

Machine Learning for HEP Theory

Sapientia ex machina?

CRC Annual Meeting – Aachen 2023 Ramon Winterhalder – UC Louvain

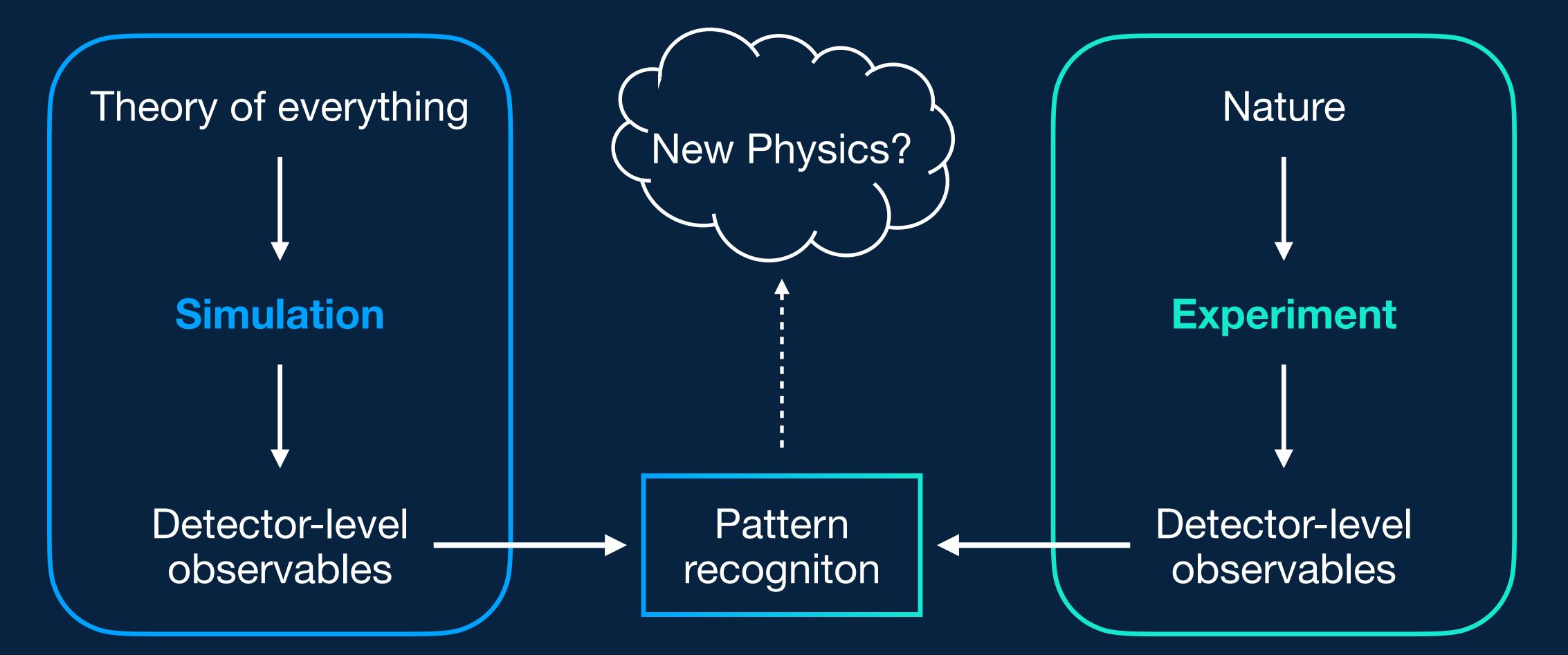
Why talk about machine learning?

Why talk about machine learning?

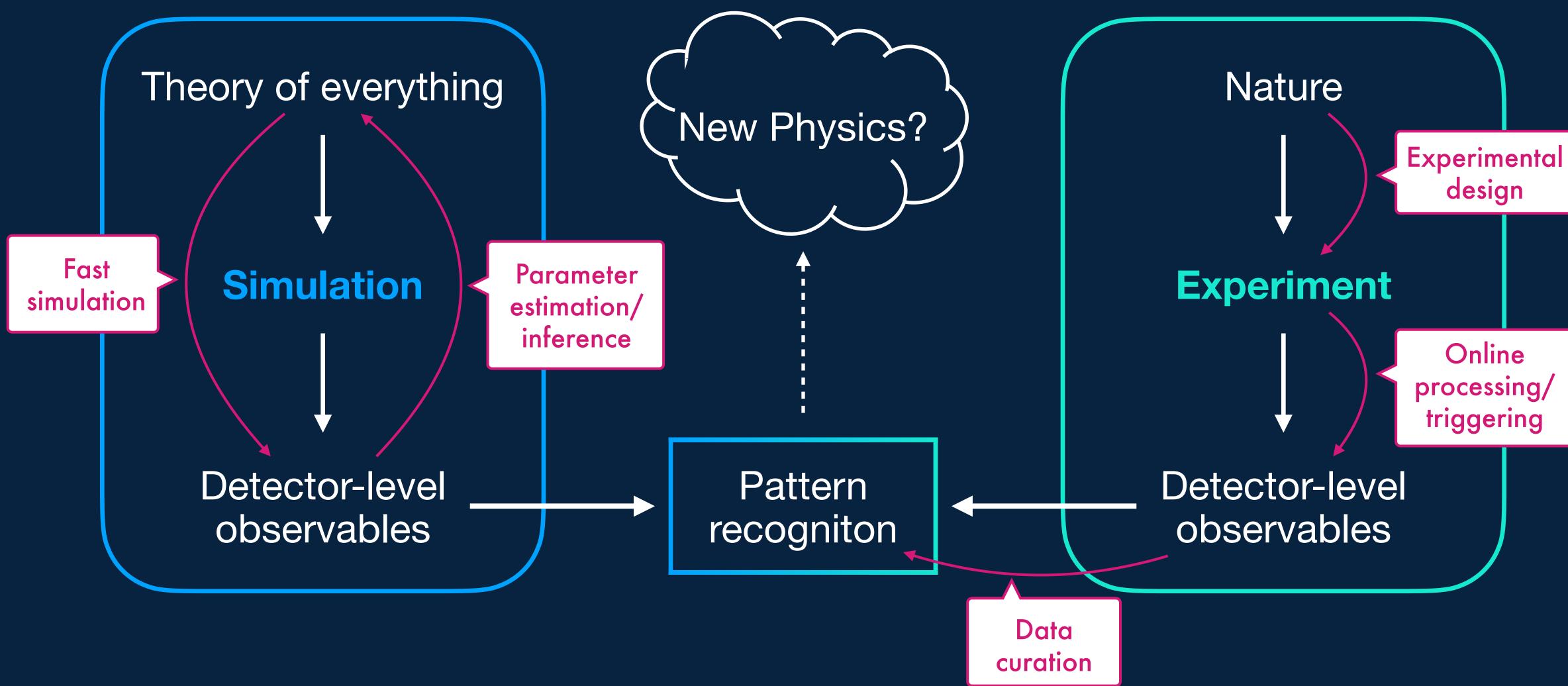
- rich toolbox of algorithms to develop expressive and flexible models for science
- fast development of new methods and algorithms in the past years
- promising applications in both theory and experiment
- large interest in HEP community: IML, ML4Jets, MCnet, workshops,... ightarrow

because

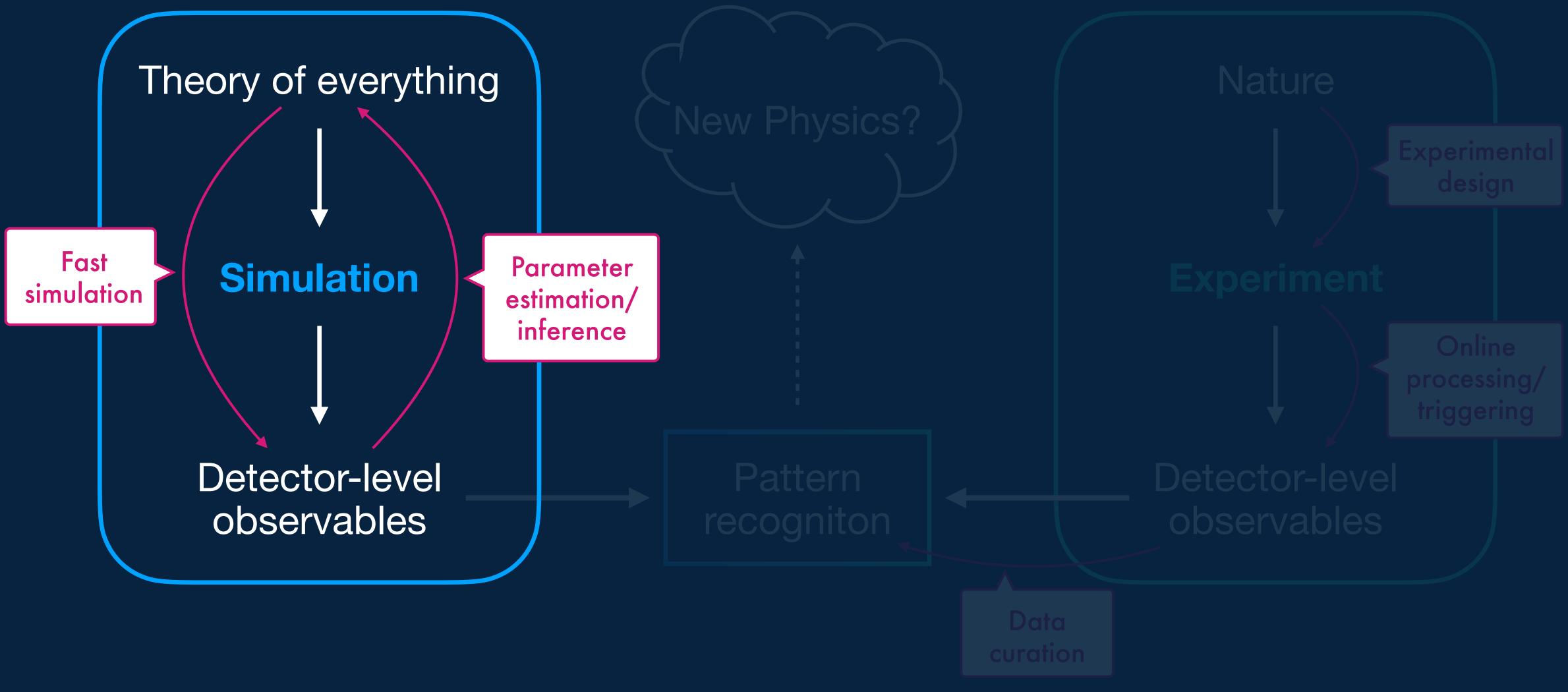
LHC analysis (oversimplified)



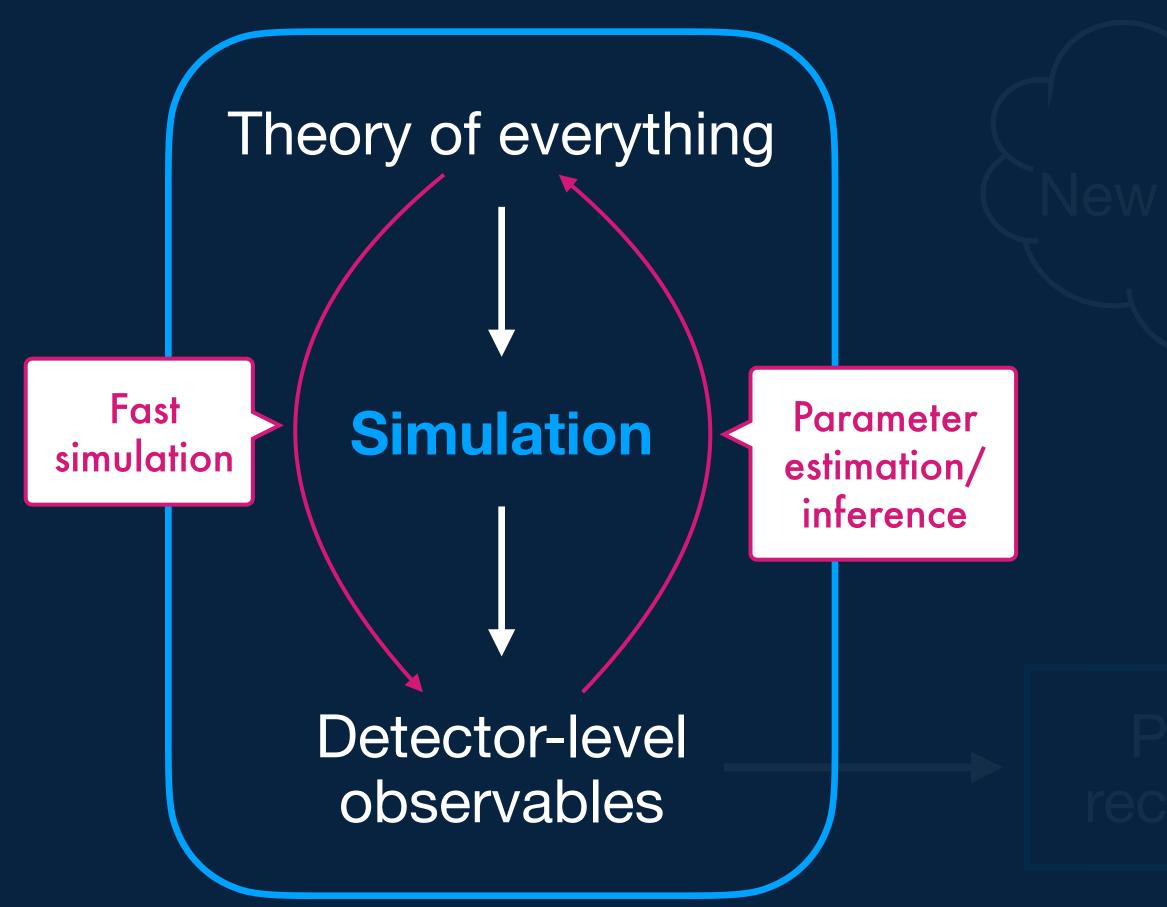
LHC analysis + ML



LHC analysis + ML



LHC analysis + ML



Nature

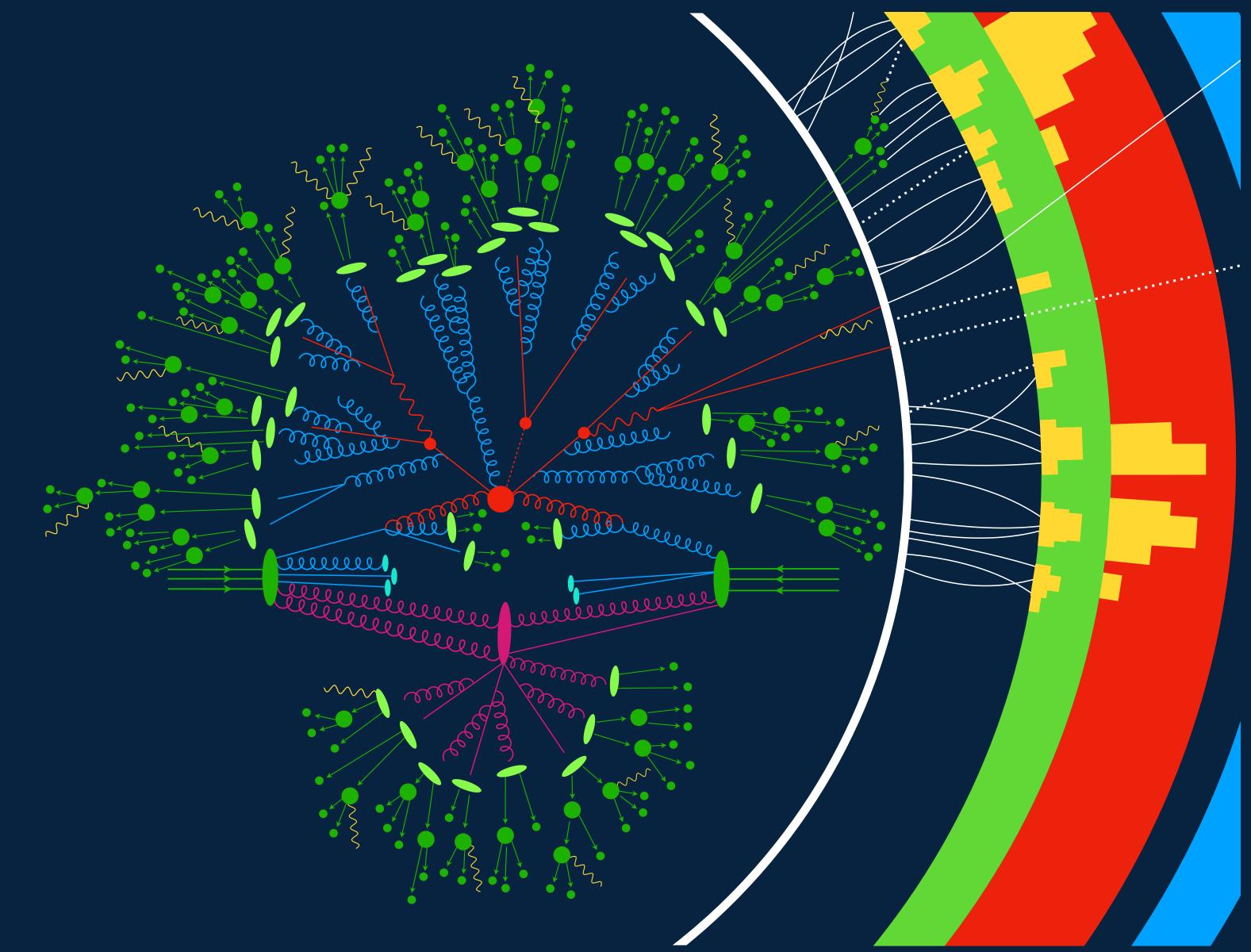
How to simulate LHC events?

