

Feasibility and Reliability Studies of Graph Neural Networks for Multivariate tt+X Event Classification at the CMS Experiment at CERN

Yee-Ying Christina Cung | January 09, 2023

KIT - The Research University in the Helmholtz Association

www.kit.edu

Outline

Peasibility Study

3 Reliability Study

- Benchmarking Equivalent GNNs and DNNs
- Summary and Outlook

 $\Rightarrow t\bar{t}+b\bar{b}$

 \Rightarrow tt+bb, ttH(bb)

 $[\]Rightarrow$ tt+bb, ttH(bb), ttZ(bb)

 \Rightarrow tt+bb, ttH(bb), ttZ(bb)

 \Rightarrow tt+bb, ttH(bb), ttZ(bb)

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

Calculation performed in each vertex u

Calculation performed in each vertex *u*

$$\mathsf{AGG}^{(l-1)}\left(\left\{\mathbf{x}_{u}^{(l-1)}, \forall v \in \mathcal{N}(u)\right\}\right)$$

Calculation performed in each vertex *u*

$$\mathbf{x}_{u}^{(l-1)}, \operatorname{Agg}^{(l-1)}\left(\left\{\mathbf{x}_{u}^{(l-1)}, \forall v \in \mathcal{N}(u)\right\}\right)$$

Calculation performed in each vertex *u*

$$\mathbf{x}_{u}^{(l)} = \mathsf{UPD}^{(l-1)}\left(\mathbf{x}_{u}^{(l-1)}, \mathsf{AGG}^{(l-1)}\left(\left\{\mathbf{x}_{u}^{(l-1)}, \forall v \in \mathcal{N}(u)\right\}\right)\right)$$

Calculation performed in each vertex *u*

$$\mathbf{x}_{u}^{(l)} = \mathsf{UPD}^{(l-1)}\left(\mathbf{x}_{u}^{(l-1)}, \mathsf{AGG}^{(l-1)}\left(\left\{\mathbf{x}_{u}^{(l-1)}, \forall v \in \mathcal{N}(u)\right\}\right)\right)$$

- Gated Graph Sequence Neural Network (GGSNN) [1]:
 - AGG: mean, UPD: Gated Recurrent Unit (GRU) cell

Calculation performed in each vertex *u*

$$\mathbf{x}_{u}^{(l)} = \mathsf{UPD}^{(l-1)}\left(\mathbf{x}_{u}^{(l-1)}, \mathsf{AGG}^{(l-1)}\left(\left\{\mathbf{x}_{u}^{(l-1)}, \forall v \in \mathcal{N}(u)\right\}\right)\right)$$

- Gated Graph Sequence Neural Network (GGSNN) [1]:
 - AGG: mean, UPD: Gated Recurrent Unit (GRU) cell
- GraphConv [2]:
 - AGG: sum, UPD: NN

Application of GNNs

\Rightarrow Jet assignment

Application of GNNs

Monte Carlo simulations (2017)

- Monte Carlo simulations (2017)
- **Region**: ≥ 6 jets, ≥ 4 b-tagged jets, single lepton channel

- Monte Carlo simulations (2017)
- **Region**: ≥ 6 jets, ≥ 4 b-tagged jets, single lepton channel
- Total number of events ≈ 190k (60% training | 20% validation | 20% test)
 - $t\bar{t}+b\bar{b}\approx 53k$
 - $t\bar{t}H(b\bar{b}) \approx 100k$
 - $t\bar{t}Z(b\bar{b}) \approx 33k$

single lepton channel Total number of events ≈ 190 k

(60% training | 20% validation | 20% test)

• $t\bar{t}+b\bar{b}\approx 53k$

Training Data

- $t\bar{t}H(b\bar{b}) \approx 100k$
- $t\bar{t}Z(b\bar{b}) \approx 33k$

Institute of Experimental Particle Physics

M

E btag

Benchmarking Equivalent GNNs and DNNs Summary and Outlook

 p_{T} ϕ η

b tag

ME

 $p_{\rm T}$ ϕ η

Region: \geq 6 jets, \geq 4 b-tagged jets,

Binary and Multiclass Classification - First Attempts

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 7/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

