
Machine Learning
for HEP Theory
Sapientia ex machina?

CRC Annual Meeting — Aachen 2023

Ramon Winterhalder — UC Louvain

Why talk about machine learning?

because

• rich toolbox of algorithms to develop expressive and flexible models for science

• fast development of new methods and algorithms in the past years

• promising applications in both theory and experiment

• large interest in HEP community: IML, ML4Jets, MCnet, workshops,..

Why talk about machine learning?

LHC analysis (oversimplified)

Theory of everything

Simulation

Detector-level  
observables

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

New Physics?

LHC analysis + ML

Theory of everything

Simulation

Detector-level  
observables

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

Parameter
estimation/
inference

Fast
simulation

Experimental
design

Online
processing/
triggering

Data
curation

New Physics?

LHC analysis + ML

Simulation

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

Experimental
design

Online
processing/
triggering

Data
curation

New Physics?
Theory of everything

Parameter
estimation/
inference

Fast
simulation

Detector-level  
observables

LHC analysis + ML

Simulation

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

Experimental
design

Online
processing/
triggering

Data
curation

New Physics?
Theory of everything

Parameter
estimation/
inference

Fast
simulation

Detector-level  
observables

How to simulate LHC events?

How to simulate LHC events

Incoming proton

Hard process

Shower Hadronization

Detector

How to simulate LHC events

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML aided simulation chain

ℒ
Theory Shower EventsHard process Hadronization Detectors

End-to-end generation

Phase-space generation
+ Amplitudes

ML aided simulation chain

ℒ
Theory Shower EventsHard process Hadronization Detectors

End-to-end generation

Phase-space generation
+ Amplitudes

Unfolding

Matrix element method

ML aided simulation chain

Matrix element method

Shower EventsHard process Hadronization Detectors

End-to-end generation

Unfolding

ℒ
Theory

Phase-space generation
+ Amplitudes

ML aided simulation chain

Matrix element method

Shower EventsHard process Hadronization Detectors

End-to-end generation

Unfolding

ℒ
Theory

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections

ML aided simulation chain

Matrix element method

Shower EventsHard process Hadronization Detectors

End-to-end generation

Unfolding

ℒ
Theory

Calculate (differential) cross sections

dσ ∼ pdf × |M(x) |2 × dΦ

Phase space integration

⟨O⟩ = ∫ dx f(x) O(x)

ML aided simulation chain

Are there bottlenecks?

Are there bottlenecks?

Yes! Because

• Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

• Another problem is the high-dimensionality of the integrand

• Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

• Use Monte Carlo integration instead: error ∼ N−1/2

Are there bottlenecks?

Yes! Because

• Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

• Another problem is the high-dimensionality of the integrand

• Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

• Use Monte Carlo integration instead: error ∼ N−1/2

Efficiency still a problem!! !

Are there bottlenecks?

Yes! Because

• Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

• Another problem is the high-dimensionality of the integrand

• Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

• Use Monte Carlo integration instead: error ∼ N−1/2

Efficiency still a problem!! !
0 50000 100000 150000 200000 250000 300000

Ntrials

10°9

10°8

10°7

10°6

10°5

10°4

10°3

F
re

qu
en

cy S
h
er

p
a

M
C

@
N

E
R

S
C

W+0j

W+1j

W+2j

W+3j

W+4j

W+5j

W+6j

W+7j

W+8j

W+9j

Höche et al. [1905.05120]

Monte Carlo integration
I = ∫ dx f(x)

Monte Carlo integration
I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Monte Carlo integration
I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling:  
find close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Monte Carlo integration
I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling:  
find close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Why not VEGAS for everything?

• High-dim and rich peaking 
 slow convergence 

• If peaks are not aligned with grid
axes “phantom peaks”

→

→

Importance sampling — VEGAS

Using a Neural Network
• Unbinned and no grids 

 no “phantom peaks”

• Bijectivity not guaranteed 

 training unstable

• Numerical Jacobians 

 slow training and evaluation

→

→

→
[1707.00028, 1810.11509, 2009.07819]

Importance sampling — NN

• Unbinned and no grids 
 no “phantom peaks”

• Bijectivity not guaranteed 
 training unstable

• Numerical Jacobians 
 slow training and evaluation

→

→

→
[1707.00028, 1810.11509, 2009.07819]

Using a Flow instead
• Invertibility 

 bijective mapping

• tractable Jacobians 

 fast training and
evaluation

→

→

[2001.05478, 2001.05486, 2001.10028,  
2005.12719, 2112.09145]

Importance sampling — Flow

log py(y) = log px(x) + log ∂G(x)
∂x

Normalizing Flow

Using a Neural Network

Neural Importance Sampling
MadNIS

[2212.06172]

https://arxiv.org/abs/2212.06172

MadNIS — Neural importance sampling

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

MadNIS — Neural importance sampling

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Neural importance sampling

Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Neural importance sampling

Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

Latent space z

Channel i

⟨αi(x) f(x)
gi(x) ⟩

Normalizing
Flow i

Analytic Channel
mapping i

 Φ ⊆ ℝN
Phase space Learned channel

weight αi(x)

