_{v}|B\rangle$$

• Γ_3 : ρ_D^3 Darwin term and ρ_{LS}^3 spin-orbit term

$$2M_{B}\rho_{D}^{3} = \frac{1}{2} \left\langle B|\bar{b}_{v}\left[iD_{\mu},\left[ivD,iD^{\mu}\right]\right]b_{v}|B\right\rangle$$
$$2M_{B}\rho_{LS}^{3} = \frac{1}{2} \left\langle B|\bar{b}_{v}\left\{iD_{\mu},\left[ivD,iD_{\nu}\right]\right\}(-i\sigma^{\mu\nu})b_{v}|B\right\rangle$$

- Γ₄: 9 parameters Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109
- Γ₅: 18 parameters Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005

Non-perturbative matrix elements obtained from moments of differential rate

Charged lepton energy

Hadronic invariant mass

c

$$\langle E^n \rangle_{\rm cut} = \frac{\int_{E_{\ell} > E_{\rm cut}} dE_{\ell} E_{\ell}^n \frac{d\Gamma}{dE_{\ell}}}{\int_{E_{\ell} > E_{\rm cut}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}} \qquad \left\langle (M_X^2)^n \right\rangle_{\rm cut} = \frac{\int_{E_{\ell} > E_{\rm cut}} dM_X^2 (M_X^2)^n \frac{dM_X^2}{dM_X^2}}{\int_{E_{\ell} > E_{\rm cut}} dM_X^2 \frac{d\Gamma}{dM_X^2}}$$

$$R^*(E_{\rm cut}) = \frac{\int_{E_{\ell} > E_{\rm cut}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}{\int_0 dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}$$

- Moments up to n = 3, 4 and with several energy cuts available
- Experimentally necessary to use lepton energy cut

1. 2 (. 2) n dE

State-of-the-art in inclusive $b \rightarrow c$

Jezabek, Kuhn, NPB 314 (1989) 1; Melnikov, PLB 666 (2008) 336; Pak, Czarnecki, PRD 78 (2008) 114015; Becher, Boos, Lunghi, JHEP 0712 (2007) 062; Alberti, Gambino, Nandi, JHEP 1401 (2014) 147; Mannel, Pivovarov, Rosenthal, PLB 741 (2015) 290; Fael, Schonwald, Steinhauser, Phys Rev. D 104 (2021) 016003; Fael, Schonwald, Steinhauser, Phys Rev. Lett. 125 (2020) 052003; Fael, Schonwald, Steinhauser, Phys Rev. D 103 (2021) 014005,

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi}\right)^3 + \frac{\mu_{\pi}^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)}\right) \right. \\ \left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)}\right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi}\right)) + \mathcal{O}\left(\frac{1}{m_b^4}\right) + \cdots \right)$$

- Include terms up to $1/m_b^{3st}$ see also Gambino, Healey, Turczyk [2016]
- Recent progress: α_s^3 to total rate and kinetic mass Fael, Schonwald, Steinhauser [2020, 2021]
- Recent progress: $\alpha_s \rho_D^3$ for total rate Mannel, Pivovarov [2020]
- Includes all known α_s, α_s^2 and α_s^3 corrections!

Recent update:

$$|V_{cb}|_{
m incl} = (42.16 \pm 0.51) imes 10^{-3}$$

Gambino, Schwanda, PRD 89 (2014) 014022; Alberti, Gambino et al, PRL 114 (2015) 061802; Bordone, Capdevila, Gambino, Phys.Lett.B 822 (2021) 136679

Towards the ultimate precision in inclusive V_{cb}

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) \right. \\ \left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right)) + \mathcal{O}\left(\frac{1}{m_b^4} \right) + \cdots \right)$$

Challenge:

- Include higher-order $1/m_b$ and $lpha_s$ corrections
- Proliferation of non-perturbative matrix elements
 - 4 up to $1/m_b^3$
 - 13 up to $1/m_b^4$ Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
 - 31 up to $1/m_b^5$ Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109

Alternative V_{cb} determination

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)

$$u_{\mu}
ightarrow v_{\mu} + \delta v_{\mu}$$
 $\delta_{RP} v_{\mu} = \delta v_{\mu} \text{ and } \delta_{RP} iD_{\mu} = -m_b \delta v_{\mu}$

- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13)

Alternative V_{cb} determination

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)

$$v_{\mu}
ightarrow v_{\mu} + \delta v_{\mu}$$

$$\delta_{RP} v_{\mu} = \delta v_{\mu}$$
 and $\delta_{RP} iD_{\mu} = -m_b \delta v_{\mu}$

- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13)
- Caveat: standard lepton energy and hadronic mass moments are not RPI quantities