Online processing, triggering

Detector-level observables

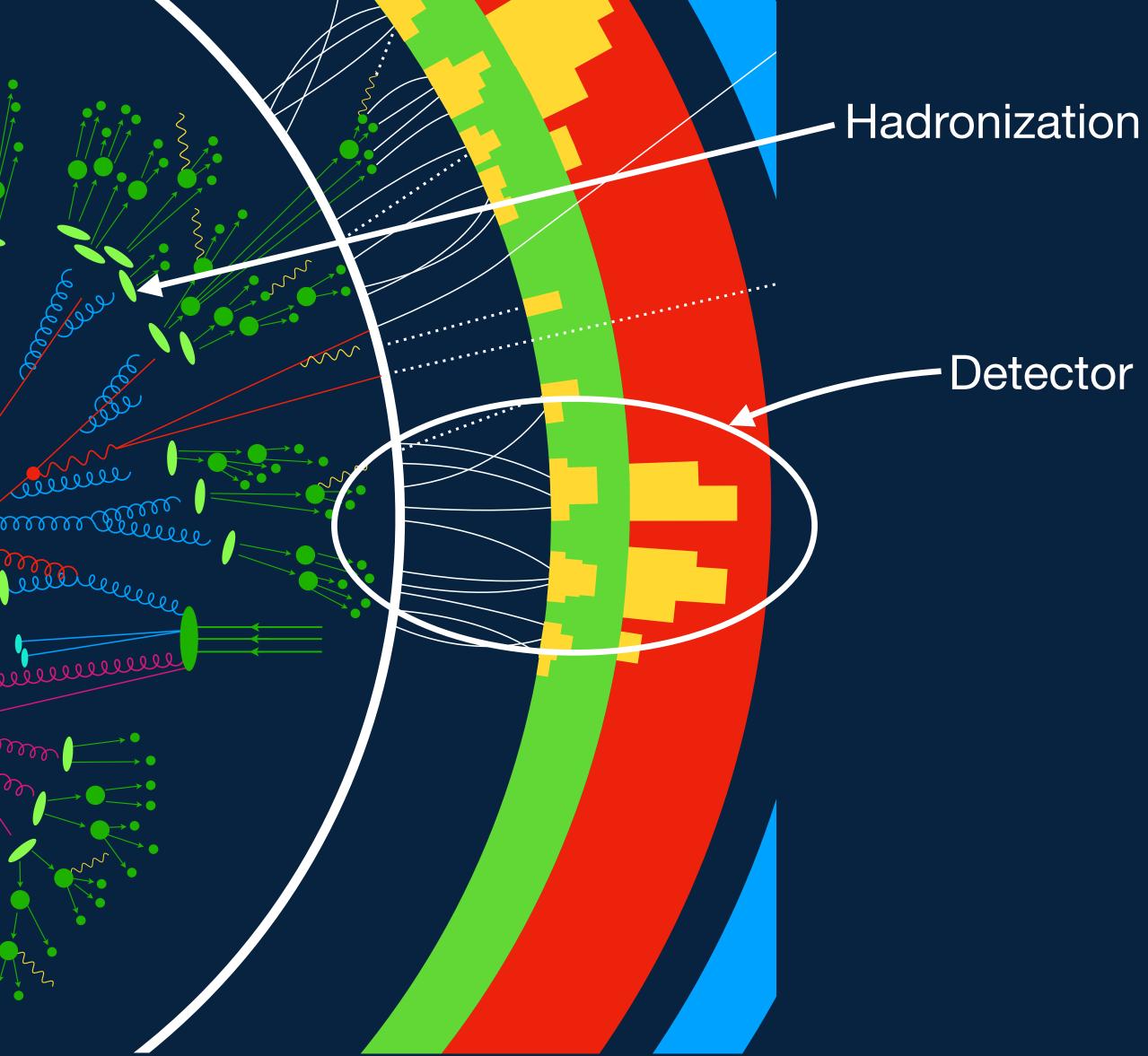
Data curation

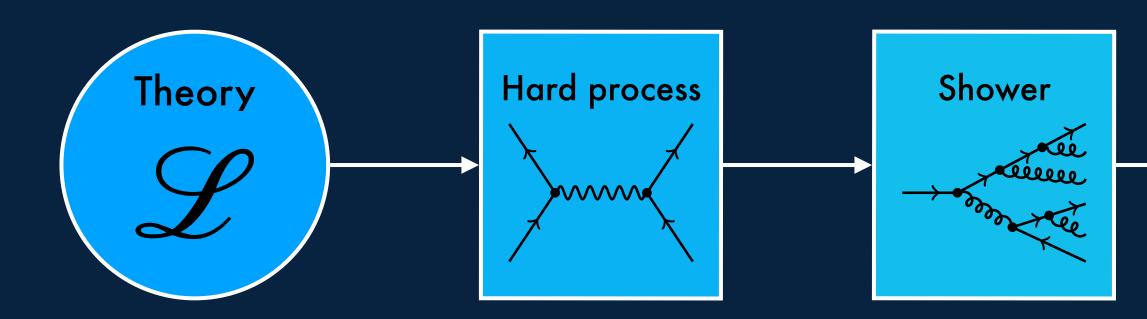
How to simulate LHC events

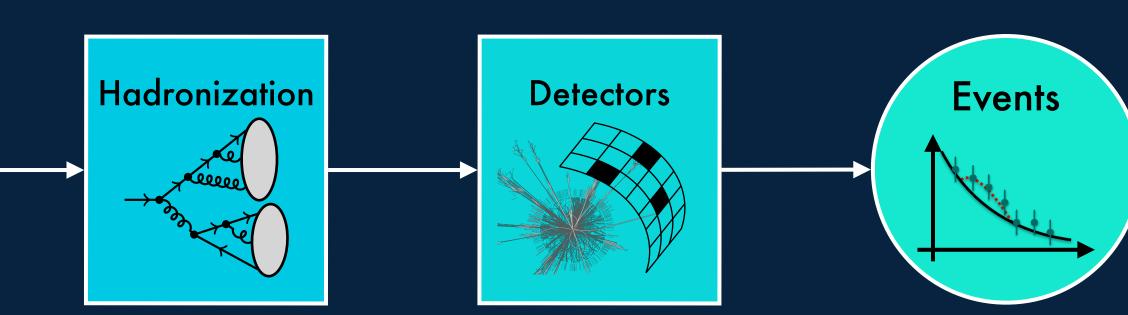


How to simulate LHC events

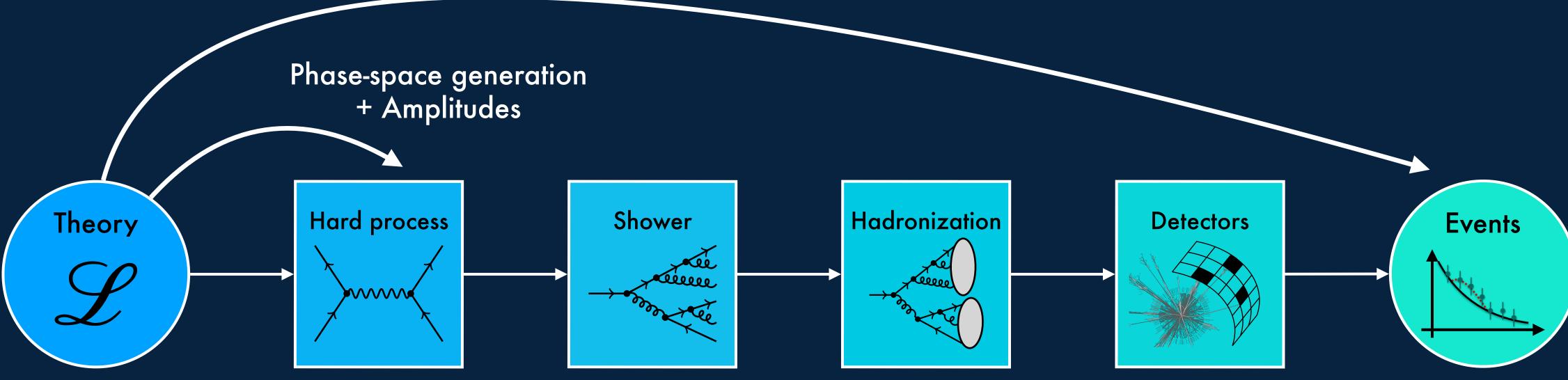
Shower Hard process <u> eeeeeee</u> Incoming proton