Binary and Multiclass Classification - First Attempts

\Rightarrow Less than 41 % better than a random estimator

Binary and Multiclass Classification - First Attempts

 \Rightarrow Less than 41 % better than a random estimator \Rightarrow Still a lot of room for improvements

1.) **Monitored metric**: true positive rate (TPR) \rightarrow loss

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 8/20 January 09, 2023 Yee-Ying Curg: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

- 1.) Monitored metric: true positive rate (TPR) \rightarrow loss
- 2.) Extend vertex attributes by **category flags** = $\{0, 1\}$

- 1.) Monitored metric: true positive rate (TPR) \rightarrow loss
- 2.) Extend vertex attributes by **category flags** = $\{0, 1\}$

- 1.) Monitored metric: true positive rate (TPR) \rightarrow loss
- 2.) Extend vertex attributes by **category flags** = $\{0, 1\}$

- 1.) **Monitored metric**: true positive rate (TPR) \rightarrow loss
- 2.) Extend vertex attributes by **category flags** = $\{0, 1\}$

- 1.) Monitored metric: true positive rate (TPR) \rightarrow loss
- 2.) Extend vertex attributes by **category flags** = $\{0, 1\}$

- 1.) Monitored metric: true positive rate (TPR) \rightarrow loss
- 2.) Extend vertex attributes by **category flags** = $\{0, 1\}$

⇒ Problem: not inherent in detected data (reconstruction-level)

- 1.) Monitored metric: true positive rate (TPR) \rightarrow loss
- 2.) Extend vertex attributes by **category flags** = $\{0, 1\}$

- ⇒ Problem: not inherent in detected data (reconstruction-level)
- \Rightarrow Solution: e.g., a GNN-based preclassifier (NLP) \rightarrow cf. Slide 29f

3.) Modify the model architecture

3.) Modify the model architecture

(a) GGSNN ($N_{\text{trainable param.}} \approx 14 \text{k}$)

3.) Modify the model architecture

3.) Modify the model architecture

9/20

Institute of Experimental Particle Physics

tī+X Processes and Application of GNNs 10/20 January 09, 2023 Yee-Ying Curg: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 10/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate II+X Event Classification
 Institute of Experimental Particle Physics

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 10/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate II+X Event Classification
 Institute of Experimental Particle Physics

 \Rightarrow Performance improves by a total of (26.9 ± 1.3) % theoretically

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 10/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate It+X Event Classification
 Institute of Experimental Particle Physics

 \Rightarrow Performance improves by a total of (26.9 ± 1.3) % theoretically \Rightarrow About 76 % better than a random estimator

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 10/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate It+X Event Classification
 Institute of Experimental Particle Physics

- \Rightarrow Performance improves by a total of (26.9 ± 1.3) % theoretically
- \Rightarrow About 76 % better than a random estimator
- \Rightarrow GNNs are generally suitable for tt+X event classification \checkmark

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 10/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate It+X Event Classification
 Institute of Experimental Particle Physics

¹Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 11/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate II+X Event Classification
 Institute of Experimental Particle Physics

- GNNExplainer (GNNX) [3]
 - Designed for explaining GNNs

¹Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 11/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate It+X Event Classification
 Institute of Experimental Particle Physics

- Designed for explaining GNNs
- Training required
 - \rightarrow hyperparameters need to be selected

¹Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

- Designed for explaining GNNs
- Training required → hyperparameters need to be selected
- Explains the importance of:
 - Vertex attributes

¹Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

- Designed for explaining GNNs
- Training required
 - \rightarrow hyperparameters need to be selected
- Explains the importance of:
 - Vertex attributes
 - Vertices
 - Vertex attributes per vertex
 - Edges/relational information (but w/o considering edge attributes!)

¹Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

- GNNExplainer (GNNX) [3]
 - Designed for explaining GNNs
 - Training required → hyperparameters need to be selected
 - Explains the importance of:
 - Vertex attributes
 - Vertices
 - Vertex attributes per vertex
 - Edges/relational information (but w/o considering edge attributes!)

Taylor coefficient analysis (TCA) [4]

¹Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

- **GNNExplainer** (GNNX) [3]
 - Designed for explaining GNNs
 - Training required \rightarrow hyperparameters need to be selected
 - Explains the importance of:
 - Vertex attributes
 - Vertices
 - Vertex attributes per vertex
 - Edges/relational information (but w/o considering edge attributes!)