Alternative V_{cb} determination

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)

$$v_{\mu} \rightarrow v_{\mu} + \delta v_{\mu}$$

$$\delta_{RP} v_{\mu} = \delta v_{\mu}$$
 and $\delta_{RP} iD_{\mu} = -m_b \delta v_{\mu}$

- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13)
- Caveat: standard lepton energy and hadronic mass moments are not RPI quantities
- Alternative determination using only RPI q^2 moments including $1/m_b^4$
- First measurements of q² moments available Belle [2109.01685], Belle II [2205.06372]

Belle Collaboration [2109.01685, 2105.08001]

Centralized moments as function of $q_{\rm cut}^2$

New V_{cb} Determination

New V_{cb} determination

- Agreement at the $1-2\sigma$ level
- First pure data extraction of $1/m_b^4$ terms
- Important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

New V_{cb} determination

- Agreement at the $1-2\sigma$ level
- First pure data extraction of $1/m_b^4$ terms
- Important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

- Inputs for $B o X_u \ell \nu$ Next, B lifetimes Alex's project and $B o X_s \ell \ell$ KKV, Huber, et al.
- Extraction of $\rho_D^3 = 0.03 \pm 0.02$ much smaller than previous!
- In progress: New analysis including all the available data
- In progress: $1/m_c^2 1/m_b^3$ contributions

New V_{cb} determination

- Agreement at the $1-2\sigma$ level
- First pure data extraction of $1/m_b^4$ terms
- Important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

- Inputs for $B \to X_u \ell \nu$ Next, B lifetimes Alex's project and $B \to X_s \ell \ell$ KKV, Huber, et al.
- Extraction of $\rho_D^3 = 0.03 \pm 0.02$ much smaller than previous!
- In progress: New analysis including all the available data
- In progress: $1/m_c^2 1/m_b^3$ contributions

Exclusive V_{cb}

$B \rightarrow D$ and $B \rightarrow D^*$

- Form factors extracted from lattice, LC sumrules (+data)
- Knowledge on the q^2 dependence crucial
- $\bullet~BGL$ Boyd, Grinstein,Lebed or CLN/HQE Caprini, Lellouch, Neubert parametrization
 - Start of many discussions Gambino, Jung, Schacht, Bordone, van Dyck, Gubernari, ...
 - BGL: model independent parametrization using analyticity
 - CLN*: uses HQE at $1/m_b$ + assumptions *justified at time of introduction
- Improved HQE treatment including $1/m_c^2$ corrections Bordone, van Dyk, Jung [1908.09398]

$$|V_{cb}|_{\text{excl}} = (40.3 \pm 0.8) \times 10^{-3}$$

$B \rightarrow D$ and $B \rightarrow D^*$

- Form factors extracted from lattice, LC sumrules (+data)
- Knowledge on the q^2 dependence crucial
- $\bullet~BGL$ Boyd, Grinstein,Lebed or CLN/HQE Caprini, Lellouch, Neubert parametrization
 - Start of many discussions Gambino, Jung, Schacht, Bordone, van Dyck, Gubernari, ...
 - BGL: model independent parametrization using analyticity
 - CLN*: uses HQE at $1/m_b$ + assumptions *no longer justified since 2012ish
- Improved HQE treatment including $1/m_c^2$ corrections Bordone, van Dyk, Jung [1908.09398]

$$|V_{cb}|_{\rm excl} = (40.3\pm0.8)\times10^{-3}$$

- $B \rightarrow D^*$ form factors at nonzero recoil Fermilab/MILC [2105.14019]
 - tension between the slope of the lattice and experimental data
- Same form factors determine SM predictions for $R_{D^{(*)}}$
- New experimental and lattice data needed!

Latest Belle analysis [2301.07529]

• Using form factors without shape information:

$$|V_{cb}|_{
m excl} = (40.6 \pm 0.9) imes 10^{-3}$$

• Also quotes CLN values ightarrow shows the 2023 V_{cb} puzzle

The challenge of inclusive $B \rightarrow X_u$ decays

The challenge of V_{ub}

Exclusive $B \to \pi \ell \nu$

- Only one form factor
- Combining Lattice QCD [FNAL/MILC, RBC/UKQCD] and QCD sum rules

 $\begin{array}{l} \label{eq:excellength} & \text{Recent update:} \\ \text{Leljak, Melic, van Dyk [2102.07233]} \\ |V_{ub}|_{\text{excl}} = (3.77 \pm 0.15) \cdot 10^{-3} \end{array}$

The challenge of V_{ub}

Exclusive $B \to \pi \ell \nu$

- Only one form factor
- Combining Lattice QCD [FNAL/MILC, RBC/UKQCD] and QCD sum rules

 $\begin{array}{l} \label{eq:constraint} \begin{array}{l} \mbox{Recent update:} \\ \mbox{Leljak, Melic, van Dyk [2102.07233]} \\ \mbox{|V_{ub}|_{excl}} = (3.77 \pm 0.15) \cdot 10^{-3} \end{array}$