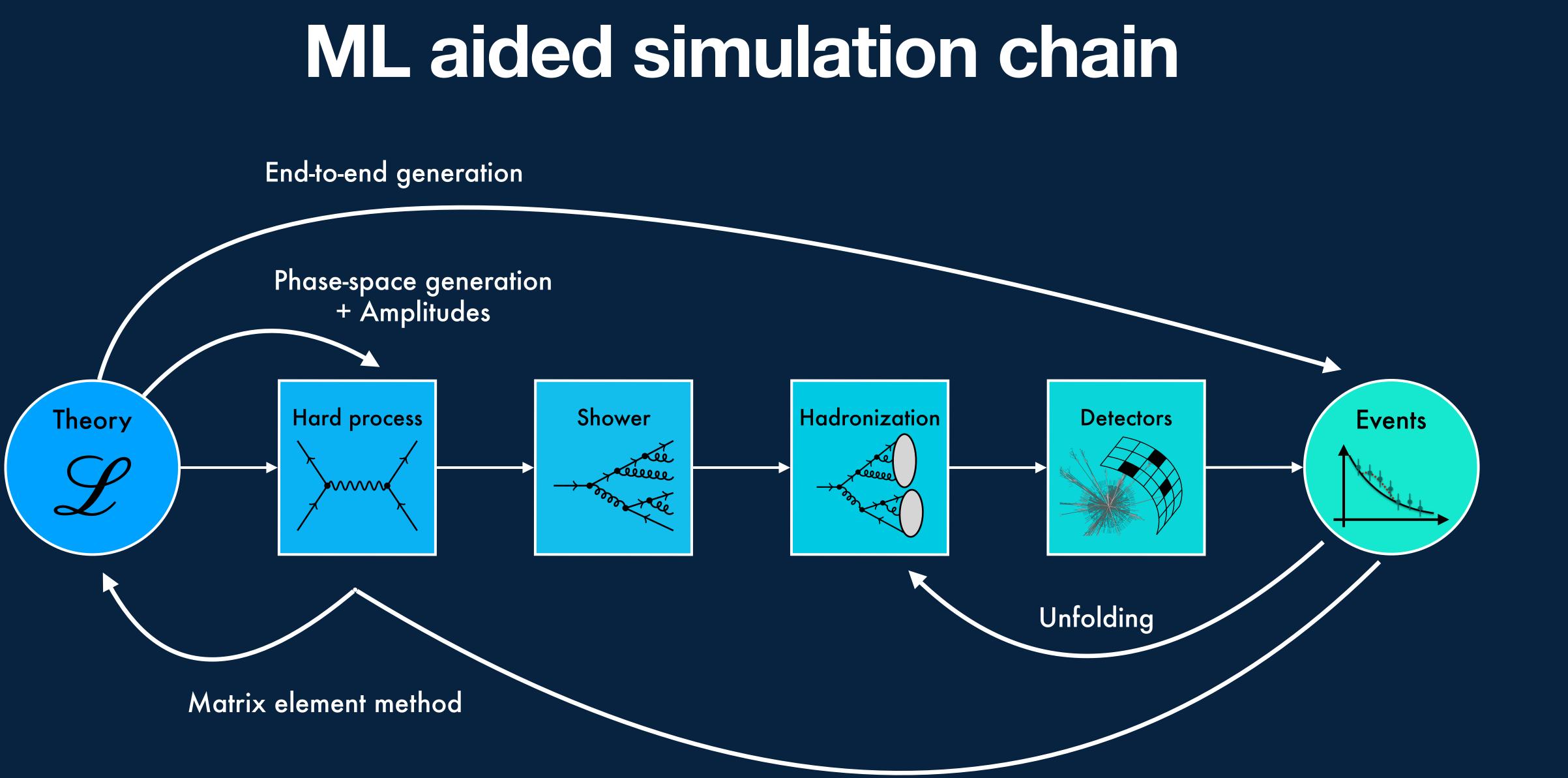


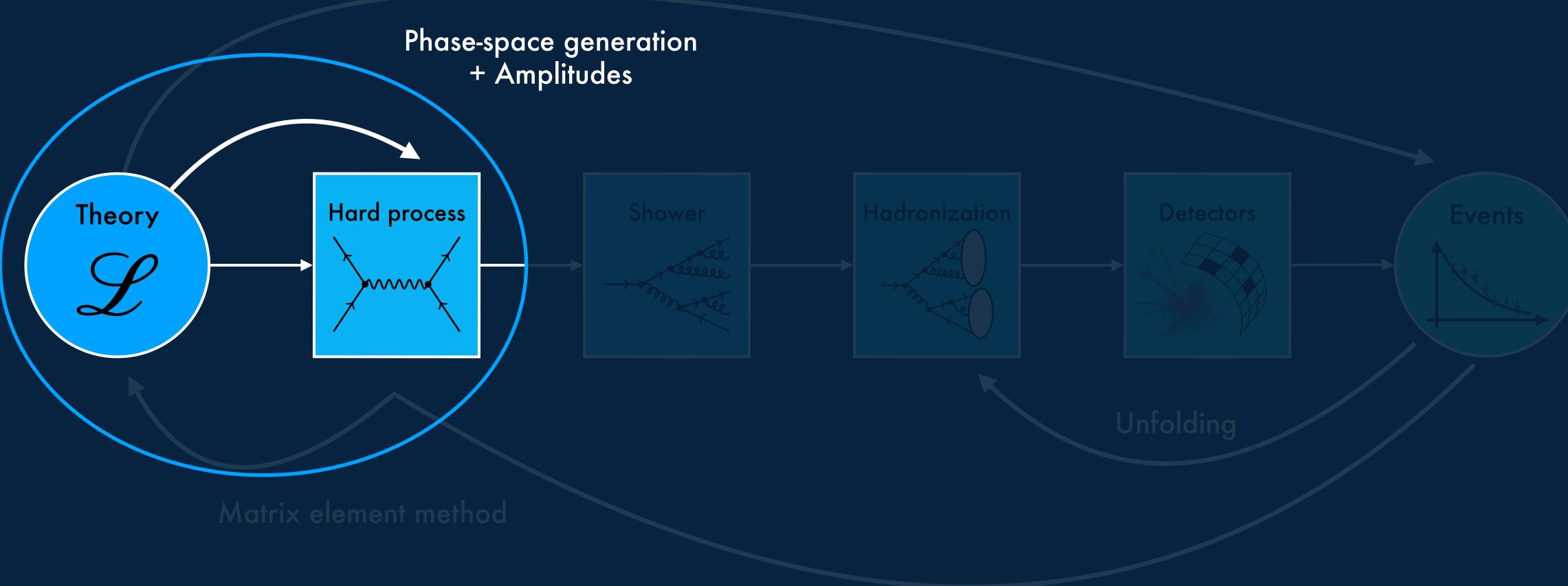


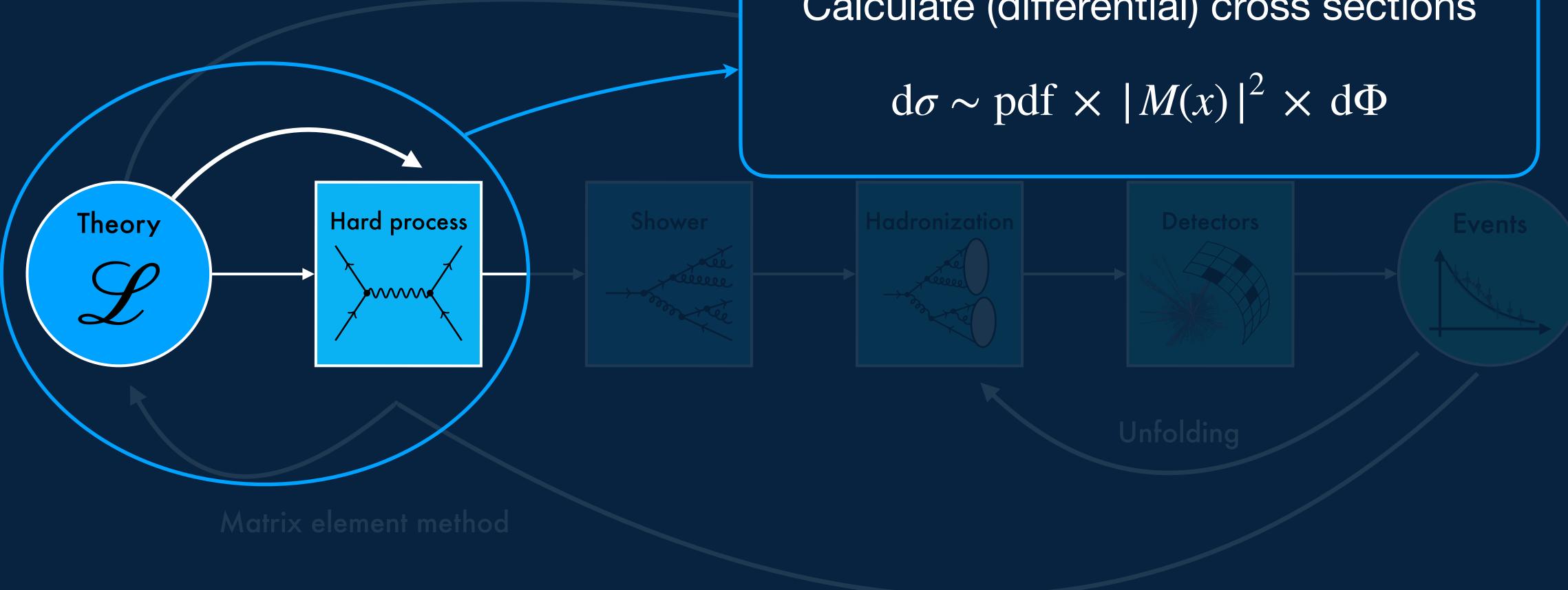


End-to-end generation

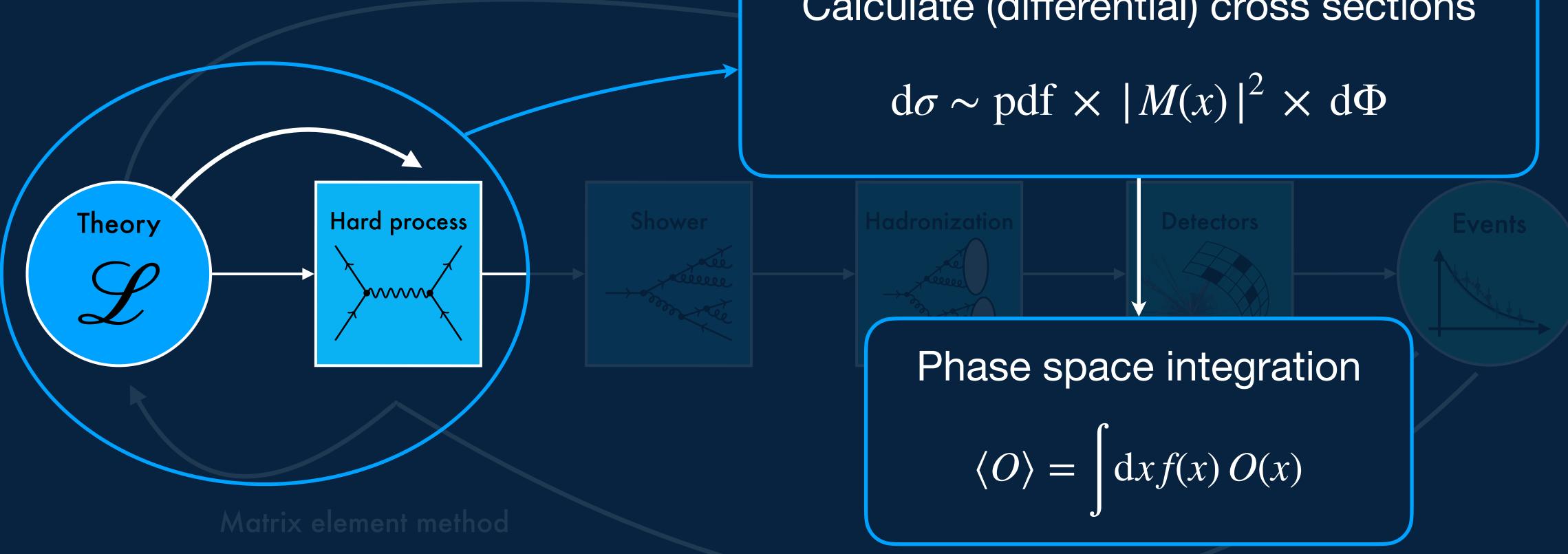








Calculate (differential) cross sections



Calculate (differential) cross sections

Are there bottlenecks?

- Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, ...
- Another problem is the high-dimensionality of the integrand
- Standard numerical methods scale badly: error $\sim N^{-2/D} \cdots N^{-4/D}$
- Use Monte Carlo integration instead: error $\sim N^{-1/2}$

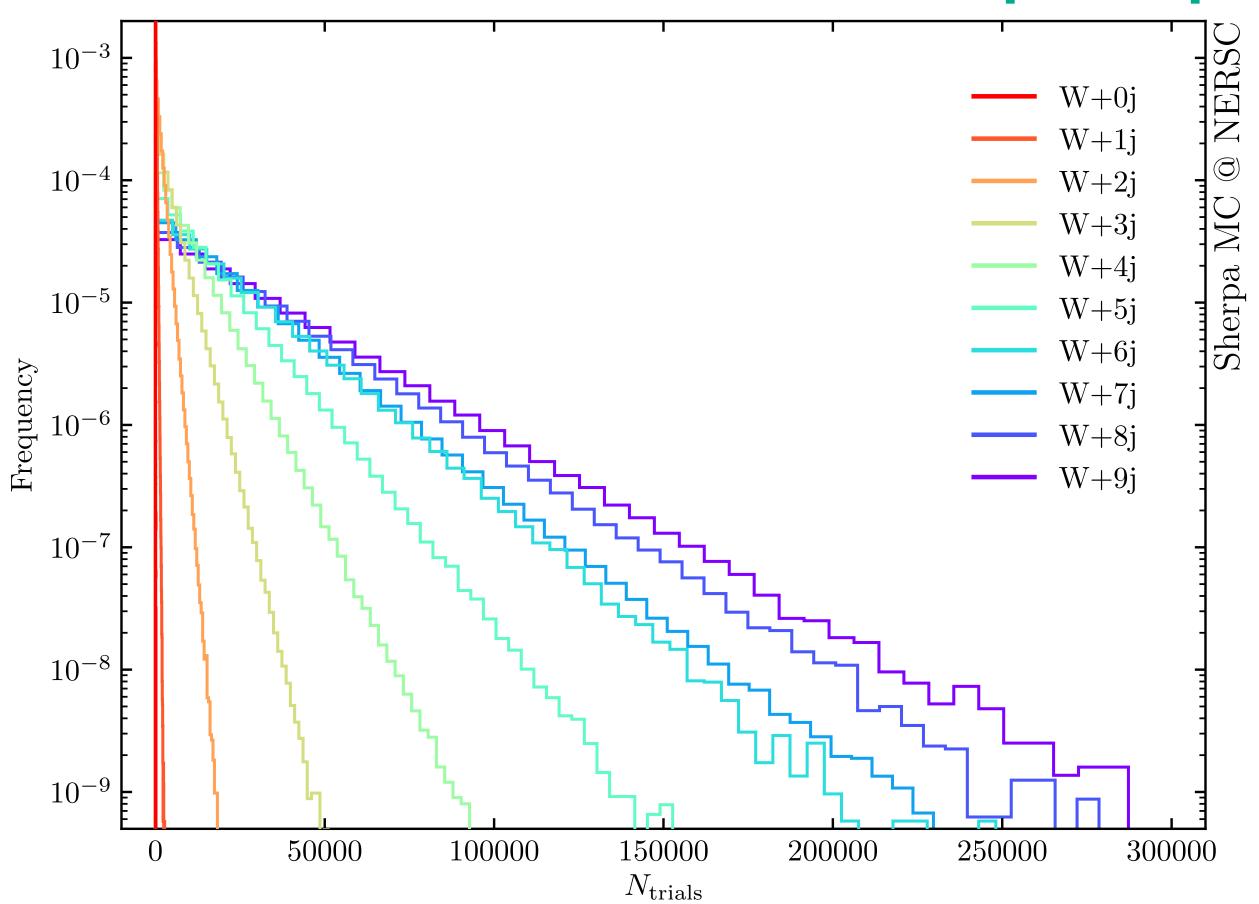
Are there bottlenecks?

Yes! Because

- Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, ...
- Another problem is the high-dimensionality of the integrand
- Standard numerical methods scale badly: error $\sim N^{-2/D} \cdots N^{-4/D}$
- Use Monte Carlo integration instead: error $\sim N^{-1/2}$

Are there bottlenecks?

Yes! Because

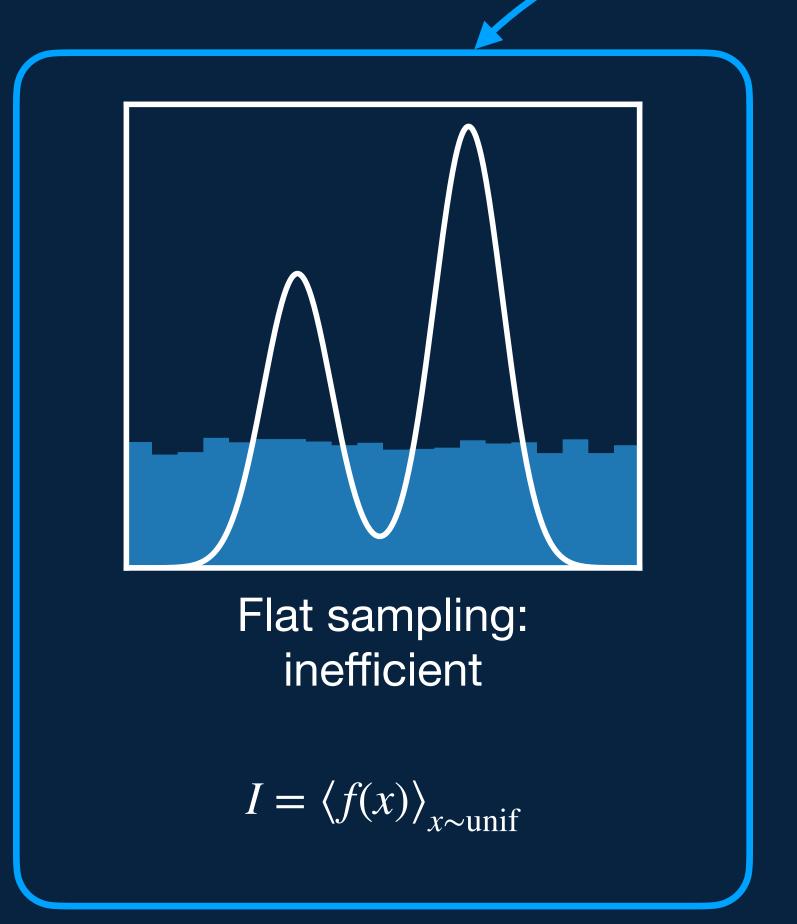


- Analytic inte

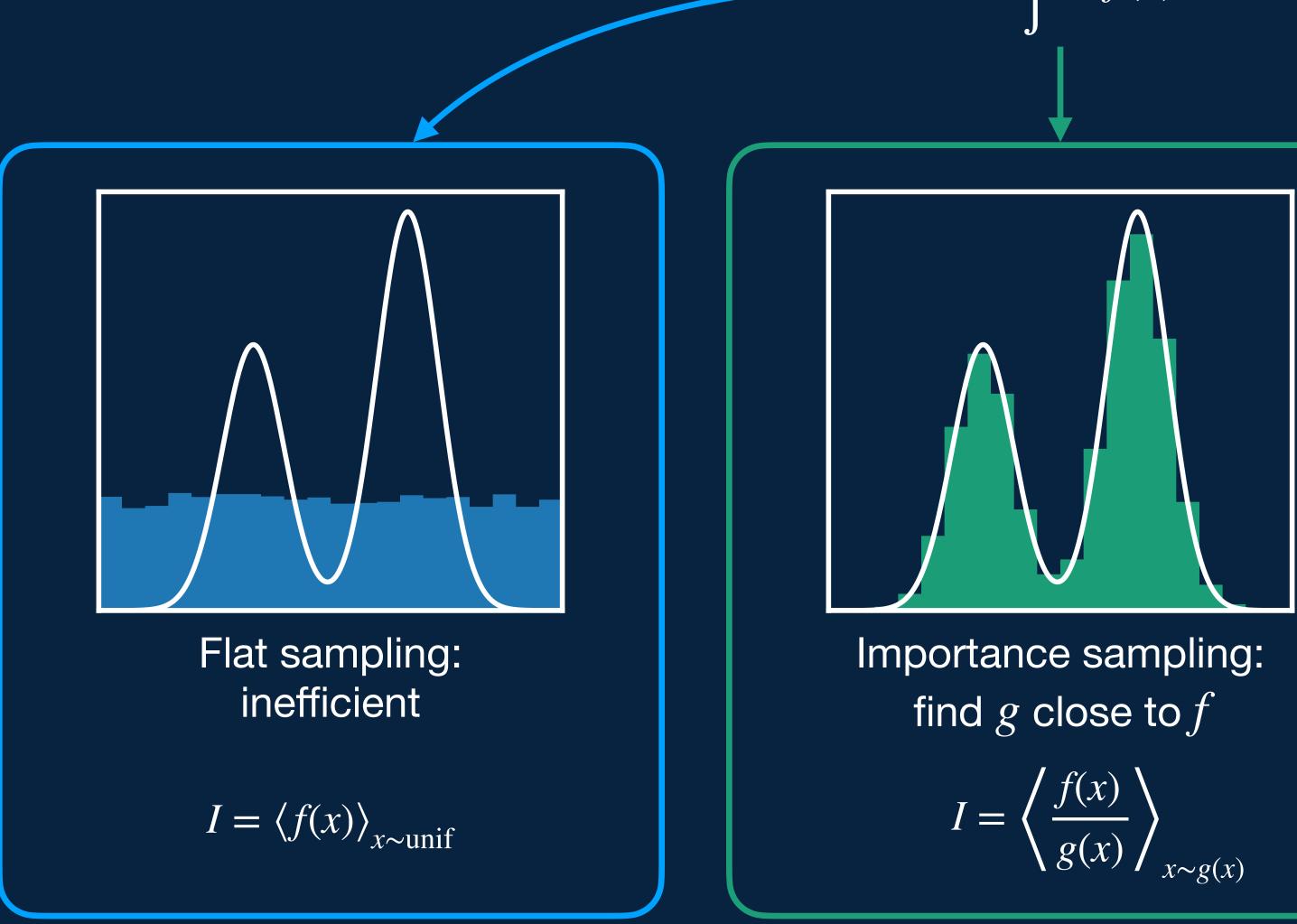
Are there bottlenecks?

