Light long-lived particles at colliders

Elias Bernreuther

Fermilab

Annual Meeting of the CRC TRR 257, Aachen, March 2, 2023

based on

ongoing work, arXiv:2303.XXXXX with Bogdan Dobrescu

JHEP 12 (2022) 005, arXiv:2203.08824 with Kai Böse, Torben Ferber, Christopher Hearty, Felix Kahlhoefer, Alessandro Morandini and Kai Schmidt-Hoberg

New physics off the beaten track

- LHC has collected an enormous amount of data already:
 - 137 fb^{-1} in Run 2; on its way to collecting 300 fb^{-1} in Run 3
- Still, this is **only a small fraction** of the final luminosity goal

Active frontier with a great deal of recent progress:

Long-lived particles

i.e. particles with macroscopic decay lengths of $\mathcal{O}(mm)$ to $\mathcal{O}(km)$

Landscape of displaced decays

Organize approximately by mass and decay position

see e.g. Alimena et al., 1903.04497 for review

Landscape of displaced decays

Organize approximately by mass and decay position

see e.g. Alimena et al., 1903.04497 for review

Light long-lived particles

In this talk: Two different ways to close this gap,

illustrated with two models

Light LLPs from vectorlike leptons at the LHC, in particular **in the muon chambers** Light LLPs from strongly interacting dark sector at **Belle II**

- In both cases, detectors are used in new, creative ways that they were not originally intended for.
- In both cases, light particles are long-lived due to a mass hierarchy.

What heavy new physics could drive a macroscopic LLP lifetime?

- Heavy new **bosons**: second part of this talk
- Heavy new fermions: have to be vectorlike

(left- and right-handed fields have the gauge charges)

due to stringent constraints on new chiral fermions

- Vectorlike fermions among the simplest possible additions to the SM
- Novel form of matter
- Part of a large number of top-down BSM models (grand unification, compositeness, extra dimensions ...)

Most minimal possibility: Singlet vectorlike lepton ${\mathscr C}$

Vectorlike leptons: standard story

• Gauge eigenstates: vectorlike lepton \mathscr{E}_L , \mathscr{E}_R

(1, 1, -1) under SU(3)xSU(2)xU(1)

see e.g. Kumar & Martin, 1510.03456

• Couplings of $\mathscr E$ to third-generation leptons:

$$-m_{\mathcal{E}\mathcal{E}}\overline{\mathcal{E}}_{L}\mathcal{E}_{R}-m_{\mathcal{E}3}\overline{\mathcal{E}}_{L}e_{R}^{3}-y_{3}H\overline{\ell}_{L}^{3}e_{R}+\mathrm{H.c}$$

Mass mixing

physical particles: au and au'

Q

• Mass eigenstate au' decays via channels

 $\tau' \rightarrow \tau Z, \ \tau' \rightarrow \tau h, \ \tau' \rightarrow \nu W$

ATLAS and CMS searches exclude these standard VLLs if $m_{\tau'} \lesssim 176 \text{ GeV}$

ATLAS collaboration, arXiv:1506.01291

H

ATLAS-CONF-2022-044

Long-lived particles from vectorlike leptons

How can vectorlike leptons be connected to long-lived particles?

- Consider complex scalar ϕ , responsible for VLL mass
- Most general Yukawa interaction:

$$\begin{split} &-\phi \,\overline{\mathscr{C}}_L \left(y_{\mathscr{C}} e^{i\beta_{\mathscr{C}}} \, \mathscr{C}_R + y_o \, e^{i\beta_o} \, e_R^3 \right) + \mathrm{H.c} \, . \\ & y_{\mathscr{C}}, y_o > 0 \quad \text{and} \quad 0 \leq \beta_{\mathscr{C}}, \beta_o < 2\pi \end{split}$$

• After scalar acquires vacuum expectation value:

$$\phi = \left(v_{\phi} + \frac{1}{\sqrt{2}} \varphi_{\tau} \right) \exp \left(i a_{\tau} / v_{\phi} \right)$$
pseudoscalar
vev scalar

Long-lived particles from vectorlike leptons

• VEVs v_H , v_ϕ and explicit mass terms $m_{\mathcal{EE}}$, $m_{\mathcal{E3}}$ control mixing with SM third generation

$$(\overline{e}_{L}^{3}, \overline{\mathscr{C}}_{L}) \begin{pmatrix} y_{3} v_{H} & 0 \\ m_{\mathscr{C}3} + y_{o} e^{i\beta_{o}} v_{\phi} & m_{\mathscr{C}\mathscr{C}} + y_{\mathscr{C}} e^{i\beta_{\mathscr{C}}} v_{\phi} \end{pmatrix} \begin{pmatrix} e_{R}^{3} \\ \mathscr{C}_{R} \end{pmatrix}$$
$$\begin{pmatrix} e_{L,R}^{3} \\ \mathscr{C}_{L,R} \end{pmatrix} = \begin{pmatrix} c_{L,R} & s_{L,R} \\ -s_{L,R} & c_{L,R} \end{pmatrix} \begin{pmatrix} \tau_{L,R} \\ \tau'_{L,R} \end{pmatrix}$$