Inclusive $B \to X_u \ell \nu$

- Experimental cuts necessary to remove charm background
- Local OPE as in b
 ightarrow c cannot work
- Switch to different set-up using light-cone OPE
- Introduce non-perturbative shape functions (\sim parton DAs in DIS)
- Different frameworks: BLNP, GGOU, DGE, ADFR

Recent update:

Belle [2102.00020]

$$|V_{ub}|_{incl} = (4.10 \pm 0.28) \cdot 10^{-3}$$

Bosch, Lange, Neubert, Paz [2005] Greub, Neubert, Pecjak [0909.1609]; Beneke, Huber, Li [0810.1230]; Becher, Neubert [2005]

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b \Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b \Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections

Shape function parametrization

Preliminary! Olschewsky, Lange, Mannel, KKV [2304.xxxx]

- α_s^2 corrections give large corrections [see also Pezcjak 2019]
- Required to make precision predictions

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b \Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{
 m QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in b
 ightarrow c
 - In progress: include higher-moments
 - kinetic mass scheme as in b
 ightarrow c

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in b
 ightarrow c
 - In progress: include higher-moments
 - kinetic mass scheme as in b
 ightarrow c
- Shape function is non-perturbative and cannot be computed
 - In progress: new flexible parametrization

Shape function parametrization

Olschewsky, Lange, Mannel, KKV [2304.xxxx]

- All moments of shape functions are linked to HQE parameters
- Allows for a range of different shapes \rightarrow systematic uncertainty

Shape function parametrization

Olschewsky, Lange, Mannel, KKV [2304.xxxx]

- All moments of shape functions are linked to HQE parameters
- Allows for a range of different shapes \rightarrow systematic uncertainty

In progress:

Gunawardana, Lange, Mannel, Paz, Olschewsky, KKV [in progress]

$$|V_{ub}|_{incl} = Stay Tuned!$$

Inclusive versus Exclusive semileptonic decays

• Recently a lot of attention for the V_{cb} puzzle! [Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari]

Inclusive versus Exclusive semileptonic decays

- Recently a lot of attention for the V_{cb} puzzle! [Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari]
- Recent progress: $B_s
 ightarrow K \mu
 u$ [LHCb [2012.05143], Khodjamirian, Rusov [2017]]
- Unlikely to be due to NP Jung, Straub [2018]
- New data necessary: stay tuned!

New Physics?

Rahimi, Fael, Vos [2208.04282]

- NP would also influence the moments of the spectrum
- In progress: Requires a simultaneous fit of hadronic parameters and NP

New Physics?

Rahimi, Fael, Vos [2208.04282]

- NP would also influence the moments of the spectrum
- In progress: Requires a simultaneous fit of hadronic parameters and NP

Heavy quark expansion for charm?

• Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small ...

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small ...
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small ...
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb ...
- Lifetimes? \rightarrow Job of Alex and co.
- Constrain Weak Annihilation (WA) contributions
 - $ightarrow B_d
 ightarrow {m s}\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$
- Extraction of $|V_{cs}|$ and $|V_{cd}|$?

Challenges:

- Valence and non-valence WA operators at higher orders
- Scale for radiative corrections
- Charm mass definition

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small ...
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb ...
- Lifetimes? \rightarrow Job of Alex and co.
- Constrain Weak Annihilation (WA) contributions
 - $ightarrow B_d
 ightarrow {\it s}\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{\mu b}$
- Extraction of $|V_{cs}|$ and $|V_{cd}|$?

Challenges:

- Valence and non-valence WA operators at higher orders
- Scale for radiative corrections
- Charm mass definition

In short: how to handle the charm mass?

The HQE for charm

I: $m_Q \sim m_q \gg \Lambda_{
m QCD}$ OPE for $b
ightarrow c \ell ar{
u}$

- q is treated as a heavy degree of freedom
- two-quarks operators: $\bar{Q}_{\nu}(iD^{\alpha}\cdots iD^{\beta})Q_{\nu}$
- IR sensitivity to mass m_q

$$\Gamma\Big|_{1/m_Q^3} = \left[\frac{34}{3} + 8\log\rho + \dots\right] \frac{\rho_D^3}{m_Q^3}, \quad \text{with } \rho = (m_q/m_Q)^2$$

II: $m_Q \gg m_q \gg \Lambda_{
m QCD}\,$ start with q dynamical

- four-quark operators $(\bar{Q}_{v}\Gamma q)(q\bar{\Gamma}Q_{v})$
- $\rightarrow\,$ removed when matching onto two-quark operators
 - RGE running gives $\log(m_q/m_Q)$

III: $m_Q \gg m_q \sim \Lambda_{\rm QCD}$ OPE for $c \to s \ell \bar{\nu}$

- q dynamical degree of freedom
- four-quark operators remain in OPE
- no explicit $\log(m_q/m_Q)$: hidden inside new non-perturbative HQE parameters