Höche et al. [1905.05120]

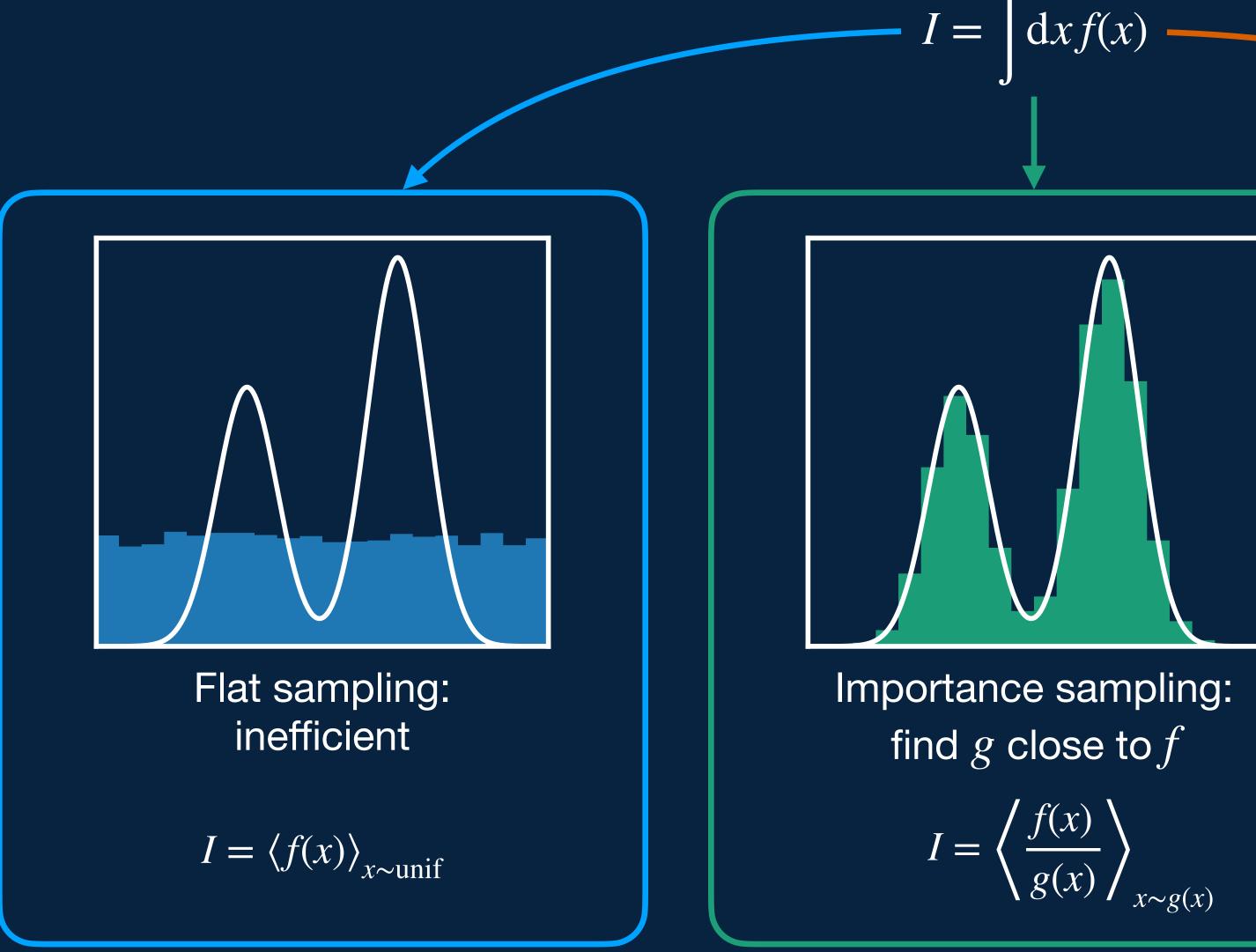
 $I = \int \mathrm{d}x f(x)$



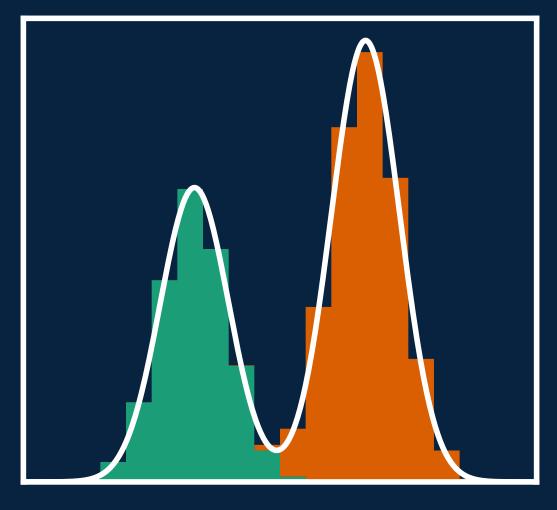
 $I = \int \mathrm{d}x f(x)$



$$= \left\langle \frac{f(x)}{g(x)} \right\rangle_{x \sim g(x)}$$



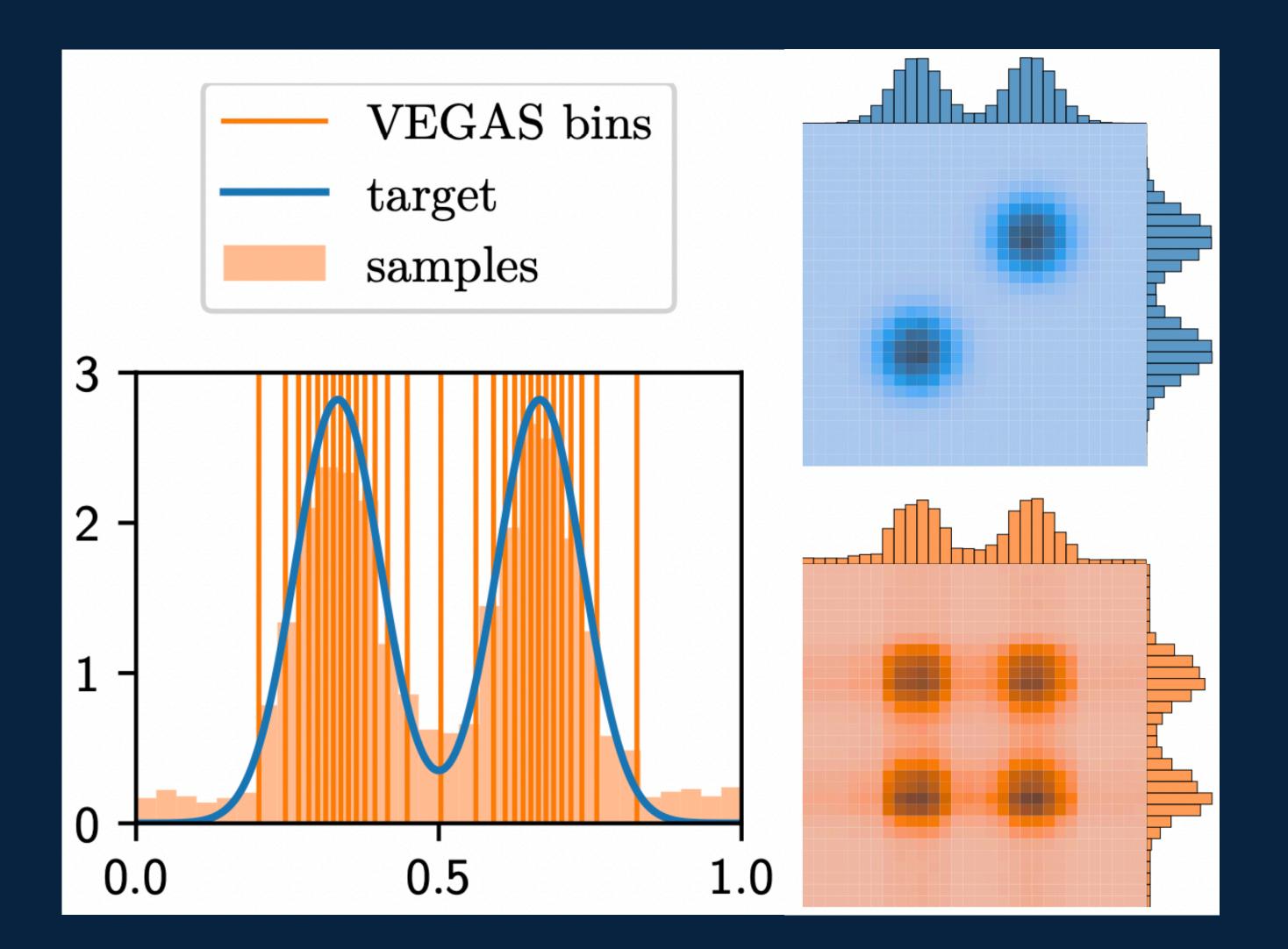
$$= \left\langle \frac{f(x)}{g(x)} \right\rangle_{x \sim g(x)}$$



Multi-channel: one map for each channel

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Importance sampling – VEGAS



Why not VEGAS for everything?

- High-dim and rich peaking
 → slow convergence
- If peaks are not aligned with grid axes → "phantom peaks"

Importance sampling – NN

Using a Neural Network

- Unbinned and no grids
 - \rightarrow no "phantom peaks"
- Bijectivity not guaranteed
 - \rightarrow training unstable
- Numerical Jacobians
 - \rightarrow slow training and evaluation

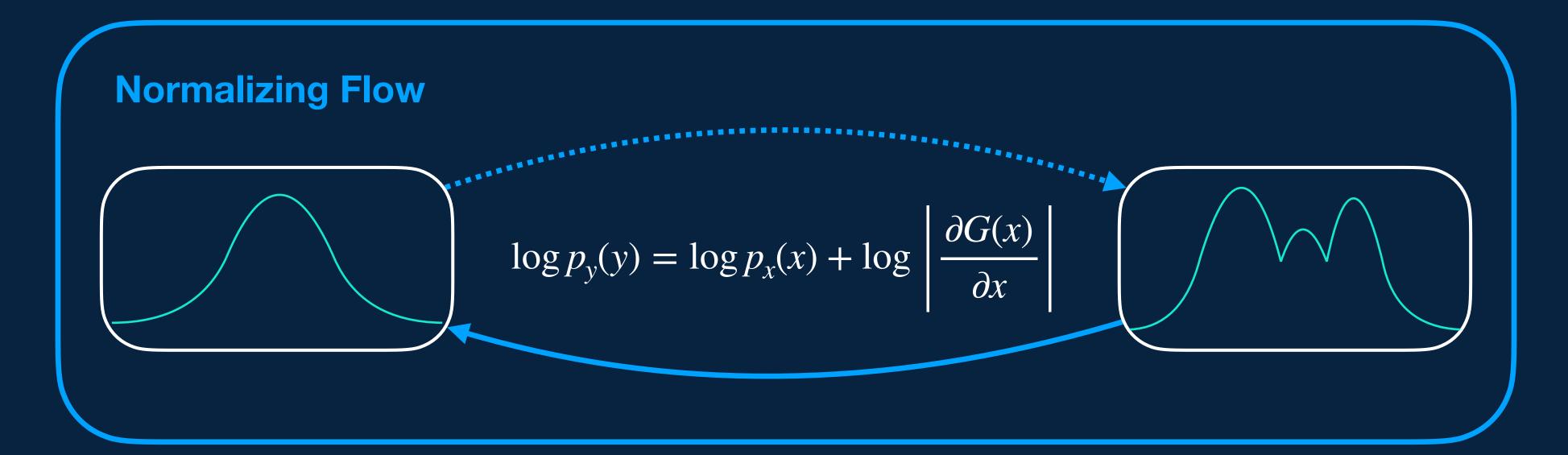
[1707.00028, 1810.11509, 2009.07819]

Importance sampling -- Flow

Using a Neural Network

- Unbinned and no grids
 - \rightarrow no "phantom peaks"
- Bijectivity not guaranteed
 - \rightarrow training unstable
- Numerical Jacobians
 - \rightarrow slow training and evaluation

[1707.00028, 1810.11509, 2009.07819]



Using a Flow instead

- Invertibility
 - \rightarrow bijective mapping
- tractable Jacobians
 - \rightarrow fast training and evaluation

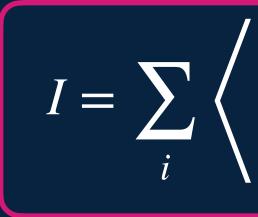
[2001.05478, 2001.05486, 2001.10028, 2005.12719, 2112.09145]

MadNIS

Neural Importance Sampling

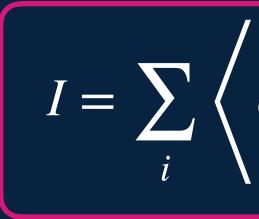
 $I = \sum_{i} \left\langle \right\rangle$

$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$



Use physics knowledge to construct channel and mappings

$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$



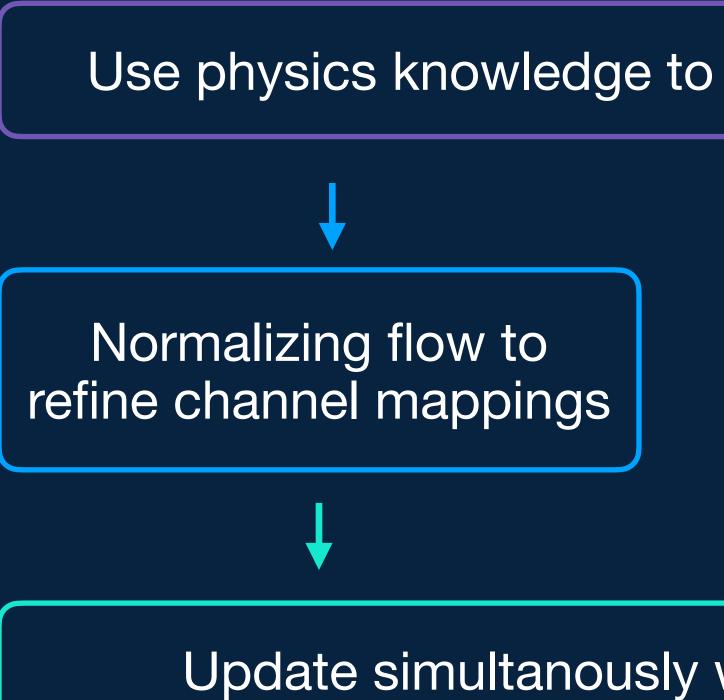
Use physics knowledge to construct channel and mappings