- Taylor coefficient analysis (TCA) [4]
 - More versatile \rightarrow applicable to GNNs or DNNs

¹Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 11/20

Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification January 09, 2023

Institute of Experimental Particle Physics

- Designed for explaining GNNs
- Training required → hyperparameters need to be selected
- Explains the importance of:
 - Vertex attributes
 - Vertices
 - Vertex attributes per vertex
 - Edges/relational information (but w/o considering edge attributes!)

- Taylor coefficient analysis (TCA) [4]
 - More versatile \rightarrow applicable to GNNs or DNNs
 - Deterministic

¹ Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

- Designed for explaining GNNs
- Training required → hyperparameters need to be selected
- Explains the importance of:
 - Vertex attributes
 - Vertices
 - Vertex attributes per vertex
 - Edges/relational information (but w/o considering edge attributes!)

- Taylor coefficient analysis (TCA) [4]
 - More versatile \rightarrow applicable to GNNs or DNNs
 - Deterministic
 - Explains the importance of:
 - Vertex attributes and their relations

¹Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/

Both rankings of the b tag's importance are reasonable from a physics perspective

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 12/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate It+X Event Classification
 Institute of Experimental Particle Physics

Both rankings of the b tag's importance are reasonable from a physics perspective

• In a further study: TCA's explanations are clearly more reasonable (cf. Slide 39)

Both rankings of the b tag's importance are reasonable from a physics perspective

- In a further study: TCA's explanations are clearly more reasonable (cf. Slide 39)
- \Rightarrow Explainable AI reveals: GNNs behave as expected \rightarrow GNNs are indeed reliable \checkmark

 tīt+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 13/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tit+X Event Classification
 Institute of Experimental Particle Physics

	GNN	DNN	
input size (<i>N</i> _{objects} in an event) permutation invariance parameter sharing	flexible	fixed	\rightarrow affects data handling

13/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification

13/20

January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate t+X Event Classification

13/20

January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification

13/20

January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate t+X Event Classification

Institute of Experimental Particle Physics
GNN and DNN Properties

13/20

January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate t+X Event Classification

|--|

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	v	BINARY CROSS-ENTROPY

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Curg: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	 Image: A second s	BINARY CROSS-ENTROPY
b) same optimizer	v	Адам

 tīt+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 14/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tit+X Event Classification
 Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	v	BINARY CROSS-ENTROPY
b) same optimizer	 	Адам
c) same activation function	V	RELU, SIGMOID

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	 Image: A second s	BINARY CROSS-ENTROPY
b) same optimizer	 	Адам
c) same activation function	 	RELU, SIGMOID
d) same feature space	×	since no differentiation between vertex, edge and graph attributes for DNNs

tī+x Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+x Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	v	BINARY CROSS-ENTROPY
b) same optimizer	 Image: A set of the set of the	Адам
c) same activation function	 Image: A set of the set of the	ReLU, Sigmoid
d) same feature space	X	since no differentiation between vertex, edge and graph attributes for DNNs
e) same <i>n</i> _{input}	×	due to d) and fixed input size of the DNNs

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	~	BINARY CROSS-ENTROPY
b) same optimizer	 	Адам
c) same activation function	 	RELU, SIGMOID
d) same feature space	×	since no differentiation between vertex, edge and graph attributes for DNNs
e) same <i>n</i> _{input}	×	due to d) and fixed input size of the DNNs
f) same n _{hidden}	v	

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	v	BINARY CROSS-ENTROPY
b) same optimizer	v	Адам
c) same activation function	v	RELU, SIGMOID
d) same feature space	×	since no differentiation between vertex, edge and graph attributes for DNNs
e) same <i>n</i> _{input}	×	due to d) and fixed input size of the DNNs
f) same n _{hidden}	 Image: A second s	
g) same <i>n</i> output	×	

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate īt+X Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	v	BINARY CROSS-ENTROPY
b) same optimizer	v	Adam
c) same activation function	 Image: A set of the set of the	RELU, SIGMOID
d) same feature space	X	since no differentiation between vertex, edge and graph attributes for DNNs
e) same <i>n</i> _{input}	×	due to d) and fixed input size of the DNNs
f) same <i>n</i> _{hidden}	 	
g) same <i>n</i> output	 	
h) same <i>N</i> _{trainable param.} (= DOF)	 	because of e)