IV: $m_Q \gg \Lambda_{ ext{QCD}} \gg m_q$ for b o u and c o d transitions

HQE for charm revisited

$$\rho=m_s^2/m_c^2$$

Fael, Mannel, KKV [1910.05234]

$$\begin{aligned} \frac{\Gamma(D \to X_{\rm s}\ell\nu)}{\Gamma_0} &= \left(1 - 8\rho - 10\rho^2\right)\mu_3 + \left(-2 - 8\rho\right)\frac{\mu_G^2}{m_c^2} + 6\frac{\tilde{\rho}_D^3}{m_c^3} \\ &+ \frac{16}{9}\frac{r_G^4}{m_c^4} + \frac{32}{9}\frac{r_E^4}{m_c^4} - \frac{34}{3}\frac{s_B^4}{m_c^4} + \frac{74}{9}\frac{s_E^4}{m_c^4} + \frac{47}{36}\frac{s_{qB}^4}{m_c^4} + \frac{\tau_0}{m_c^3} \end{aligned}$$

- RPI quantities (q^2 moments) depend on reduced set
- Data required to test description
- Comparison of extracted HQE parameters with B decays

HQE for charm revisited

$$ho = m_s^2/m_c^2$$
 Fael, Mannel, KKV [1910.05234]

$$\begin{aligned} \frac{\Gamma(D \to X_s \ell \nu)}{\Gamma_0} &= \left(1 - 8\rho - 10\rho^2\right) \mu_3 + \left(-2 - 8\rho\right) \frac{\mu_G^2}{m_c^2} + 6\frac{\tilde{\rho}_D^3}{m_c^3} \\ &+ \frac{16}{9} \frac{r_G^4}{m_c^4} + \frac{32}{9} \frac{r_E^4}{m_c^4} - \frac{34}{3} \frac{s_B^4}{m_c^4} + \frac{74}{9} \frac{s_E^4}{m_c^4} + \frac{47}{36} \frac{s_{qB}^4}{m_c^4} + \frac{\tau_0}{m_c^3} \end{aligned}$$

- RPI quantities (q^2 moments) depend on reduced set
- Data required to test description
- Comparison of extracted HQE parameters with B decays

Key question: HQE indeed applicable to inclusive charm decays?

HQE for charm revisited

$$ho = m_s^2/m_c^2$$
 Fael, Mannel, KKV [1910.05234]

$$\begin{aligned} \frac{\Gamma(D \to X_{\rm s}\ell\nu)}{\Gamma_0} &= \left(1 - 8\rho - 10\rho^2\right)\mu_3 + \left(-2 - 8\rho\right)\frac{\mu_G^2}{m_c^2} + 6\frac{\tilde{\rho}_D^3}{m_c^3} \\ &+ \frac{16}{9}\frac{r_G^4}{m_c^4} + \frac{32}{9}\frac{r_E^4}{m_c^4} - \frac{34}{3}\frac{s_B^4}{m_c^4} + \frac{74}{9}\frac{s_E^4}{m_c^4} + \frac{47}{36}\frac{s_{qB}^4}{m_c^4} + \frac{\tau_0}{m_c^3} \end{aligned}$$

- RPI quantities (q^2 moments) depend on reduced set
- Data required to test description
- Comparison of extracted HQE parameters with B decays

Key question: How to handle the charm mass?

How to handle the charm mass?

Short-Distances Masses

Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9704245, hep-ph/9405410; Czarnecki, Melnikov, Uraltsev, hep-ph/9708372.

- Renormalon issues require short-distance mass
- $\overline{\mathrm{MS}}$ for scales μ above heavy quark mass
- Kinetic mass: relating hadron versus quark mass QCD corrections using hard cut off μ

$$m_{Q}(\mu)^{\rm kin} = m_{Q}^{\rm Pole} - \left[\overline{\Lambda}\right]_{\rm pert} + \left[\frac{\mu_{\pi}^{2}}{2m_{Q}}\right]_{\rm pert} + \dots$$
$$[\overline{\Lambda}]_{\rm pert} = \frac{4}{3} C_{F} \frac{\alpha_{s}(m_{c})}{\pi} \mu \qquad [\mu_{\pi}^{2}]_{\rm pert} = C_{F} \frac{\alpha_{s}(m_{c})}{\pi} \mu^{2}$$

• Higher-order terms in the HQE generate corrections $(lpha_s/\pi)\mu^n/m_Q^n$.

Short-Distances Masses

Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9704245, hep-ph/9405410; Czarnecki, Melnikov, Uraltsev, hep-ph/9708372.