Normalizing flow to refine channel mappings

$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$

Fully connected network to refine channel weights

 $I = \sum_{i} \left\langle \right\rangle$

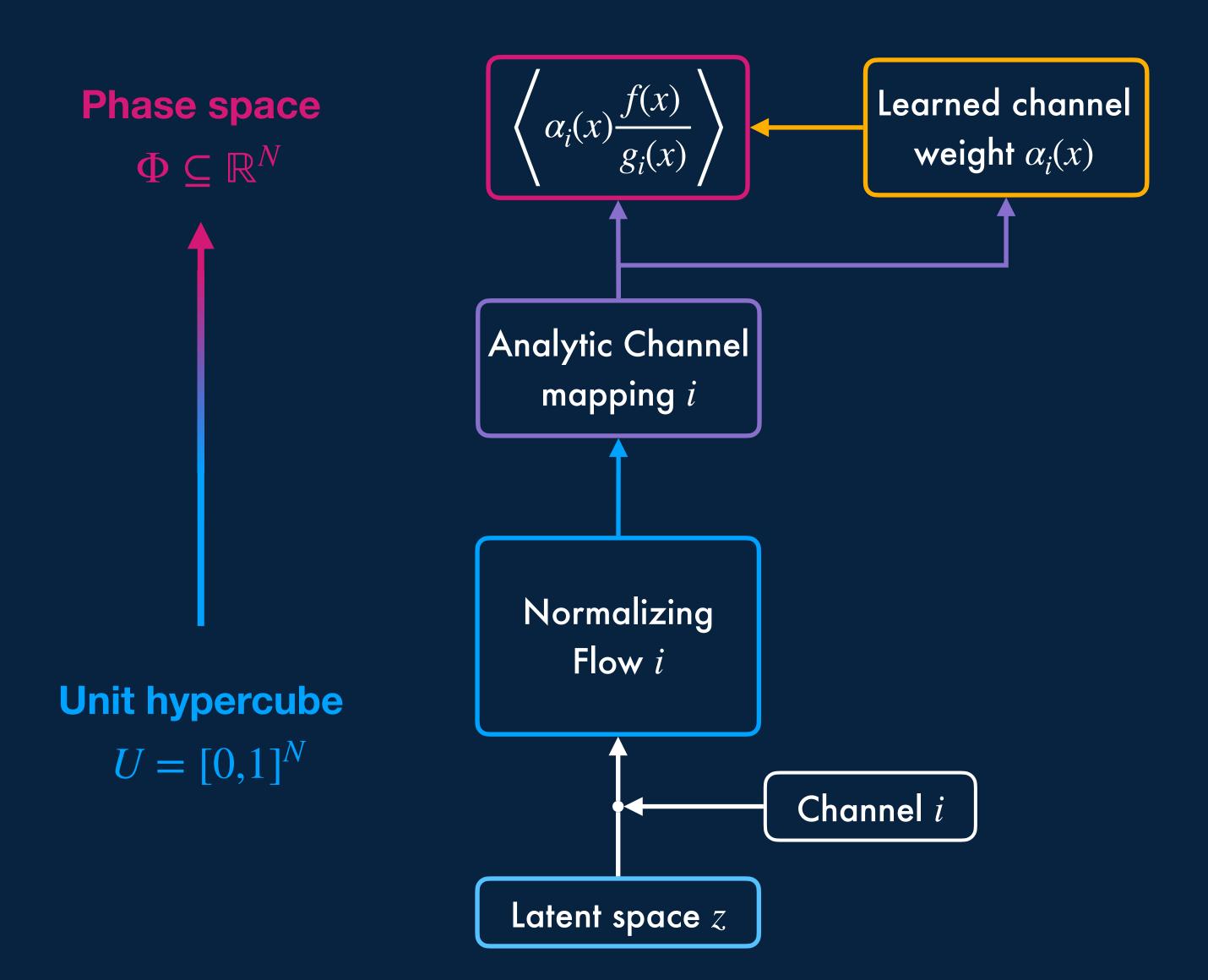


$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$

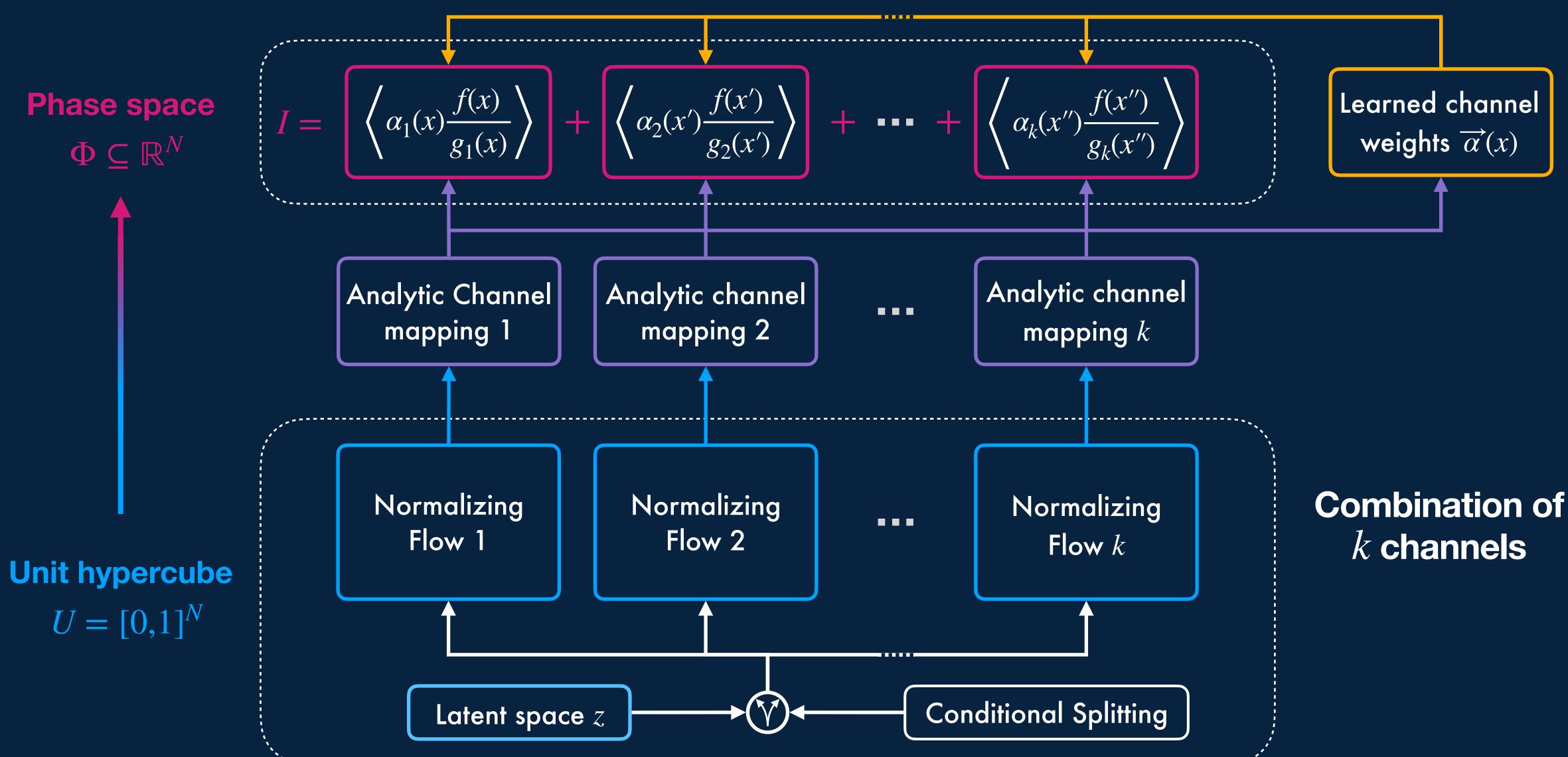
Use physics knowledge to construct channel and mappings

Fully connected network to refine channel weights

Update simultanously with variance as loss function

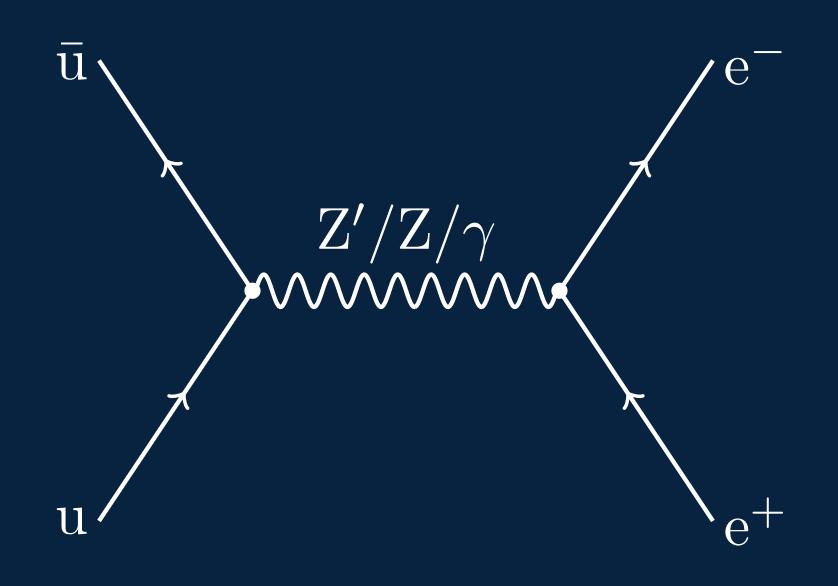


Single channel *i*

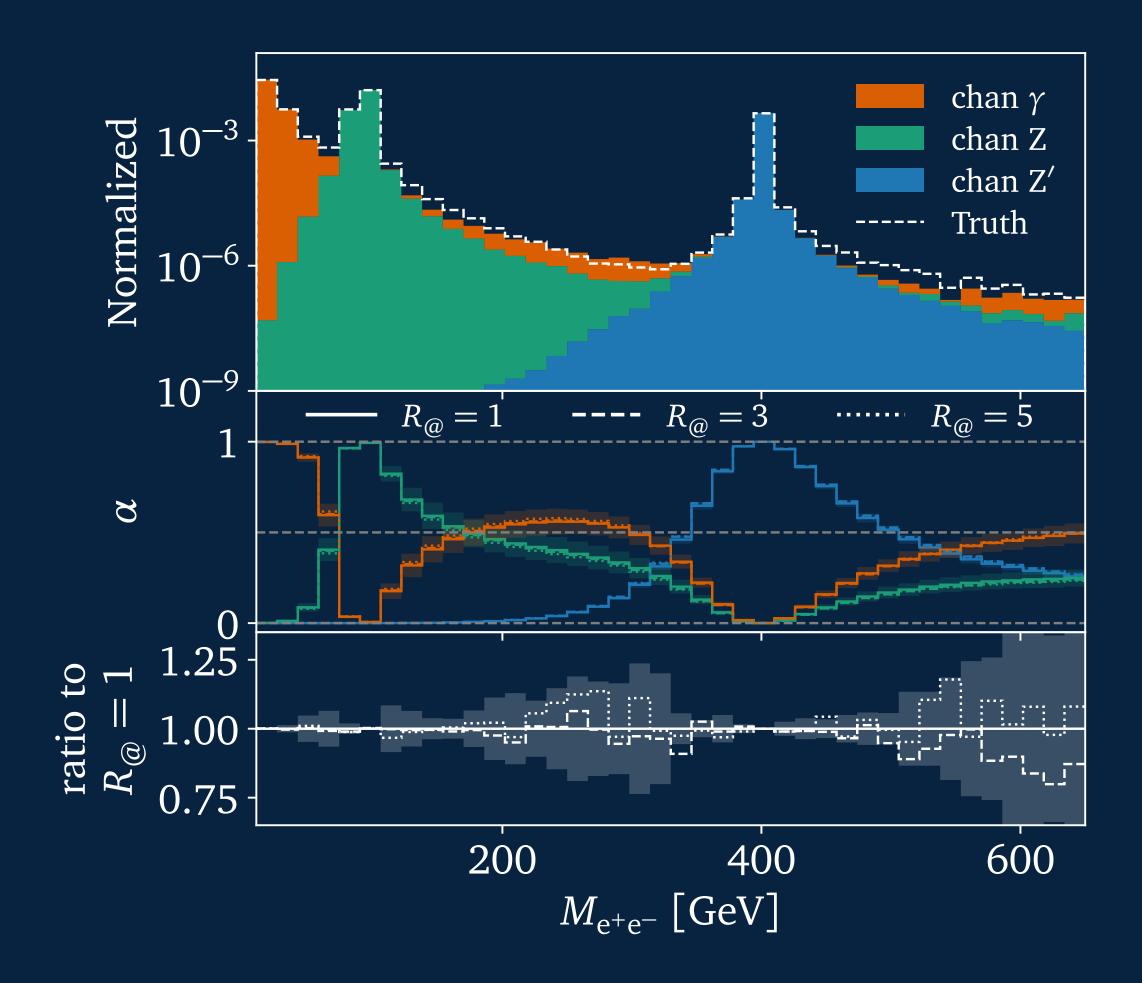


Implementation

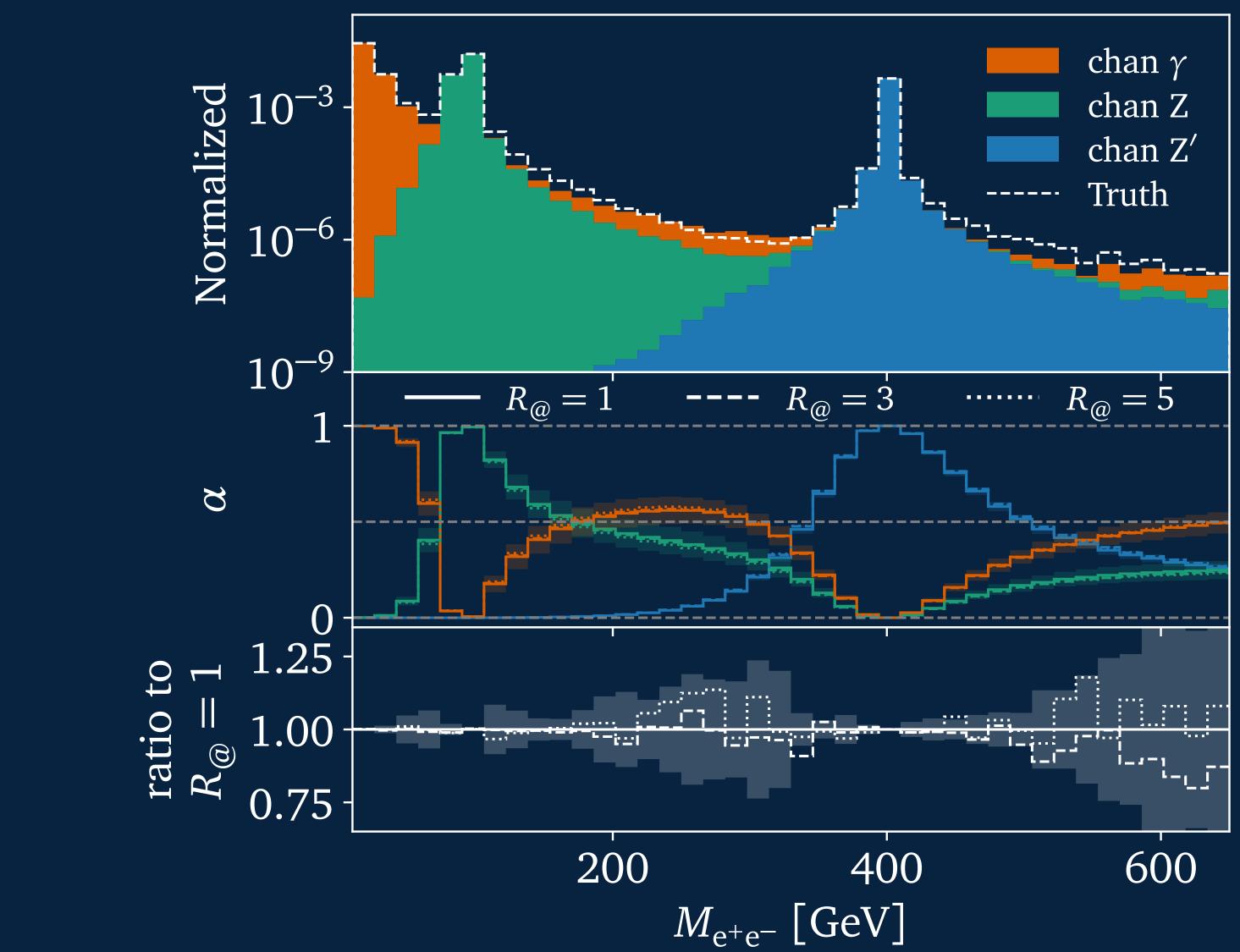
- Custom amplitude in TENSORFLOW2
- Custom PS mappings in TENSORFLOW2
- PDFs from LHAPDF [1412.7420]