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	v	BINARY CROSS-ENTROPY
b) same optimizer	 Image: A set of the set of the	Adam
c) same activation function	 	RELU, SIGMOID
d) same feature space	×	since no differentiation between vertex, edge and graph attributes for DNNs
e) same <i>n</i> _{input}	×	due to d) and fixed input size of the DNNs
f) same <i>n</i> _{hidden}	 	
g) same <i>n</i> output	 	
h) same N _{trainable param.} (= DOF)	V	because of e)

\Rightarrow Comparison A: compare models with same n_{hidden} or

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 14/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

conditions	realizable	comments
a) same loss function	v	BINARY CROSS-ENTROPY
b) same optimizer	v	Adam
c) same activation function	 Image: A set of the set of the	RELU, SIGMOID
d) same feature space	X	since no differentiation between vertex, edge and graph attributes for DNNs
e) same <i>n</i> _{input}	×	due to d) and fixed input size of the DNNs
f) same <i>n</i> _{hidden}	 Image: A set of the set of the	
g) same <i>n</i> output	 Image: A set of the set of the	
h) same N _{trainable param.} (= DOF)	 	because of e)

- \Rightarrow **Comparison A:** compare models with same n_{hidden} or
- \Rightarrow Comparison B: compare models with same $N_{\text{trainable param.}}$, cf. Slide 49ff

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 14/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate ti+X Event Classification
 Institute of Experimental Particle Physics

 tī+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 15/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate ti+X Event Classification
 Institute of Experimental Particle Physics

■ Idea: compare models with same $n_{\text{hidden}} \in N_{\text{hidden}}$: $N_{\text{HL}} = \{1, 2\}, N_{\text{hidden}} = \{13, 26, 39\}^{n_{\text{HL}} \in N_{\text{HL}}}$

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 15/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

- Idea: compare models with same $n_{\text{hidden}} \in N_{\text{hidden}}$: $N_{\text{HL}} = \{1, 2\}, N_{\text{hidden}} = \{13, 26, 39\}^{n_{\text{HL}} \in N_{\text{HL}}}$
- Deploy models that are as basic as possible:
 - **DNN**: fully-connected feed-forward neural network
 - GNN: GraphConv

- Idea: compare models with same $n_{\text{hidden}} \in N_{\text{hidden}}$: $N_{\text{HL}} = \{1, 2\}, N_{\text{hidden}} = \{13, 26, 39\}^{n_{\text{HL}} \in N_{\text{HL}}}$
- Deploy models that are as basic as possible:
 - **DNN**: fully-connected feed-forward neural network
 - GNN: GraphConv
- Enhance comparability by training GNNs with different graph connectivity schemes

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 15/20 January 09, 2023 Yee-Ying Curg: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

- Idea: compare models with same $n_{\text{hidden}} \in N_{\text{hidden}}$: $N_{\text{HL}} = \{1, 2\}, N_{\text{hidden}} = \{13, 26, 39\}^{n_{\text{HL}} \in N_{\text{HL}}}$
- Deploy models that are as basic as possible:
 - **DNN**: fully-connected feed-forward neural network
 - GNN: GraphConv
- Enhance comparability by training GNNs with different graph connectivity schemes
- Number of compared models: 120 (GNNs) + 96 (DNNs) = 216

 tī+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 15/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification
 Institute of Experimental Particle Physics

Performance of GNNs (1 HL)

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 16/20 January 09, 2023 Yee-Ying Curg: Feasibility and Reliability Studies of GNNs for Multivariate T+X Event Classification Institute of Experimental Particle Physics

Performance of GNNs (1 HL)

 tī+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 16/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate ti+X Event Classification
 Institute of Experimental Particle Physics

Performance of GNNs (1 HL)

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 16/20 January 09, 2023 Yee-Ying Curg: Feasibility and Reliability Studies of GNNs for Multivariate T+X Event Classification Institute of Experimental Particle Physics

tīt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 17/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tīt+X Event Classification Institute of Experimental Particle Physics