- Renormalon issues require short-distance mass
- $\overline{\mathrm{MS}}$ for scales μ above heavy quark mass
- Kinetic mass: relating hadron versus quark mass QCD corrections using hard cut off μ

$$m_{Q}(\mu)^{\rm kin} = m_{Q}^{\rm Pole} - \left[\overline{\Lambda}\right]_{\rm pert} + \left[\frac{\mu_{\pi}^{2}}{2m_{Q}}\right]_{\rm pert} + \dots$$
$$[\overline{\Lambda}]_{\rm pert} = \frac{4}{3}C_{F}\frac{\alpha_{s}(m_{c})}{\pi}\mu \qquad [\mu_{\pi}^{2}]_{\rm pert} = C_{F}\frac{\alpha_{s}(m_{c})}{\pi}\mu^{2}$$

- Higher-order terms in the HQE generate corrections $(\alpha_s/\pi)\mu^n/m_Q^n$.
- $\Lambda_{QCD} < \mu < m_Q$: expansion parameters μ/m_Q
 - Well established for $m_B \colon \mu/m_B \simeq 0.2$
 - Charm??

$$ightarrow \mu = 1 \text{ GeV}
ightarrow \mu/m_c \simeq 1$$

ightarrow \mu = 0.5 GeV
ightarrow \mu/m_c \simeq 0.4

Putting all power corrections to zero!

•
$$m_c^{\rm kin}(1 \text{ GeV}) = 1.16 \text{ GeV} (m_s \rightarrow 0 \text{ limit})$$

$$\Gamma(c \to s \ell \nu)^{\rm kin} = \Gamma_0 \left[1 + 7.7 \frac{\alpha_s(m_c)}{\pi} + 69 \left(\frac{\alpha_s(m_c)}{\pi} \right)^2 \right]$$

•
$$m_c^{\rm kin}(0.5~{
m GeV})=1.4~{
m GeV}~(m_s
ightarrow 0~{
m limit})$$

$$\Gamma(c
ightarrow s \ell
u)^{
m kin} = \Gamma_0 \left[1 + 1.2 rac{lpha_s(m_c)}{\pi} + 17 \left(rac{lpha_s(m_c)}{\pi}
ight)^2
ight]$$

Putting all power corrections to zero!

•
$$m_c^{\rm kin}(1 \text{ GeV}) = 1.16 \text{ GeV} (m_s \rightarrow 0 \text{ limit})$$

$$\Gamma(c \to s \ell \nu)^{\rm kin} = \Gamma_0 \left[1 + 7.7 \frac{\alpha_s(m_c)}{\pi} + 69 \left(\frac{\alpha_s(m_c)}{\pi} \right)^2 \right]$$

• $m_c^{\rm kin}(0.5~{
m GeV})=1.4~{
m GeV}~(m_s
ightarrow 0~{
m limit})$

$$\Gamma(c
ightarrow s \ell
u)^{
m kin} = \Gamma_0 \left[1 + 1.2 rac{lpha_s(m_c)}{\pi} + 17 \left(rac{lpha_s(m_c)}{\pi}
ight)^2
ight]$$

 $\mu=$ 0.5 GeV touches upon the non-perturbative regime?

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$${\it R}(s) = rac{\sigma(e^+e^-
ightarrow {
m hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Start from vacuum correlator

$$\int d^4x \, e^{-iqx} \langle 0 | T[j_{\mu}(x)j_{\nu}(0)] | 0 \rangle = (g_{\mu\nu}q^2 - q_{\mu}q_{\nu}) \Pi(q^2)$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + rac{4}{9} rac{3}{16\pi^2} \sum_{n=1}^{\infty} ar{C}_n\left(rac{q^2}{4m_c^2}
ight)$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + \ldots)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n\left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

• \bar{C}_n known up to α_s^2 and related to moments

$$ar{\mathcal{C}}_n = (4m_c^2)^n M_n \quad ext{with} \quad M_n = \int rac{ds}{s^{n+1}} R(s)$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

• $\bar{\mathcal{C}}_n$ known up to α_s^2 and related to moments

$$ar{\mathcal{C}}_n = (4m_c^2)^n M_n$$
 with $M_n = \int rac{ds}{s^{n+1}} R(s)$

• Replace m_c : $m_c = rac{1}{2} \left(rac{ar{C}_n}{M_n}
ight)^{1/(2n)}$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344 Boushmelev, Mannel, KKV [2301.05607]

$$\begin{split} \Gamma(b \to u\ell\nu) &= \frac{G_F^2 |V_{ub}|^2}{192\pi^3} \left(\frac{1}{2} \left(\frac{\bar{C}_n}{M_n} \right)^{1/2} \right)^5 \left(1 + \frac{\alpha_s(\mu)}{\pi} a_1 + \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 a_2 + \cdots \right) \\ &= \frac{G_F^2 |V_{cs}|^2}{6144\pi^3} \left(\frac{\bar{C}_n^{(0)}}{M_n} \right)^{5/2} \left(1 + \frac{\alpha_s(\mu)}{\pi} \left[a_1 + \frac{5}{2n} \frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}} \right] \\ &+ \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left[a_2 + \frac{5}{2n} a_1 \frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}} + \frac{5}{2n} \frac{\bar{C}_n^{(2)}}{\bar{C}_n^{(0)}} + \frac{5}{4n} \left(\frac{5}{4n} - 1 \right) \left(\frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}} \right)^2 \right] + \cdots \right) \end{split}$$