Constraint on mixing angle: $s_L < 0.037$ from $\frac{D(Z)}{D(Z)}$

$$\frac{B(Z \to \tau^+ \tau^-)}{B(Z \to \ell^+ \ell^-)}$$

• Interesting new BSM decay modes of VLL mass eigenstate:

$$au'
ightarrow au a_{ au}$$
 , $au'
ightarrow au arphi_{ au}$

in addition to standard SM modes $\tau' \rightarrow \tau Z$, $\tau' \rightarrow \tau h$, $\tau' \rightarrow \nu W$

Long-lived particles from vectorlike leptons

Case 1: Pseudo-Goldstone limit: entire mass of VLL is generated by ϕ

 a_{τ} is naturally light pseudo-Goldstone boson

 Ratio of BSM-to-SM branching fractions of VLL is set purely by VEVs, independent of Yukawa coupling:

$$\frac{\Gamma\left(\tau' \to \tau a_{\tau}\right)}{\Gamma\left(\tau' \to \mathrm{SM}\right)} = \frac{v_H^2}{4v_{\phi}^2} \left(1 + \frac{M_h^2}{2m_{\tau'}^2} + O(M_h^4/m_{\tau'}^4)\right)$$

explored in ongoing separate project

In this talk focus on:

Case 2: With explicit mass terms $m_{\mathscr{C}}$, $m_{\mathscr{C}}$, $m_{\mathscr{C}}$

Large parameter space with BR $(\tau' \rightarrow \tau a_{\tau}) \approx 100 \%$

Long-lived particle production

Potential LHC reach in au' mass to well above $1 \,\, TeV$

Long-lived particle decay

• If a_{τ} is lighter than τ' , its **dominant decay mode is** $a_{\tau} \to \gamma \gamma$ **via heavy** τ' **loop**

$$a_{\tau} = -\frac{\tau'}{\tau'}$$

 Heavy VLL in the loop leads to macroscopic a_τ decay length even for sizable couplings:

$$c\tau_a = 0.23 \text{ m} \times \left(\frac{0.1}{y_{\tau'}}\right)^2 \left(\frac{1 \text{ GeV}}{m_{a_{\tau}}}\right)^3 \left(\frac{m_{\tau'}}{400 \text{ GeV}}\right)^2$$

• In addition, a_{τ} picks up substantial boost

Majority of decays can easily occur meters from the interaction point

Search for LLPs in muon system

The muon system is several meters away!

- Recent CMS search 2107.04838 and ATLAS search 1811.07370
- **CMS search** first search to use muon system like a calorimeter for LLPs

Sensitivity depends on LLP energy, not on mass

CMS collaboration, 2107.04838

Unique sensitivity to decay positions several meters away from interaction point

Projected LLP sensitivity in muon system

- Motivated by VLL+LLP model, propose a search for LLPs in the muon system in association with prompt taus
- Include full muon system with barrel + endcaps, leverage prompt taus for trigger and background suppression

Vast improvement over sensitivity of existing search

Complementarity with missing energy searches

• LLPs decaying to photons after the ECAL **appear as missing energy**

complementary constraint from missing energy searches

LLP search superior for shorter lifetimes and higher VLL masses and scales more favorably with luminosity

Intermediate LLP decay lengths \sim tens of centimeters to meters are challenging to cover at the LHC

One possibility (we just saw):

Use parts of the detector in novel ways and avoid vertex reconstruction

Other possibility:

Different experiments,

in particular B factories

Dark sector searches at the intensity frontier

Belle II experiment at SuperKEKB e^+e^- collider with $\sqrt{s} \sim 10.6 \text{ GeV}$

- Among the world-leading probes of B mesons (along with LHCb)
- Very well suited also for searching for light LLPs beyond the SM

see e.g. Belle II physics book, arXiv:1808.10567

- Advantages over LHCb with respect to light LLPs:
 - Longer decay lengths in the lab system covered (up to $\sim 60~{
 m cm}$)
 - Typically lower LLP boost due to smaller c.o.m. energy

sensitive to much longer proper decay lengths

Particularly striking example: dark showers

Strongly interacting dark sector with effective portal

• Dark showers occur in **strongly interacting dark sectors** resembling SM QCD sector:

$$\mathscr{L}_{\text{dark QCD}} \supset -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu,a} + \overline{q_d} i \mathscr{D} q_d - \overline{q_d} M_q q_d$$