 \Rightarrow Edge weight = M_{inv} leads to the best GNN performance

 IT+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 17/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate ti+X Event Classification
 Institute of Experimental Particle Physics

 \Rightarrow Edge weight = M_{inv} leads to the best GNN performance

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 17/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate II+X Event Classification
 Institute of Experimental Particle Physics

 \Rightarrow Edge weight = M_{inv} leads to the best GNN performance

⇒ Beneficial to train edges with physically non-meaningful weights

 IT+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 17/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate IT+X Event Classification
 Institute of Experimental Particle Physics

 \Rightarrow Edge weight = M_{inv} leads to the best GNN performance

- ⇒ Beneficial to train edges with physically non-meaningful weights
- \Rightarrow Edge weight = M_{inv} seems to be the **best choice** for tt+X event classification

 tī+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 18/20
 January 09, 2023
 Yee-Ying Curg: Feasibility and Reliability Studies of GNNs for Multivariate ti+X Event Classification
 Institute of Experimental Particle Physics

 \Rightarrow Using relational information is also beneficial for the performance of DNNs

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 18/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate t+X Event Classification
 Institute of Experimental Particle Physics

- \Rightarrow Using relational information is also beneficial for the performance of DNNs
- \Rightarrow But: n_{input} increases from 221 to 493 \rightarrow significant increase in $N_{\text{trainable param.}}$!

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 18/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate IT+X Event Classification
 Institute of Experimental Particle Physics

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 19/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

■ Large error bars for tGNNs and DNNs → not stable training due to high number of DOF?

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 19/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate T+X Event Classification Institute of Experimental Particle Physics

- Large error bars for tGNNs and DNNs → not stable training due to high number of DOF?
- DNNs trained w/o relational info outperform GNNs trained with graphs w/o physically motivated, untrained edge weights

tīt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 19/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tīt+X Event Classification Institute of Experimental Particle Physics

- Large error bars for tGNNs and DNNs → not stable training due to high number of DOF?
- DNNs trained w/o relational info outperform GNNs trained with graphs w/o physically motivated, untrained edge weights
- **GNNs** still work the **best** for tt+X event classification

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 19/20 January 09, 2023 Yee-Ying Curg: Feasibility and Reliability Studies of GNNs for Multivariate T+X Event Classification Institute of Experimental Particle Physics

- Large error bars for tGNNs and DNNs → not stable training due to high number of DOF?
- DNNs trained w/o relational info outperform GNNs trained with graphs w/o physically motivated, untrained edge weights
- **GNNs** still work the **best** for tt+X event classification
- Similar results for models with 2 HL

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 19/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institute of Experimental Particle Physics

Summary and Outlook

Feasibility Study

 tī+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 20/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification
 Institute of Experimental Particle Physics

Summary and Outlook

Feasibility Study

 Event classifier theoretically improves by about 27 % overall

 It+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs
 Summary and Outlook

 20/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate II+X Event Classification
 Institute of Experimental Particle Physics

Summary and Outlook

Feasibility Study

- Event classifier theoretically improves by about 27 % overall
 - \Rightarrow About 76 % better than a random estimator

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate T+X Event Classification Institute of Experimental Particle Physics

Feasibility Study

- Event classifier theoretically improves by about 27 % overall
 - \Rightarrow About 76 % better than a random estimator
 - ⇒ GNNs are generally suitable for tt+X event classification ✓

Feasibility Study

- Event classifier theoretically improves by about 27 % overall
 - \Rightarrow About 76 % better than a random estimator
 - ⇒ GNNs are generally suitable for tt+X event classification ✓

Reliability Study

 The features identified as important by GNNX and TCA are reasonable from a physics point of view

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Summary and Outlook 20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate īt+X Event Classification Institute of Experimental Particle Physics

Feasibility Study

- Event classifier theoretically improves by about 27 % overall
 - \Rightarrow About 76 % better than a random estimator
 - ⇒ GNNs are generally suitable for tt+X event classification ✓

Reliability Study

- The features identified as important by GNNX and TCA are reasonable from a physics point of view
 - \Rightarrow GNNs are reliable/trustworthy \checkmark

 tī+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs

 20/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification
 Institute of Exp