- Conclusion: pert. series improves a bit
- Scale at which α_s^2 vanishes rather low: 0.7 m_b
- In progress: Similar approach for the charm + power corrections

We are in the High-precision Era in Flavour Physics!

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision \rightarrow revealed some interesting puzzle

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision \rightarrow revealed some interesting puzzle
- Rethink our previous assumptions to solve them
We are in the High-precision Era in Flavour Physics!

- Reached impressive precision \rightarrow revealed some interesting puzzle
- Rethink our previous assumptions to solve them
- Stay tuned for new data and updated theory predictions

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision \rightarrow revealed some interesting puzzle
- Rethink our previous assumptions to solve them
- Stay tuned for new data and updated theory predictions

Close collaboration between theory and experiment necessary!

Backup

Inclusive B decays

Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, Mannel, · · ·

Optical Theorem

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4}(P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4} x \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4} x \, e^{-iq \cdot x} \, \langle B(v) | T \left\{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \right\} | B(v) \rangle \end{split}$$

where ${\cal H}_{eff}=J^{\mu}_{c}L_{\mu}$, $J^{\mu}_{c}=ar{b}\gamma^{\mu}P_{L}c$

Inclusive Decays: the OPE

Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, Mannel, · · ·

Heavy Quark Expansion

- B meson: $p_B = m_B v$
- Split the momentum b quark: $p_b = m_b v + k$, expand in $k \sim iD Q_v$
- Field-redefinition of the heavy field $Q(x) = exp(-im(v \cdot x))Q_v(x)$

$$\Gamma = 2 \operatorname{Im} \int d^4 x \, e^{-iq \cdot x} \langle B(v) | T \left\{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \right\} | B(v) \rangle$$
$$= 2 \operatorname{Im} \int d^4 x \, e^{i(m_b v - q) \cdot x} \langle B(v) | T \left\{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \right\} | B(v) \rangle$$

where $\widetilde{\mathcal{H}}_{eff} = \tilde{J}_{c}^{\mu} L_{\mu}$, $\tilde{J}_{c}^{\mu} = \bar{b}_{v} \gamma^{\mu} P_{L} c$, $\Gamma \propto 2 \text{Im} T^{\mu\nu} L_{\mu\nu}$

Inclusive Decays: the OPE

$$\frac{i}{\mathcal{Q}+i\mathcal{D}-m_c} = \frac{i}{\mathcal{Q}-m_c} + \frac{i}{\mathcal{Q}-m_c}(-i\mathcal{D})\frac{i}{\mathcal{Q}-m_c} + \frac{i}{\mathcal{Q}-m_c}(-i\mathcal{D})\frac{i}{\mathcal{Q}-m_c}(-i\mathcal{D})\frac{i}{\mathcal{Q}-m_c} + \dots$$

Setting up the OPE

Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, Mannel, · · ·

Operator Product Expansion (OPE)

- $C_i(\mu)$: short distance, perturbative coeficients
- $\langle B|\mathcal{O}_i|B\rangle_{\mu}$: non-perturbative forward matrix elements of local operators
- operators contain chains of covariant derivatives

$$\langle B|\mathcal{O}_i^{(n)}|B\rangle = \langle B|\bar{b}_v(iD_\mu)\dots(iD_{\mu_n})b_v|B\rangle$$

HQE for Charm revisited

• The general structure of the expansion for $D \to X_s \ell \bar{\nu}$:

$$d\Gamma = d\Gamma_0 + d\Gamma_{(2,1)} \left(\frac{\Lambda_{\rm QCD}}{m_c}\right)^2 + d\Gamma_{(2,2)} \left(\frac{m_s}{m_c}\right)^2 + d\Gamma_3 \left(\frac{\Lambda_{\rm QCD}}{m_c}\right)^3 + d\Gamma_{(4,1)} \left(\frac{\Lambda_{\rm QCD}}{m_c}\right)^4 + d\Gamma_{(4,2)} \left(\frac{m_s}{m_c}\right)^4 + \cdots$$

- Expansion parameters:
 - $1/m_c$
 - *a*s
 - m_s/m_c

Fael, Mannel, KKV, hep-ph/1910.05234

HQE for Charm revisited

- Systematic treatment of four-quark operators order by order in $1/m_Q$
- Set up OPE directly for Γ_{tot} and (M⁽ⁿ⁾) following the idea in Bauer, Falk, Luke hep-ph/9604290