 U = [0,1]N
Unit hypercube

Single channel i

MadNIS — Neural importance sampling

Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

Analytic Channel
mapping 1

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

Analytic channel
mapping 2

Analytic channel
mapping k

⟨α2(x′) f(x′)
g2(x′) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′ ′) f(x′ ′)
gk(x′ ′) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

Combination of
 channelsk

MadNIS — Neural importance sampling

Toy Example — Drell-Yan + Z’

Implementation

• Custom amplitude in TENSORFLOW2

• Custom PS mappings in TENSORFLOW2

• PDFs from LHAPDF [1412.7420]

ū

u

e≠

e+

ZÕ/Z/“

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Toy Example — Results

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution  
matches truth

Toy Example — Results

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution  
matches truth

Peaks mapped out 
by different channels

Toy Example — Results

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution  
matches truth

Peaks mapped out 
by different channels

Channel weights 
learned by network

Toy Example — Results

Toy Example — Results

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution  
matches truth

Peaks mapped out 
by different channels

Channel weights 
learned by network

Use samples multiple  
times to make  
training faster

Can we beat standard frameworks?

How to beat MadGraph
MadNIS Reloaded

MADNIS

Neural Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetry
improved

VEGAS
Initialization

Normalizing
Flow

Overflow
Channels

Trainable
Rotations

Neural Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetry
improved

Normalizing
Flow

Overflow
Channels

Trainable
Rotations

VEGAS
Initialization

MADNIS

Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

Analytic Channel
mapping 1

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

Analytic channel
mapping 2

Analytic channel
mapping k

⟨α2(x′) f(x′)
g2(x′) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′ ′) f(x′ ′)
gk(x′ ′) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

MadNIS — VEGAZ-Block

Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

Analytic Channel
mapping 1

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

Analytic channel
mapping 2

Analytic channel
mapping k

⟨α2(x′) f(x′)
g2(x′) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′ ′) f(x′ ′)
gk(x′ ′) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

MadNIS — VEGAZ-Block

MadNIS — VEGAZ-Block

Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

VEGAZ-Block VEGAZ-Block VEGAZ-Block

Analytic Channel
mapping 1

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

Analytic channel
mapping 2

Analytic channel
mapping k

 VEGAS gridsk

Bin reduction

Initialization

⟨α2(x′) f(x′)
g2(x′) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′ ′) f(x′ ′)
gk(x′ ′) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

First benchmark — W+2jets

Implementation

• Amplitude and PS mapping from MadGraph

• Direct implementation via MadGraph-API

g

g

d

ū

W+

g

g

d

ū

W+

g

g

d

ū

W+

MadGraph API

• MadNIS can access and use (almost) all 
features of MadGraph

• Automatically generates necessary files for
arbitrary processes (LO only)

First benchmark — Results
8 Channels Integral [pb] Relative stddev Unweighting eff.
MG5AMC* 216.4(8) 2.13 2.3%

Flow 215.20(14) 0.64 9.0%

VegaZ-Flow 215.13(12) 0.57 11.1%

215.07(11) 0.55 11.7%-VEGAZ-Flowα

First benchmark — Results
8 Channels Integral [pb] Relative stddev Unweighting eff.
MG5AMC* 216.4(8) 2.13 2.3%

Flow 215.20(14) 0.64 9.0%

VegaZ-Flow 215.13(12) 0.57 11.1%

215.07(11) 0.55 11.7%-VEGAZ-Flowα

4 Channels Integral [pb] Relative stddev Unweighting eff.
MG5AMC* 215.4(4) 1.39 3.9%

Flow 215.10(11) 0.53 14.2%

VegaZ-Flow 214.96(11) 0.49 14.8%

215.00(10) 0.47 15.5%-VEGAZ-Flowα

What is the future of MadGraph?

5@
ML for MadGraph5_aMC@NLO

MadNIS

5@MadNIS MadLoopX

ML for MadGraph5_aMC@NLO + Future

MEMeNNto

• Multi-channel is more efficient when trained
simultanously with the flow

Summary

Summary and Outlook

• MadNIS outperforms current sampling methods

Outlook

• Test performance on real LHC examples:  
(eg. multi-leg, NLO, complicated cuts, …)

• Make everything run on the GPU and
differentiable [MadJax 2203.00057]

• Vegas initialization improves performance

• Fully integrate MadNIS into MadGraph

• Multi-channel is more efficient when trained
simultanously with the flow

Summary

Summary and Outlook

• Channel mappings are important

• Buffered training reduces computational
overhead and preserves precision

Outlook

• Test performance on real LHC examples:  
(eg. multi-leg, NLO, complicated cuts, …)

• Fully integrate MadNIS into MadGraph

• Make everything run on the GPU and
differentiable [MadJax 2203.00057]

• Vegas initialization improves performance • Stay tuned for many other ML4HEP applications

HEPML

https://iml-wg.github.io/HEPML-LivingReview/