Institute of Experimental Particle Physics

easibility Study	Benchmarking Equivalent GNNs and DNNs
 Event classifier theoretically improves by about 27 % overall 	GNN DNN
 ⇒ About 76 % better than a random estimator ⇒ GNNs are generally suitable for tī+X event classification ✓ 	model performance 🖆 🖆 training stability DOF data preprocessing effort

Reliability Study

F

- The features identified as important by GNNX and TCA are reasonable from a physics point of view
 - ⇒ GNNs are reliable/trustworthy ✓

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs 20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics

easibility Study	Benchmarking Equivalent GNNs and DNNs
Event classifier theoretically improves by about 27 % overall	GNN DNN
 ⇒ About 76 % better than a random estimator ⇒ GNNs are generally suitable for tt+X event classification ✓ 	model performance 🖕 🖕 training stability 🖕 р DOF data preprocessing effort

Reliability Study

- The features identified as important by GNNX and TCA are reasonable from a physics point of view
 - ⇒ GNNs are reliable/trustworthy ✓

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs 20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics

Feasibility Study

- Event classifier theoretically improves by about 27 % overall
 - \Rightarrow About 76 % better than a random estimator
 - ⇒ GNNs are generally suitable for tt+X event classification ✓

Benchmarking Equivalent GNNs and DNNs

	GNN	DNN
model performance training stability DOF data preprocessing effort	≟ ≟ / _ -	

Reliability Study

- The features identified as important by GNNX and TCA are reasonable from a physics point of view
 - \Rightarrow GNNs are reliable/trustworthy \checkmark

 tī+X Processes and Application of GNNs
 Feasibility Study
 Reliability Study
 Benchmarking Equivalent GNNs and DNNs

 20/20
 January 09, 2023
 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate ti+X Event Classification
 Institute

Institute of Experimental Particle Physics

Feasibility Study

- Event classifier theoretically improves by about 27% overall
 - \Rightarrow About 76% better than a random estimator
 - \Rightarrow GNNs are generally suitable for tt+X event classification V

Benchmarking Equivalent GNNs and DNNs

	GNN	DNN
model performance training stability	 /_■_	í s
DOF		
data preprocessing effort	Ĺ	P

Reliability Study

- The features identified as important by GNNX and TCA are reasonable from a physics point of view
 - \Rightarrow GNNs are reliable/trustworthy \checkmark

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics 20/20 January 09, 2023

Feasibility Study

- Event classifier theoretically improves by about 27% overall
 - \Rightarrow About 76% better than a random estimator
 - \Rightarrow GNNs are generally suitable for tt+X event classification V

Benchmarking Equivalent GNNs and DNNs

	GNN	DNN
model performance		Ĺ
DOF		
data preprocessing effort	6	Ţ

⇒ Beneficial to prefer GNNs to DNNs ✓

Reliability Study

- The features identified as important by GNNX and TCA are reasonable from a physics point of view
 - \Rightarrow GNNs are reliable/trustworthy \checkmark

tt+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tt+X Event Classification Institute of Experimental Particle Physics 20/20 January 09, 2023

Feasibility Study

- Event classifier theoretically improves by about 27 % overall
 - \Rightarrow About 76 % better than a random estimator
 - ⇒ GNNs are generally suitable for tt+X event classification ✓

Benchmarking Equivalent GNNs and DNNs

	GNN	DNN
model performance	L L	ſ
training stability	🖆 / 🕞	
DOF	La	
data preprocessing effort		L.

 \Rightarrow Beneficial to prefer GNNs to DNNs \checkmark

 \Rightarrow Outlook: non-CMS paper currently prepared

Reliability Study

 The features identified as important by GNNX and TCA are reasonable from a physics point of view

⇒ GNNs are reliable/trustworthy ✓

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equivalent GNNs and DNNs 20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification Institu

Summary and Outlook

Feasibility Study

- Event classifier theoretically improves by about 27 % overall
 - \Rightarrow About 76 % better than a random estimator
 - ⇒ GNNs are generally suitable for tt+X event classification ✓

Benchmarking Equivalent GNNs and DNNs

	GNN	DNN
model performance	Ĺ	Ĺ
training stability	≙/ 🗗	-
DOF	Ĺ	
data preprocessing effort	6	Ļ

- ⇒ Beneficial to prefer GNNs to DNNs ✓
- \Rightarrow Outlook: non-CMS paper currently prepared

Reliability Study

- The features identified as important by GNNX and TCA are reasonable from a physics point of view
 - ⇒ GNNs are reliable/trustworthy ✓

Outlook: develop a multi-task network?