HQE for Charm revisited

- $\log(m_c/m_b)$ in $B o X \ell
 u$ corresponds to $\log(\mu/m_c)$ in $D o X \ell
 u$
- caused by mixing of four-quark operators into two-quark operators:

$$C_i^{2q}(\mu) = C_i^{2q}(m_c) + \log\left(\frac{\mu}{m_c}\right) \sum_j \hat{\gamma}_{ij}^T C_j^{4q}(m_c)$$

Fael, Mannel, KKV

- Additional HQE parameters for c o q: $T_i \equiv rac{1}{2m_D} \langle D | O_i^{4 ext{q}} | D
 angle$
- Up to $1/m_c^3$ only <u>one</u> extra HQE param:

$$\begin{aligned} \tau_0 &= 128\pi^2 \left(T_1(\mu) - T_2(\mu) - 2\frac{T_3(\mu)}{m_c} + \frac{T_4(\mu)}{m_c} \right) \\ &+ \log\left(\frac{\mu^2}{m_c^2}\right) \left[8\tilde{\rho}_D^3 + \frac{1}{m_c} \left(\frac{16}{3}r_G^4 - \frac{16}{3}r_E^4 + \frac{8}{3}s_E^4 - \frac{1}{3}s_{qB}^4 - 12m_s^4 \right) \right] \end{aligned}$$

• Up to $1/m_c^4$ only two extra HQE params: au_m and au_ϵ .

Moments of the spectrum

Gambino, Schwanda Phys. Rev. D 89, 014022 (2014)

$B \rightarrow D^*$ form factors

Fermilab-MILC [2105.14019]

- Tension between the slope of the lattice and experimental data
- Same form factors determine SM predictions for $R_{D^{(*)}}$
- New experimental and lattice data needed!

Ratios and isospin sumrules

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

• QED gives sub-percent corrections to Branching ratios

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

• Beneficial to consider ratios in which QCD is suppressed

$$R_{L} = \frac{2\mathrm{Br}(\pi^{0}K^{0}) + 2\mathrm{Br}(\pi^{0}K^{-})}{\mathrm{Br}(\pi^{-}K^{0}) + \mathrm{Br}(\pi^{+}K^{-})} = R_{L}^{\mathrm{QCD}} + \cos\gamma\mathrm{Re}\,\delta_{\mathrm{E}} + \delta_{U}$$

• new structure dependent QED corrections enter linearly, QCD only quadratically

$$\delta_E = (-1.12 + 0.16i) \cdot 10^{-3}$$

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

• Beneficial to consider ratios in which QCD is suppressed

$$R_{L} = \frac{2\mathrm{Br}(\pi^{0}K^{0}) + 2\mathrm{Br}(\pi^{0}K^{-})}{\mathrm{Br}(\pi^{-}K^{0}) + \mathrm{Br}(\pi^{+}K^{-})} = R_{L}^{\mathrm{QCD}} + \cos\gamma\mathrm{Re}\,\delta_{\mathrm{E}} + \delta_{U}$$

new structure dependent QED corrections enter linearly, QCD only quadratically

$$\delta_E = (-1.12 + 0.16i) \cdot 10^{-3}$$

• Ultrasoft effects dominant

$$\delta_U \equiv rac{1 + U(\pi^0 K^-)}{U(\pi^- ar{K}^0) + U(\pi^+ K^-)} - 1 = 5.8\%$$

Beneke, Boer, Toelstede, KKV, JHEP 11 (2020) 081 [2008.10615]

• Beneficial to consider ratios in which QCD is suppressed

$$R_{L} = \frac{2\mathrm{Br}(\pi^{0}K^{0}) + 2\mathrm{Br}(\pi^{0}K^{-})}{\mathrm{Br}(\pi^{-}K^{0}) + \mathrm{Br}(\pi^{+}K^{-})} = R_{L}^{\mathrm{QCD}} + \cos\gamma\mathrm{Re}\,\delta_{\mathrm{E}} + \delta_{U}$$

new structure dependent QED corrections enter linearly, QCD only quadratically

$$\delta_E = (-1.12 + 0.16i) \cdot 10^{-3}$$

• Ultrasoft effects dominant

$$\delta_U \equiv \frac{1 + U(\pi^0 K^-)}{U(\pi^- \bar{K}^0) + U(\pi^+ K^-)} - 1 = 5.8\%$$

• Combined QED effect larger than QCD uncertainty!