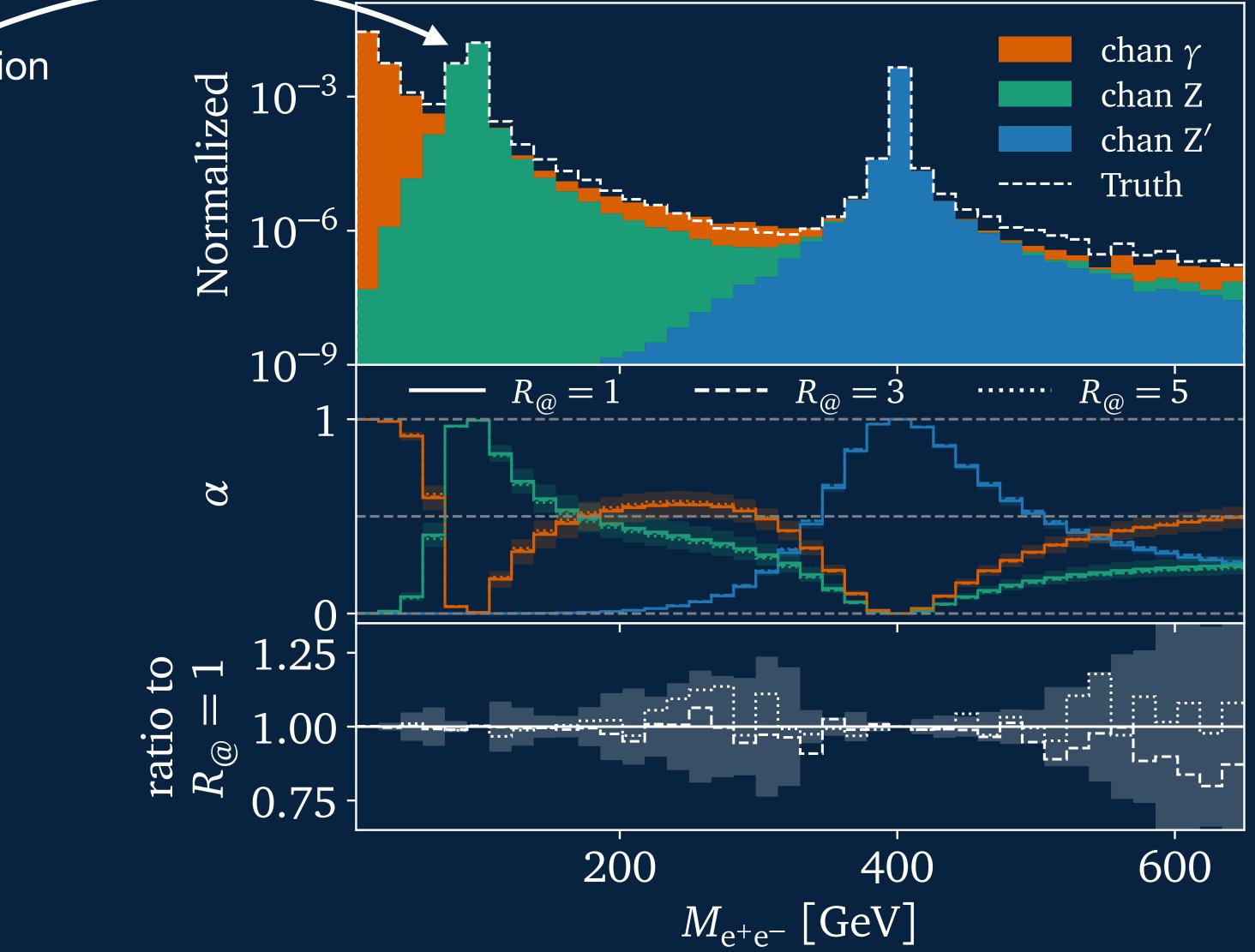
Toy Example — Drell-Yan + Z'