• Below the dark confinement scale:

Dark pions π_d are excellent DM candidates. see e.g. Kribs & Neal arXiv:1604.04627 for review **Dark vector mesons** ρ_d are generically unstable:

can set dark pion relic abundance via "forbidden" annihilations $\pi_d \pi_d \rightarrow \rho_d \rho_d$ gives rise to **visible signals at accelerator experiments** EB et al. arXiv:1907.04346

• Mediator with mass $\gg \sqrt{s_{\text{Belle II}}}$ can be described by an **effective interaction** between dark quarks and SM fermions:

$$\mathscr{L}_{\rm eff} \supset \frac{1}{\Lambda^2} \sum_f q_f \bar{f} \gamma^{\mu} f \bar{q}_{\rm d} \gamma_{\mu} q_{\rm d}$$

 Λ : scale of the effective interaction

Dark showers at Belle II

• If dark confinement scale $\ll \sqrt{s}$, production of dark quarks via effective interaction leads to **dark shower** and production of dark mesons

• Signature of light dark showers:

(multiple) displaced decays number varying from event to event

 Rate of dark shower production through effective operator scales as

$$\sigma(e^+e^- \to q_{\rm d}\bar{q}_{\rm d}) \propto \frac{s}{\Lambda^4}$$

• The ρ_d^0 mesons decay to visible SM particles with decay length

$$c\tau_{
ho_{\rm d}^0} \propto rac{\Lambda^4}{m_{
ho_{\rm d}}^5}$$

Parameter space of low-energy effective theory only consists of Λ and $m_{\rho_{\rm d}}$.

Displaced vertex search at Belle II

- No dedicated search for dark showers at B factories yet, but model-independent searches for LLPs
- **Prospective search for displaced vertices at Belle II** Duerr et al., arXiv:1911.03176 and arXiv:2012.08595, and EB et al. arXiv:2203.08824

Signature: displaced decays to pairs of oppositely charged leptons, pions or kaons **Transverse distance** 0.2 cm < R < 60 cm **Trigger** on sum of energy depositions (E > 1 GeV), two tracks or one high- p_T muon **Selection criteria:**

electron pairs	muon pairs
$\begin{array}{c} p(e^+), p(e^-) > 0.1 \ {\rm GeV} \\ m_{e^+e^-} > 0.03 \ {\rm GeV} \\ \alpha(e^+,e^-) > 0.025 \ {\rm rad} \end{array}$	$p(\mu^+), p(\mu^-) > 0.05 { m GeV}$ $m_{\mu^+\mu^-} < 0.48 { m GeV} or m_{\mu^+\mu^-} > 0.52 { m GeV}$
Displaced vertex position	
$\begin{array}{ll} 0.2\ {\rm cm} < R < 0.9\ {\rm cm}\ or\ 17\ {\rm cm} < R < 60\ {\rm cm} & 0.2\ {\rm cm} < R < 60\ {\rm cm} \\ -55\ {\rm cm} \le z \le 140\ {\rm cm} \\ 17^\circ \le \theta_{\rm lab} \le 150^\circ \end{array}$	

Negligible background expected

Belle II LLP sensitivity for dark showers

Projected sensitivity for dark showers of model-agnostic Belle II search

Displaced vertex search at Belle II can greatly improve over BaBar in cosmologically viable parameter space even with just 500 fb^{-1} of data.

Complementary constraints

Additional constraints on the low-energy effective theory:

- Existing searches for visible resonances at BaBar and KLOE yield complementary constraints on promptly decaying dark mesons.
- Events with invisible dark shower and ISR photon lead to single photon signal with continuous energy spectrum.

Projection weaker than for bump hunt but competitive at small LLP mass

How does Belle II compare to LHCb?

 Relevant LHCb search: model-agnostic search for displaced dimuon resonances

LHCb collaboration, arXiv:2007.03923

Belle II vs LHCb

LHCb sensitivity depends on combination of mediator couplings underlying

- Belle II sensitive to much longer decay lengths ($c\tau \gtrsim O(\text{meters})$)
- Strong case for Belle II search even in least favorable scenario

Conclusions

- Long-lived particles are extremely well-motivated and could still be discovered at the LHC
- Rapidly expanding search program, but many remaining gaps especially light LLPs, decay lengths ~ meters
- Wealth of interesting models; here: VLL with LLP, dark showers
- Ways to close gap:
 - Creative use of existing detectors, in particular muon system
 - Other, lower-energy experiments, in particular Belle II