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Why talk about machine learning?



because

• rich toolbox of algorithms to develop expressive and flexible models for science

• fast development of new methods and algorithms in the past years

• promising applications in both theory and experiment

• large interest in HEP community: IML, ML4Jets, MCnet, workshops,..

Why talk about machine learning?
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How to simulate LHC events



Incoming proton

Hard process

Shower Hadronization

Detector
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Matrix element method

Shower EventsHard process Hadronization Detectors

End-to-end generation

Unfolding

ℒ
Theory

Calculate (differential) cross sections

dσ ∼ pdf × |M(x) |2 × dΦ

Phase space integration

⟨O⟩ = ∫ dx f(x) O(x)

ML aided simulation chain
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Are there bottlenecks?

Yes! Because

• Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

• Another problem is the high-dimensionality of the integrand

• Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

• Use Monte Carlo integration instead: error ∼ N−1/2
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Monte Carlo integration
I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling:  
find  close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)



Why not VEGAS for everything?

• High-dim and rich peaking 
 slow convergence 

• If peaks are not aligned with grid 
axes  “phantom peaks”

→

→

Importance sampling — VEGAS



Using a Neural Network
• Unbinned and no grids 

 no “phantom peaks”

• Bijectivity not guaranteed 

 training unstable

• Numerical Jacobians 

 slow training and evaluation

→

→

→
[1707.00028, 1810.11509, 2009.07819]

Importance sampling — NN



• Unbinned and no grids 
 no “phantom peaks”


• Bijectivity not guaranteed 
 training unstable


• Numerical Jacobians 
 slow training and evaluation

→

→

→
[1707.00028, 1810.11509, 2009.07819]

Using a Flow instead
• Invertibility 

 bijective mapping

• tractable Jacobians 

 fast training and 
evaluation

→

→

[2001.05478, 2001.05486, 2001.10028,  
2005.12719, 2112.09145]

Importance sampling — Flow

log py(y) = log px(x) + log ∂G(x)
∂x

Normalizing Flow

Using a Neural Network



Neural Importance Sampling
MadNIS

[2212.06172]

https://arxiv.org/abs/2212.06172
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MadNIS — Neural importance sampling

Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings



Latent space z

Channel i

⟨αi(x) f(x)
gi(x) ⟩

Normalizing 
Flow i

Analytic Channel 
mapping i

 Φ ⊆ ℝN
Phase space Learned channel 

weight αi(x)

 U = [0,1]N
Unit hypercube

Single channel i

MadNIS — Neural importance sampling



Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

Analytic Channel 
mapping 1

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

Analytic channel 
mapping 2

Analytic channel 
mapping k

⟨α2(x′ ) f(x′ )
g2(x′ ) ⟩ Learned channel 

weights ⃗α (x)I = + + + ⟨αk(x′ ′ ) f(x′ ′ )
gk(x′ ′ ) ⟩

Normalizing 
Flow 1

Normalizing 
Flow 2

Normalizing 
Flow k

Combination of 
 channelsk

MadNIS — Neural importance sampling



Toy Example — Drell-Yan + Z’

Implementation

• Custom amplitude in TENSORFLOW2

• Custom PS mappings in TENSORFLOW2

• PDFs from LHAPDF [1412.7420]
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Toy Example — Results
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times to make  
training faster



Can we beat standard frameworks?



How to beat MadGraph
MadNIS Reloaded
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MadNIS — VEGAZ-Block

Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

VEGAZ-Block VEGAZ-Block VEGAZ-Block

Analytic Channel 
mapping 1

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

Analytic channel 
mapping 2

Analytic channel 
mapping k

 VEGAS gridsk

Bin reduction

Initialization

⟨α2(x′ ) f(x′ )
g2(x′ ) ⟩ Learned channel 

weights ⃗α (x)I = + + + ⟨αk(x′ ′ ) f(x′ ′ )
gk(x′ ′ ) ⟩

Normalizing 
Flow 1

Normalizing 
Flow 2
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Flow k



First benchmark — W+2jets

Implementation

• Amplitude and PS mapping from MadGraph

• Direct implementation via MadGraph-API
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MadGraph API

• MadNIS can access and use (almost) all 
features of MadGraph

• Automatically generates necessary files for 
arbitrary processes (LO only)



First benchmark — Results
8 Channels Integral [pb] Relative stddev  Unweighting eff.
MG5AMC* 216.4(8) 2.13 2.3%

Flow 215.20(14) 0.64 9.0%

VegaZ-Flow 215.13(12) 0.57 11.1%

215.07(11) 0.55 11.7%-VEGAZ-Flowα
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8 Channels Integral [pb] Relative stddev  Unweighting eff.
MG5AMC* 216.4(8) 2.13 2.3%

Flow 215.20(14) 0.64 9.0%

VegaZ-Flow 215.13(12) 0.57 11.1%

215.07(11) 0.55 11.7%-VEGAZ-Flowα

4 Channels Integral [pb] Relative stddev  Unweighting eff.
MG5AMC* 215.4(4) 1.39 3.9%

Flow 215.10(11) 0.53 14.2%

VegaZ-Flow 214.96(11) 0.49 14.8%

215.00(10) 0.47 15.5%-VEGAZ-Flowα



What is the future of MadGraph?



5@
ML for MadGraph5_aMC@NLO

MadNIS



5@MadNIS MadLoopX

ML for MadGraph5_aMC@NLO + Future

MEMeNNto



• Multi-channel is more efficient when trained 
simultanously with the flow

Summary

Summary and Outlook

• MadNIS outperforms current sampling methods

Outlook

• Test performance on real LHC examples:  
(eg. multi-leg, NLO, complicated cuts, …)

• Make everything run on the GPU and 
differentiable [MadJax 2203.00057]

• Vegas initialization improves performance

• Fully integrate MadNIS into MadGraph



• Multi-channel is more efficient when trained 
simultanously with the flow

Summary

Summary and Outlook

• Channel mappings are important

• Buffered training reduces computational 
overhead and preserves precision

Outlook

• Test performance on real LHC examples:  
(eg. multi-leg, NLO, complicated cuts, …)

• Fully integrate MadNIS into MadGraph

• Make everything run on the GPU and 
differentiable [MadJax 2203.00057]

• Vegas initialization improves performance • Stay tuned for many other ML4HEP applications

HEPML

https://iml-wg.github.io/HEPML-LivingReview/