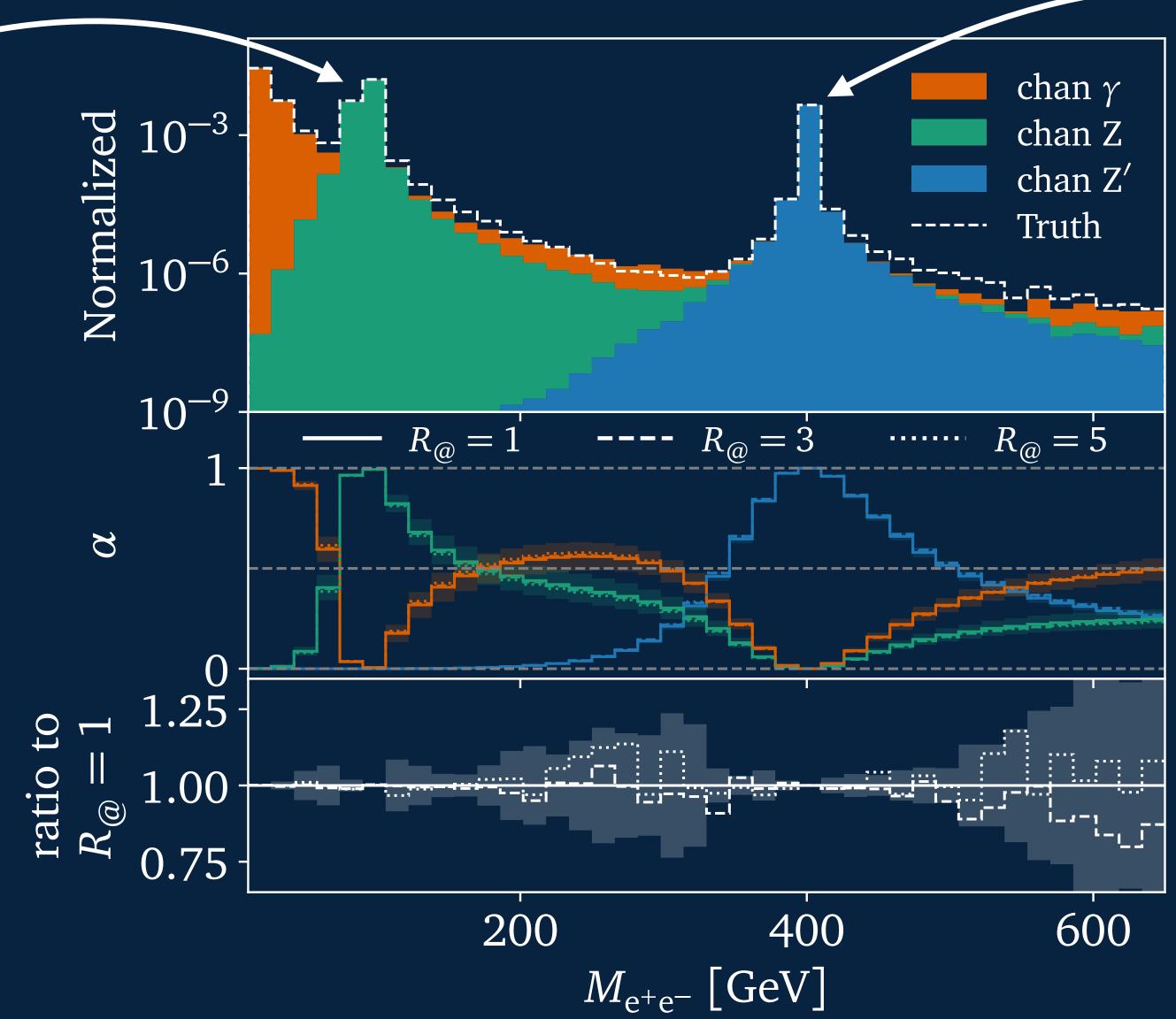
Toy Example – Results



Toy Example – Results

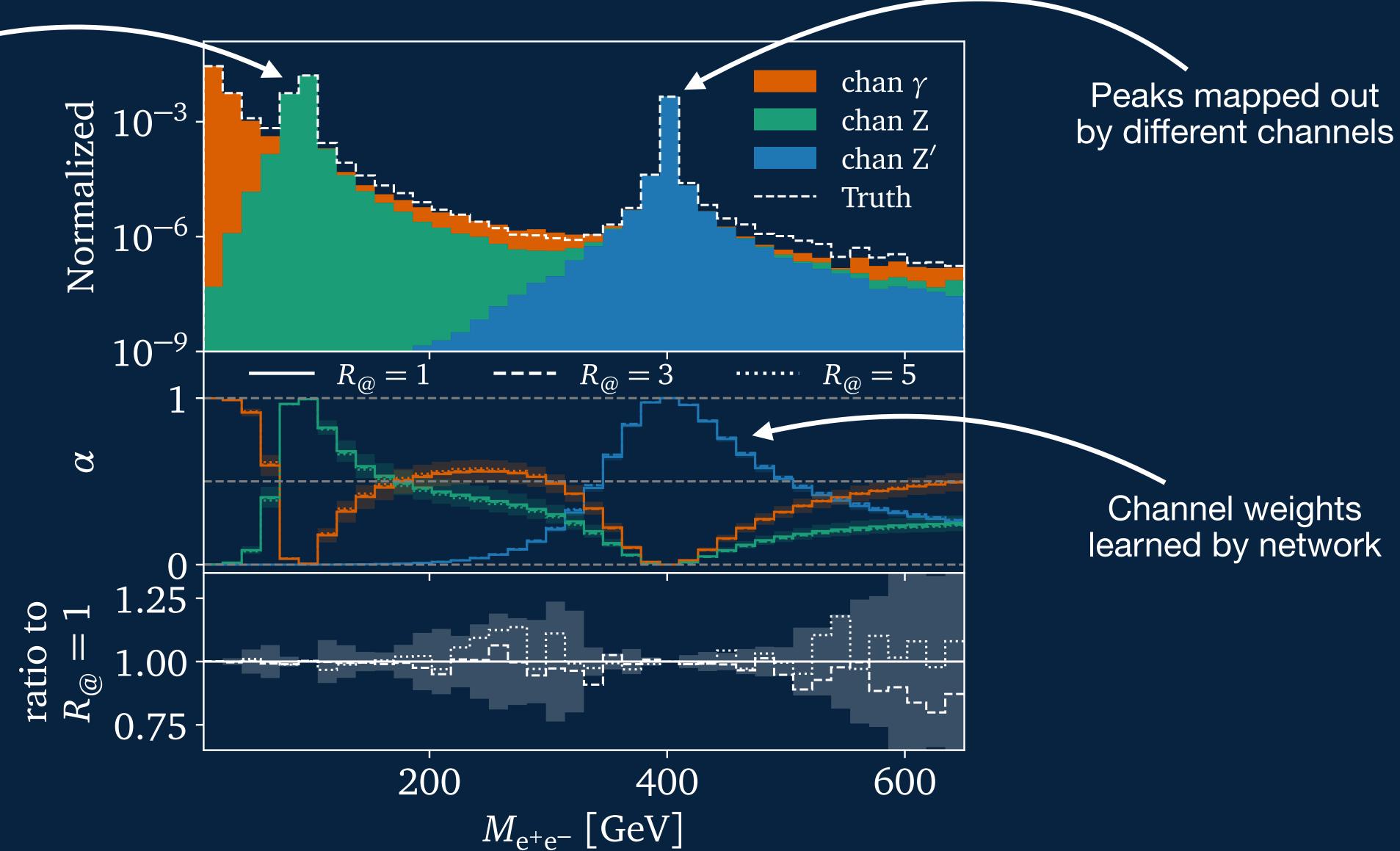


Toy Example – Results

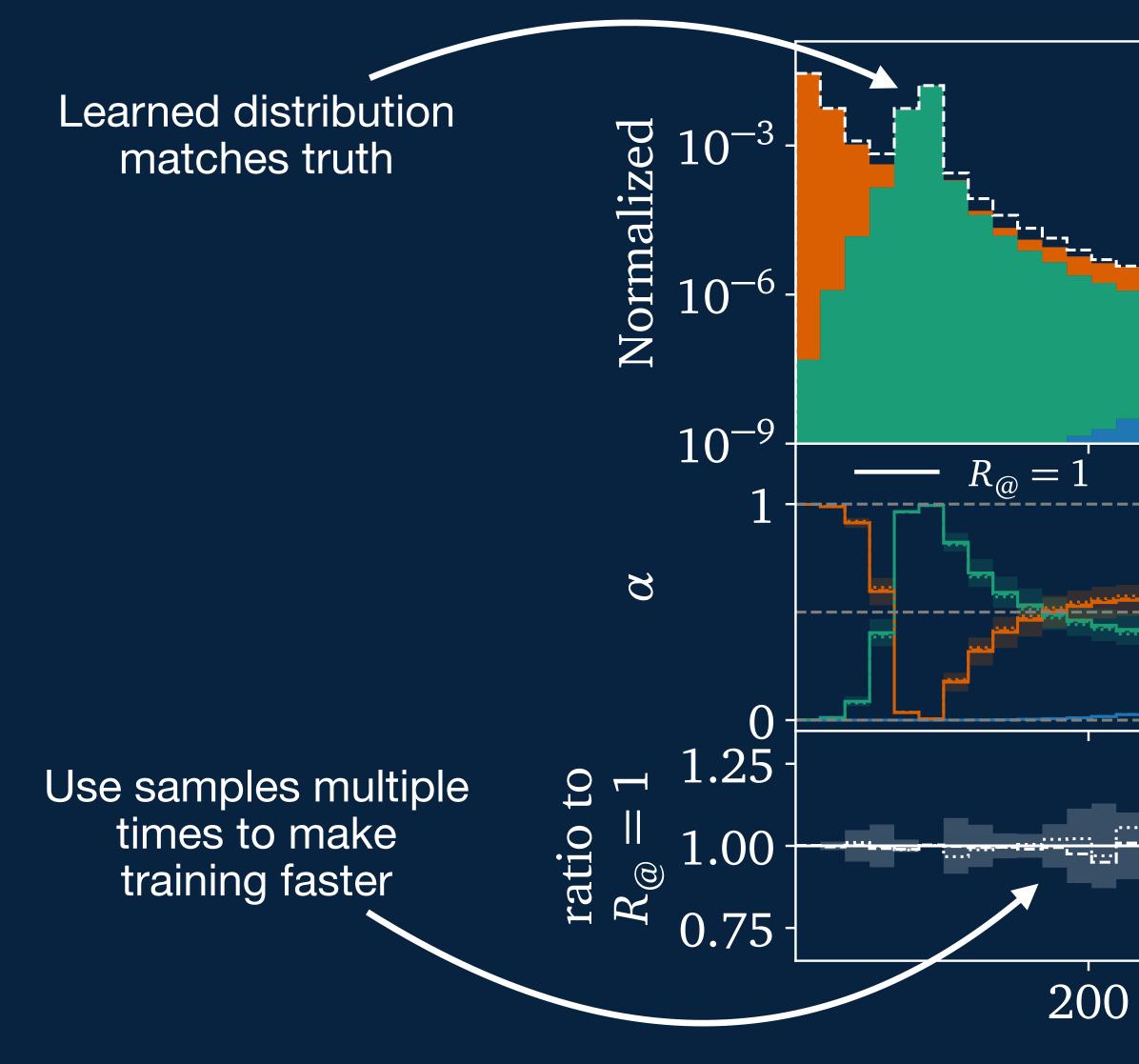


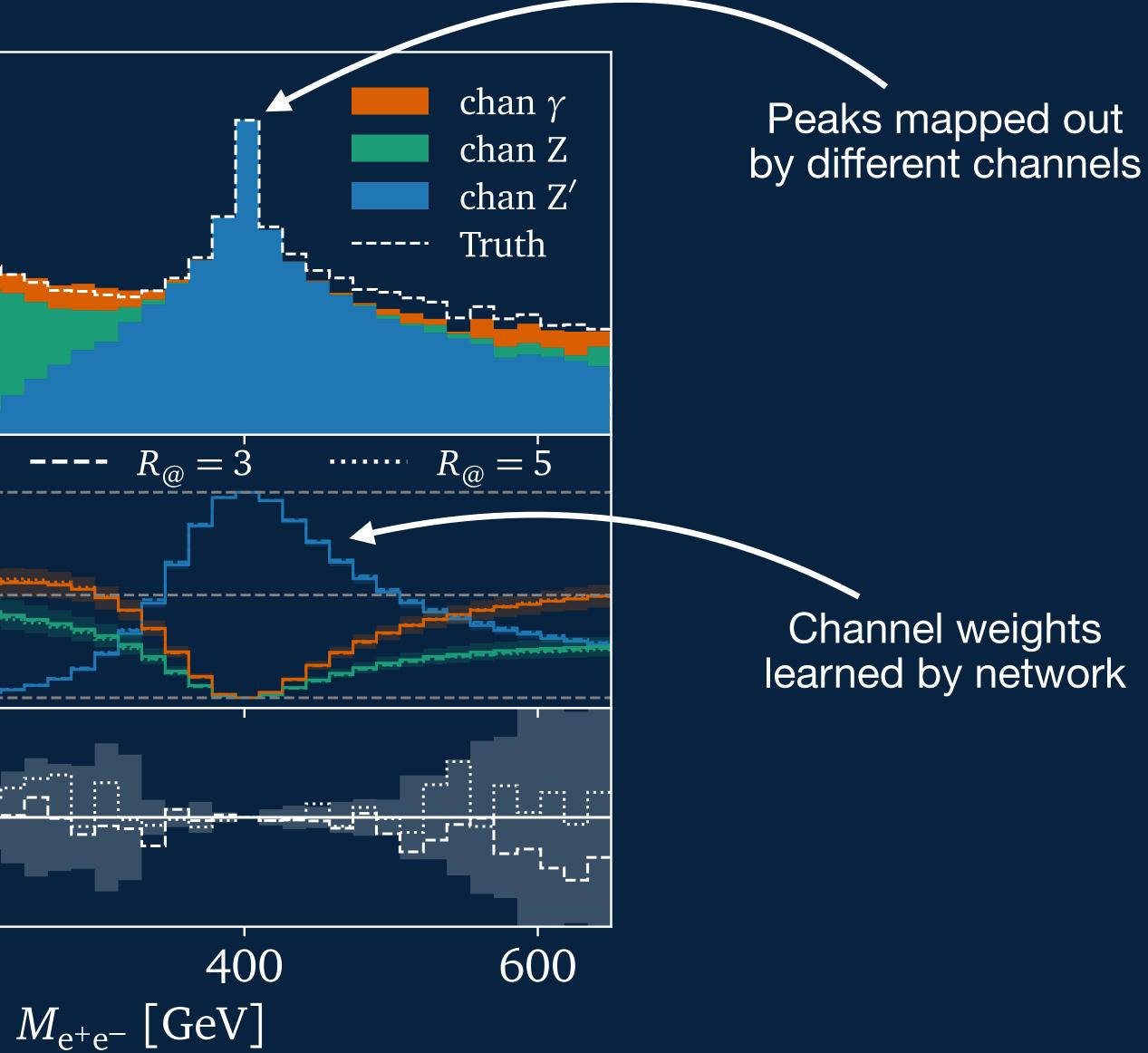
Peaks mapped out by different channels

Toy Example – Results



Toy Example – Results

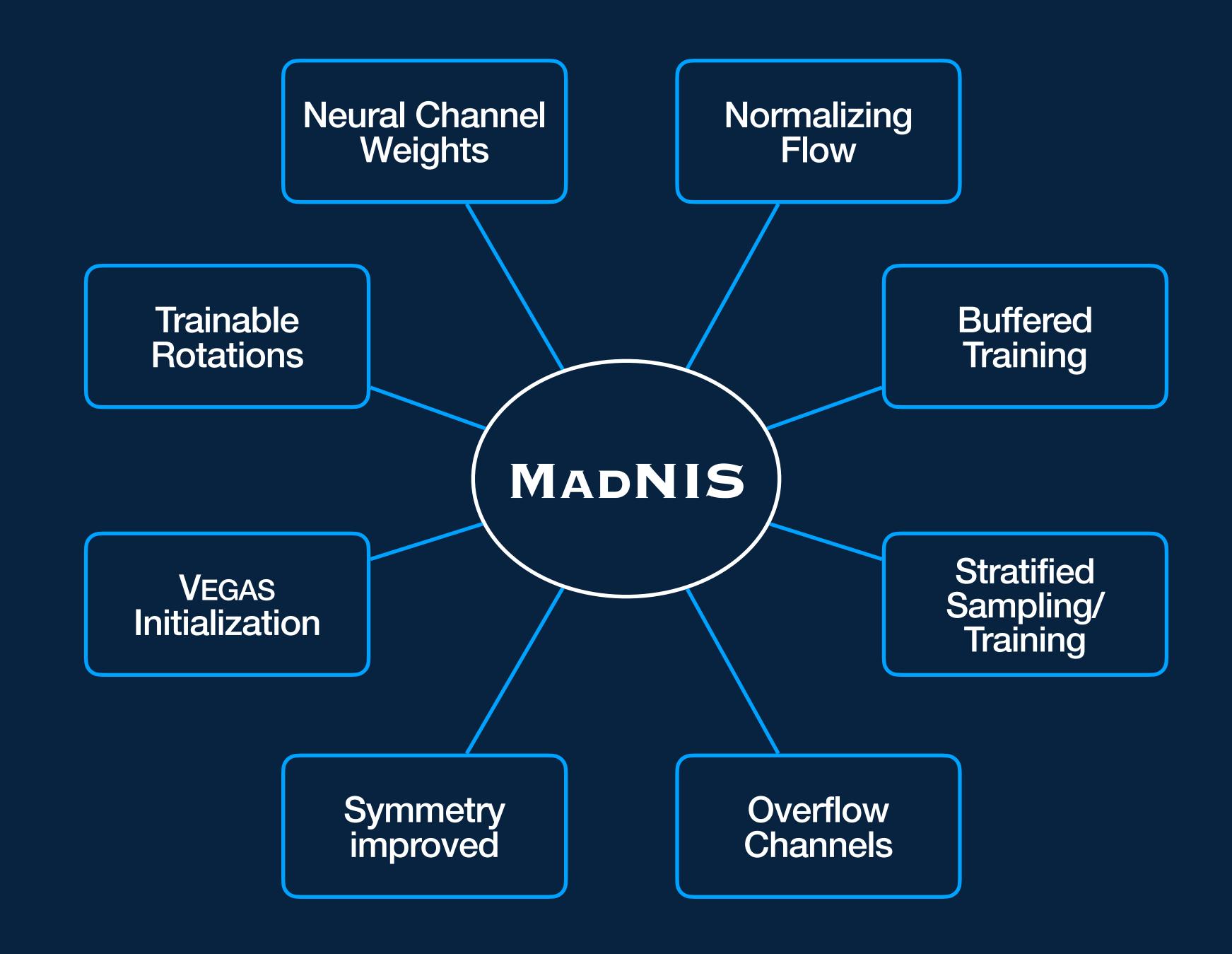


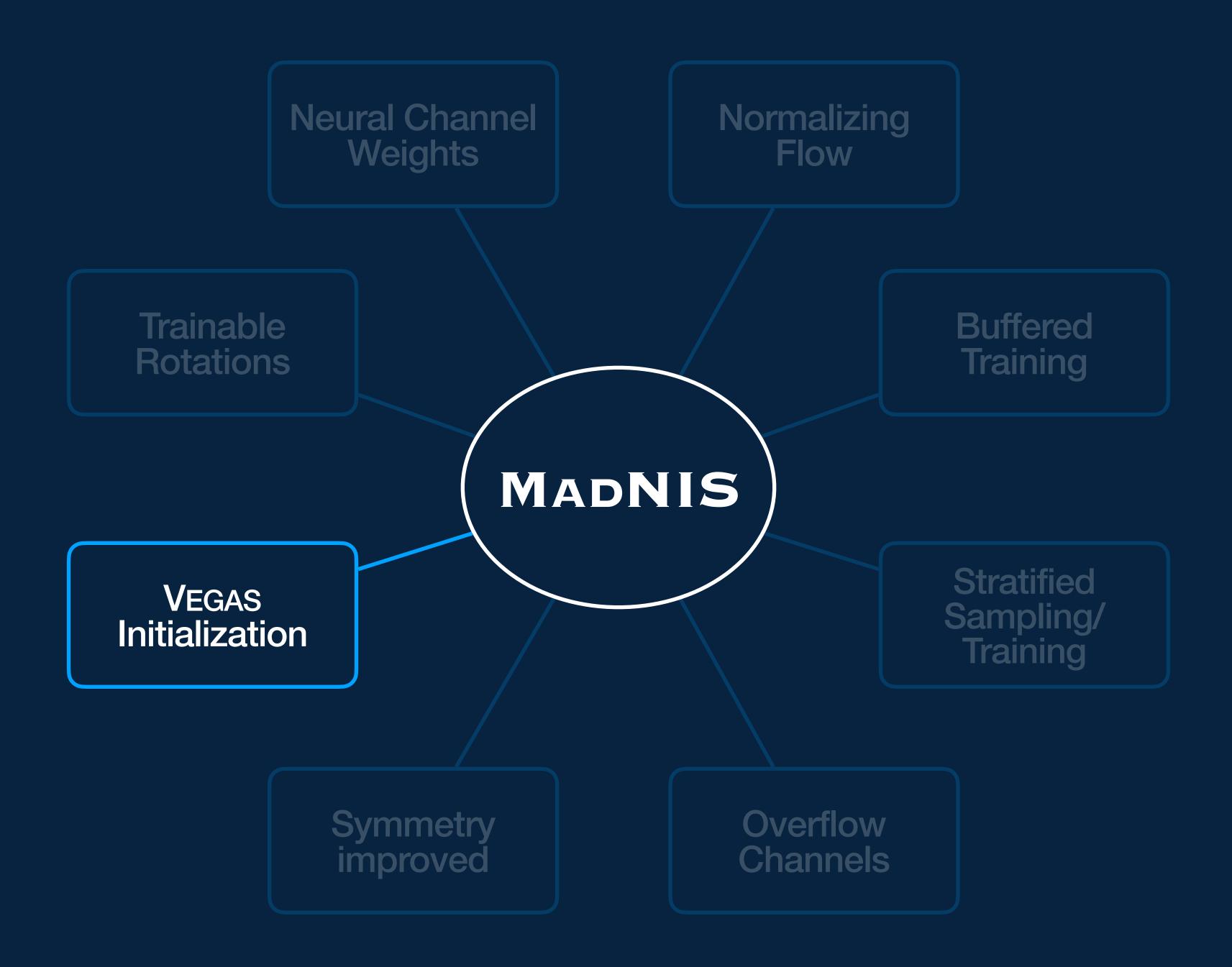


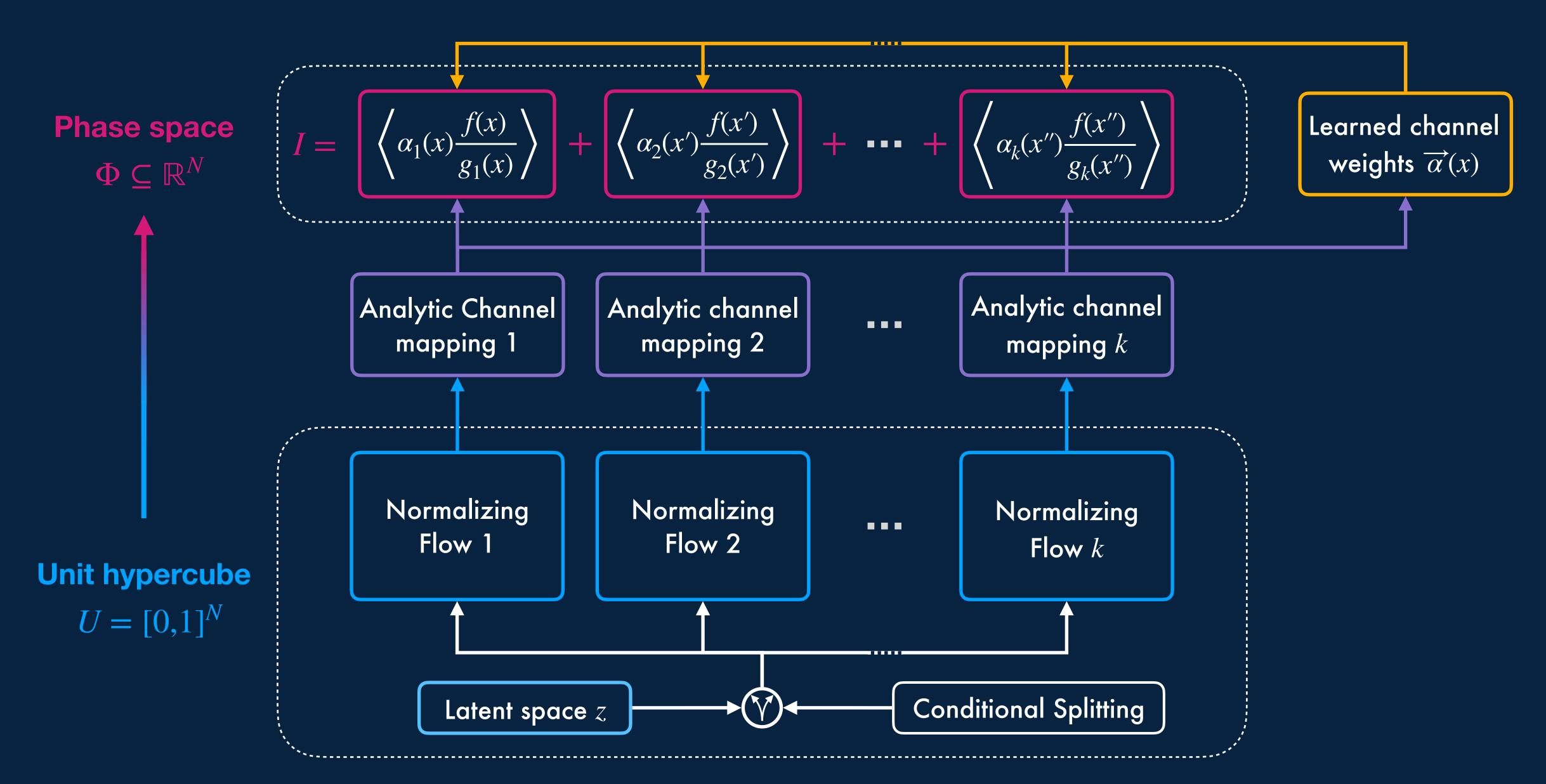
Can we beat standard frameworks?