Exclusive $B \to D^{(*)} \ell \bar{\nu}$

- Form factor required (only for $B \rightarrow D$ available at different kinematic points)
- Different parametrizations for form factors: CLN Caprini, Lellouch, Neubert [1997] and BGL Boyd, Grinstein, Lebed [1995]
 - BGL: model independent based on unitarity and analyticity
 - CLN: Simple parametrization using HQE relations
- Some inconsistencies in the Belle data were pointed out see e.g. van Dyk, Jung, Bordone, Gubernari [2104.02094]

Inclusive $B \to X_c \ell \nu$

• Determined fully data driven including $1/m_b$ power corrections

Recently a lot of attention for the V_{cb} puzzle! Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari

Stay tuned!

Mannel, Rahimi, KKV [in progress]

<u>NP in the τ sector</u>

- Affects also inclusive $B
 ightarrow X_c au
 u$ Rusov, Mannel, Shahriaran [2017]
- Lepton and hadronic moments challenging to measure
- Recently moments of the five-body decay $B \rightarrow X_c \tau (\rightarrow \mu \nu \nu) \nu$ investigated Mannel, Rahimi, KKV [2105.02163]
- Would also be influenced by NP [in progress]
- Specific NP scenarios from global fit Mandal, Murgui, Penuela, Pich [2004.06726]

Preliminary!

Rahimi, Mannel, KKV JHEP 09 (2021) 051 [arXiv: 2105.02163];

Contribution from five-body charm decay to $b
ightarrow c \ell
u$ via

$$B(p_B) \to X_c(p_{X_c})(\tau(q_{[\tau]}) \to \mu(q_{[\mu]})\nu_{\mu}(q_{[\bar{\nu}_{\mu}]})\nu_{\tau}(q_{[\nu_{\tau}]}))\bar{\nu}_{\tau}(q_{[\bar{\nu}_{\tau}]})$$

• Phase space suppressed:

$$\frac{\Gamma_{\rm tot}(b \to c\tau (\to \ell \bar{\nu}_\ell \nu_\tau) \bar{\nu}_\tau)}{\Gamma_{\rm tot}(b \to c \ell \bar{\nu})} \sim 4.0\%$$

- Experimentally effects diminished by cutting on the invariant mass of the B
- Can be calculated exactly in the HQE

$$\frac{d^8 \Gamma}{dq^2 dq^2_{\nu\bar{\nu}} dp^2_{\chi_c} d^2 \Omega d\Omega^* d^2 \Omega^{**}} = -\frac{3G_F^2 |V_{cb}|^2 \sqrt{\lambda} (q^2 - m_{\tau}^2) (m_{\tau}^2 - q^2_{\nu\bar{\nu}}) \mathcal{B}(\tau \to \mu\nu\nu)}{2^{17} \pi^5 m_{\tau}^8 m_b^3 q^2} W_{\mu\nu} L^{\mu\nu}$$

- $L_{\mu\nu}$ five-body leptonic tensor (narrow-width limit for au)
- $\dot{W}_{\mu\nu}$ standard hadronic tensor including HQE parameters
- Interesting to search for new physics! Mannel, Rusov, Shahriaran (2017); Mannel, Rahimi, KKV [in progress]

Shape functions

Bigi, Shifman, Uraltsev, Luke, Neubert, Mannel, · · ·

• Leading order shape functions

$$2m_B f(\omega) = \langle B(v) | \bar{b}_v \delta(\omega + i(n \cdot D)) b_v | B(v) \rangle$$

• Charged Lepton Energy Spectrum (at leading order)

$$rac{d\Gamma}{dy}\sim\int d\omega heta(m_b(1-y)-\omega)f(\omega)$$

• Moments of the shapefunction are related to HQE $(b \rightarrow c)$ parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{m_b^3}\delta'''(\omega) + \cdots$$

• Shape function is non-perturbative and cannot be computed

Shape functions

Lange, Neubert, Bosch, Paz

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- \rightarrow S: Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- Framework to include radiative corrections (+ NNLL resummation)
- Introduces 3 subleading shape functions

Shape functions

Lange, Neubert, Bosch, Paz

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- \rightarrow S: Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- Framework to include radiative corrections (+ NNLL resummation)
- Introduces 3 subleading shape functions
- Other approach: OPE with hard-cutoff μ Gambino, Giordano, Ossola, Uraltsev
 - Use pert. theory above cutoff and parametrize the infrared
 - Different definition of the shape functions
- Shape functions have to be parametrized and obtained from data

New Physics explanation?

• Too many to count: exclusive $B \rightarrow D^{(*)}$ in combination with

$$R_{D^{(*)}} = \frac{B \to D^{(*)} \tau \nu}{B \to D^{(*)} \mu \nu}$$

- For inclusive $b \rightarrow c$ less analyses
 - RH-current, scalar and tensor NP contributions to rate Jung, Straub [2018]
 - RH-current to moments Feger, Mannel, et. al. [2010]
 - NP for moments KKV, Fael, Rahimi [in progress]