MadNIS Reloaded

How to beat MadGraph



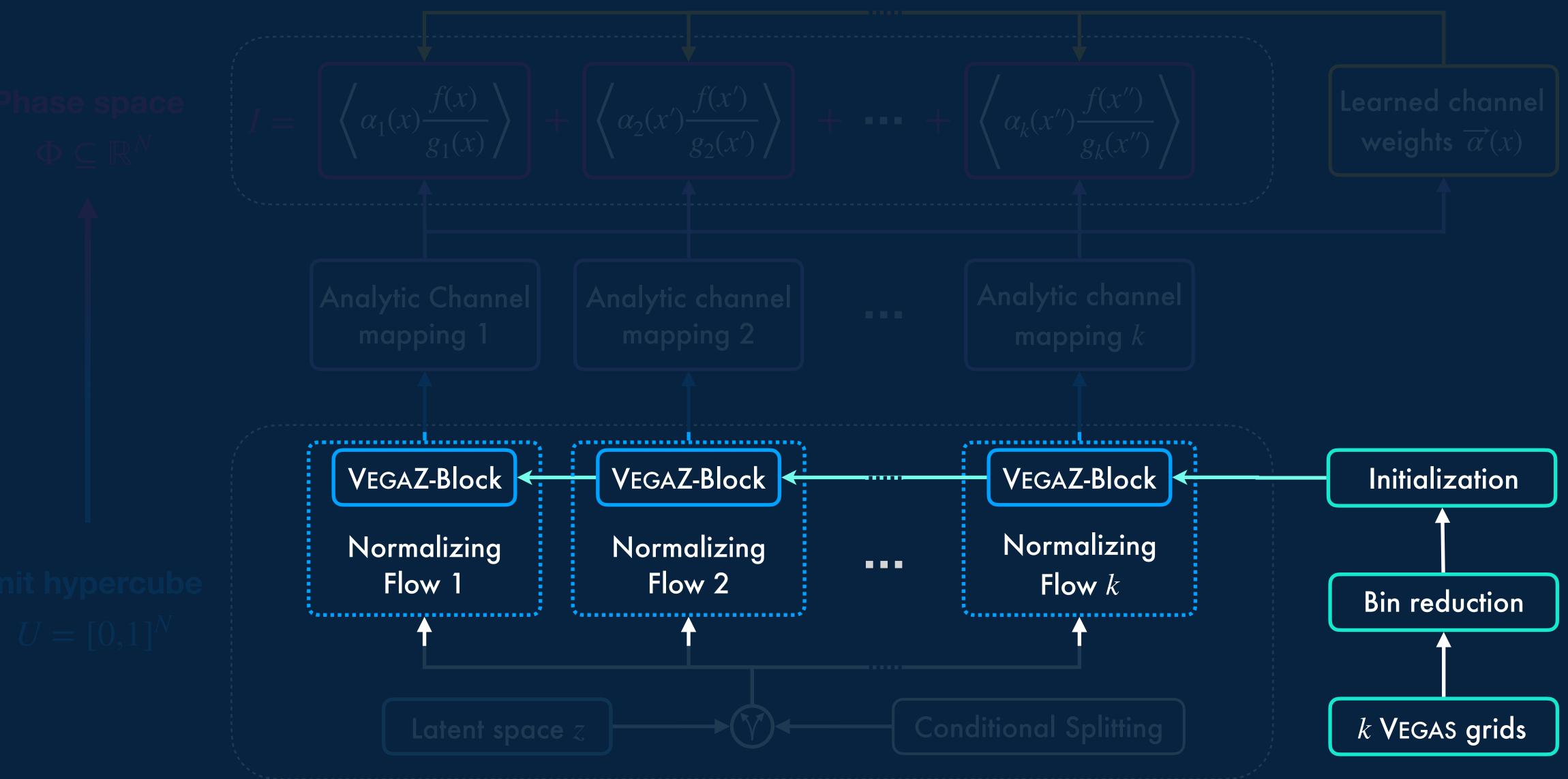




MadNIS – VEGAZ-Block



MadNIS – VEGAZ-Block



MadNIS – VEGAZ-Block

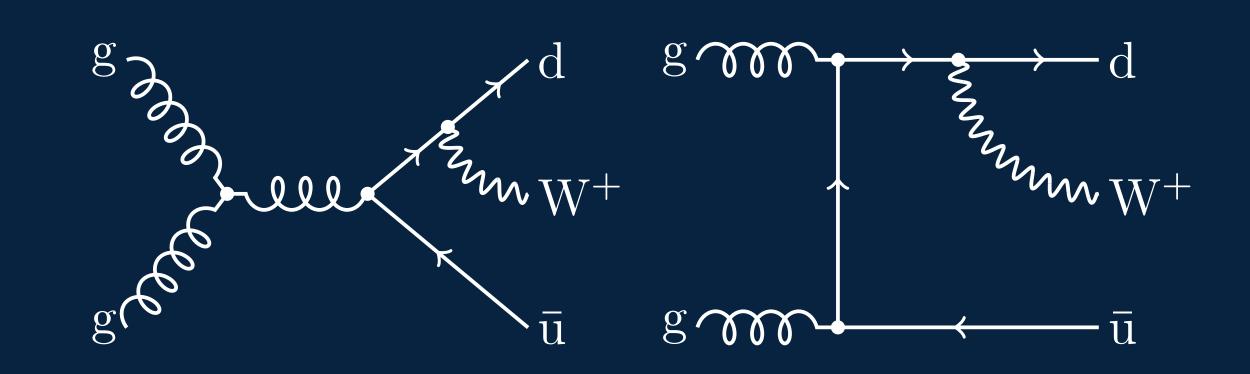
First benchmark — W+2jets

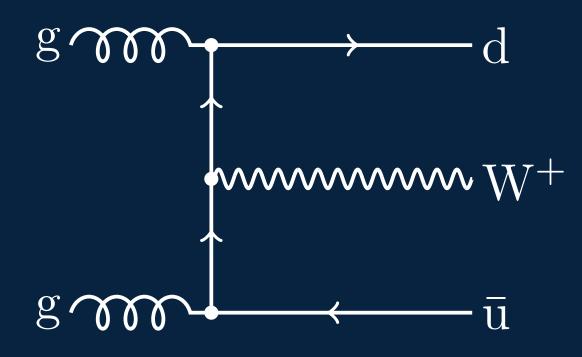
Implementation

- Amplitude and PS mapping from MadGraph
- Direct implementation via MadGraph-API

MadGraph API

- MadNIS can access and use (almost) all features of MadGraph
- Automatically generates necessary files for arbitrary processes (LO only)





First benchmark – Results

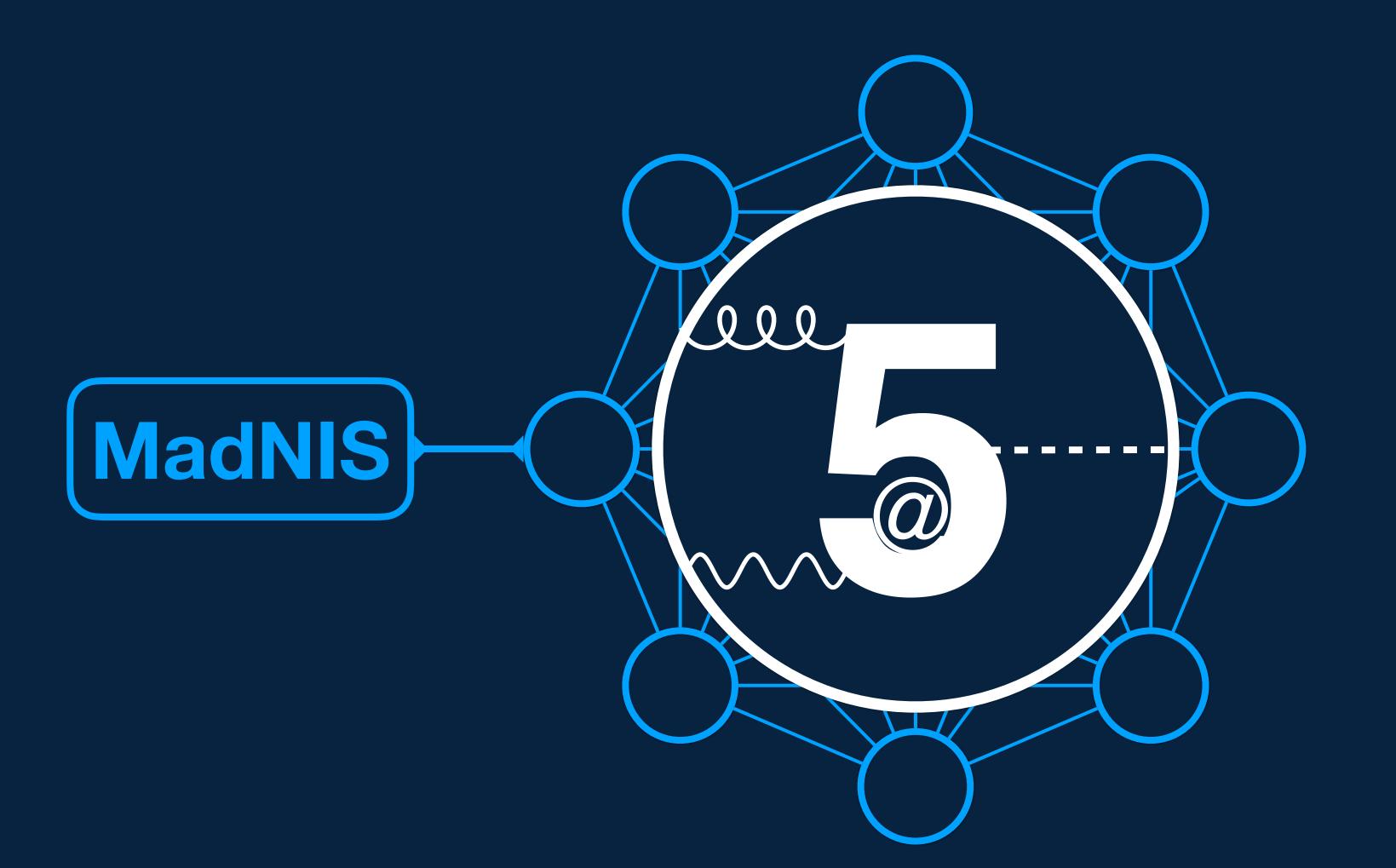
8 Channels	Integral [pb]	Relative stddev	Unweighting eff.
MG5AMC*	216.4(8)	2.13	2.3%
Flow	215.20(14)	0.64	9.0%
VegaZ-Flow	215.13(12)	0.57	11.1%
α -VEGAZ-Flow	215.07(11)	0.55	11.7%

First benchmark – Results

8 Channels	Integral [pb]	Relative stddev	Unweighting eff.
MG5AMC*	216.4(8)	2.13	2.3%
Flow	215.20(14)	0.64	9.0%
VegaZ-Flow	215.13(12)	0.57	11.1%
α -VEGAZ-Flow	215.07(11)	0.55	11.7%

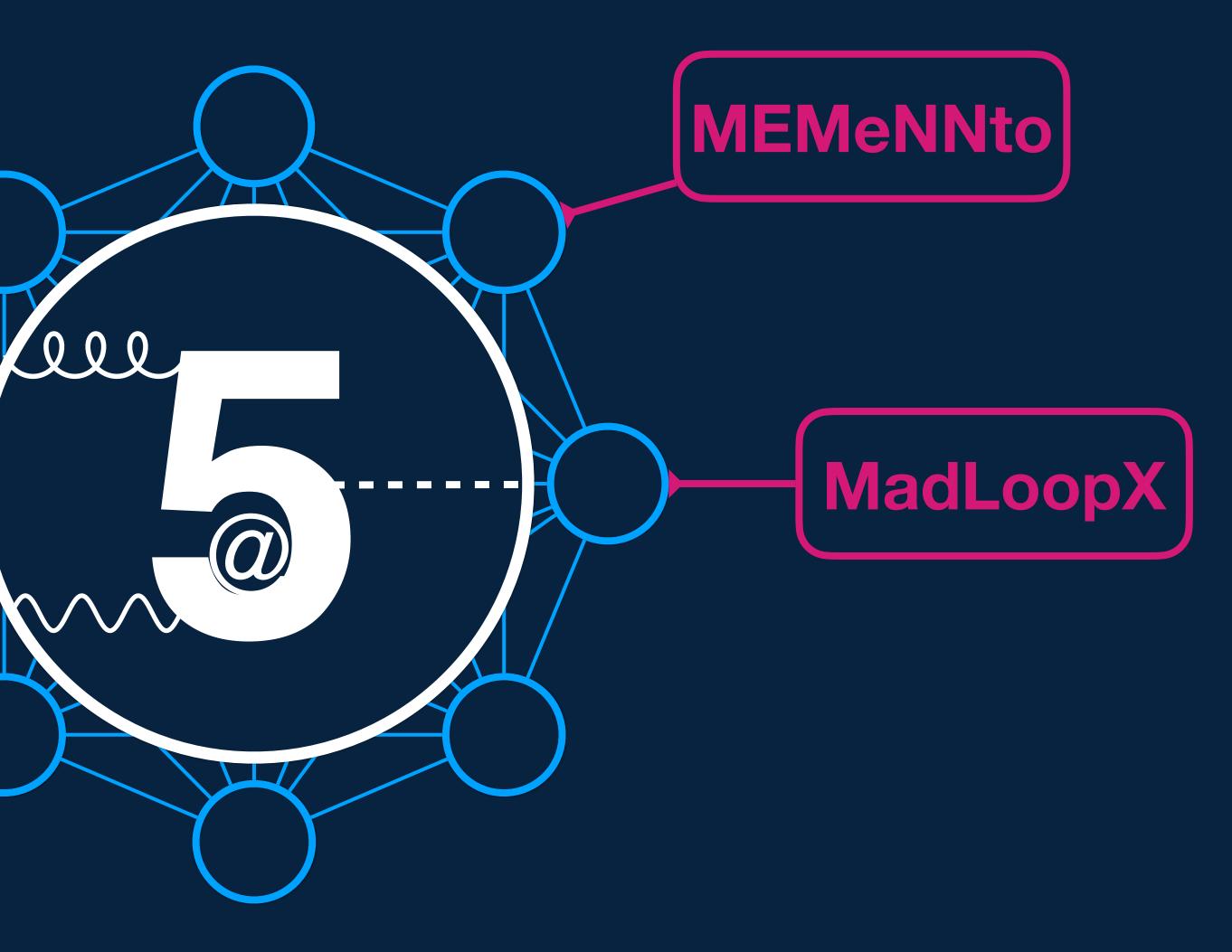
4 Channels	Integral [pb]	Relative stddev	Unweighting eff.
MG5AMC*	215.4(4)	1.39	3.9%
Flow	215.10(11)	0.53	14.2%
VegaZ-Flow	214.96(11)	0.49	14.8%
α -VEGAZ-Flow	215.00(10)	0.47	15.5%

What is the future of MadGraph?



ML for MadGraph5_aMC@NLO

MadNIS



ML for MadGraph5_aMC@NLO + Future

Summary and Outlook

Summary

- MadNIS outperforms current sampling methods
- Multi-channel is more efficient when trained simultanously with the flow
- Vegas initialization improves performance

Outlook

- Fully integrate MadNIS into MadGraph
- Test performance on real LHC examples: (eg. multi-leg, NLO, complicated cuts, ...)
- Make everything run on the GPU and differentiable [MadJax 2203.00057]

HEPML-LivingReview

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as useful as possible. Suggestions are most welcome.

download review

The purpose of this note is to collect references for modern machine learning as applied to particle physics. A minimal number of categories is chosen in order to be as useful as possible. Note that papers may be referenced in more than one category. The fact that a paper is listed in this document does not endorse or validate its content - that is for the community (and for peer-review) to decide. Furthermore, the classification here is a best attempt and may have flaws - please let us know if (a) we have missed a paper you think should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or if the journal information is now available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next paper. If you find this review helpful, please consider citing it using \cite{hepmllivingreview} in HEPML.bib.

paper. If you find this review helpful, please consider citing it using \cite{hepmllivingreview} in HEPML.bib. available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next

Summary and Outlook

Outlook

- Fully integrate MadNIS into MadGraph
- Test performance on real LHC examples: (eg. multi-leg, NLO, complicated cuts, ...)
- Make everything run on the GPU and differentiable [MadJax 2203.00057]
- Stay tuned for many other ML4HEP applications \bullet

nersan

HEPML