 Simultaneously trained on additional b jet assignment and tt+X event classification

tī+X Processes and Application of GNNs Feasibility Study Reliability Study Benchmarking Equiv 20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate tī+X Event Classification

Benchmarking Equivalent GNNs and DNNs

Summary and Outlook

Feasibility Study

- Event classifier theoretically improves by about 27 % overall
 - \Rightarrow About 76 % better than a random estimator
 - ⇒ GNNs are generally suitable for tt+X event classification ✓

Benchmarking Equivalent GNNs and DNNs

	GNN	DNN
model performance	Ĺ	Ĺ
training stability	≙ / 🗗	-
DOF	é	-
data preprocessing effort	6	Ļ

- \Rightarrow Beneficial to prefer GNNs to DNNs \checkmark
- \Rightarrow Outlook: non-CMS paper currently prepared

Reliability Study

- The features identified as important by GNNX and TCA are reasonable from a physics point of view
 - \Rightarrow GNNs are reliable/trustworthy \checkmark

Outlook: develop a multi-task network?

- Simultaneously trained on additional b jet assignment and tī+X event classification
- Advantage: end-to-end model
 → easier to be retrained, optimized and distributed

tt+X Processes and Application of GNNs

Feasibility Study Reli

Reliability Study

Benchmarking Equivalent GNNs and DNNs

Summary and Outlook

20/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate t+X Event Classification

References

- [1] Yujia Li, Daniel Tarlow, Marc Brockschmidt, et al. "Gated Graph Sequence Neural Networks". In: International Conference for Learning Representations (ICLR) (2017). arXiv: 1511.05493v4 [cs.LG].
- [2] Christopher Morris, Martin Ritzert, Matthias Fey, et al. "Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks". In: *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 33(01). 2019, pp. 4602–4609. DOI: 10.1609/aaai.v33i01.33014602.
- [3] Rex Ying, Dylan Bourgeois, Jiaxuan You, et al. "GNNExplainer: Generating Explanations for Graph Neural Networks". In: Advances in Neural Information Processing Systems (NeurIPS). Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, et al. Vol. 32. 2019. URL: https://proceedings.neurips.cc/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf.
- [4] Stefan Wunsch, Raphael Friese, Roger Wolf, et al. "Identifying the Relevant Dependencies of the Neural Network Response on Characteristics of the Input Space". In: Computing and Software for Big Science 2(5) (2018). DOI: 10.1007/s41781-018-0012-1.

Backup

Graph Network Formalism

Distribution of Input Variables

Feasibility Study

Outlier Criteria

- a) If the trained model is a random estimator (ROC-AUC = 0.5) or
- b) ROC-AUC \notin mean ROC-AUC $\pm 1.5 \cdot \sigma_{\text{ROC-AUC}}^{\text{pre}}$ and $\Delta \sigma = \sigma_{\text{ROC-AUC}}^{\text{pre}} \sigma_{\text{ROC-AUC}}^{\text{post}} > 0.0025$

Left: Histogramm of the standard deviation difference pre- and post-removal of models with ROC-AUC values beyond the range of mean ROC-AUC $\pm 1.5 \cdot \sigma_{ROC-AUC}^{pre}$. Middle: Exemplary ROC curve of a trained model fulfilling criterion b). Right: Exemplary ROC curve of a trained model fulfilling criterion b), which is not desired, if $\Delta \sigma > 0.0025$ would be omitted.

Training Information

hyperparameter	setting
n _{input} /n _{hidden}	24
n _{HL}	18
n _{output} (of readout)	1 (binary), 3 (multiclass)
bias	true
aggregation functions	mean
global pooling method	mean
maximum number of epochs	200
EARLY-STOPPING	Δ epoch = 15, Δ TPR = 0.01 or Δ epoch = 15, Δ loss = 0.001
mini-batch size	200
optimizer	Adam ($\gamma = 0.01$)
activation function (in output layer)	SIGMOID (binary), SOFTMAX (multiclass)
loss function	BINARY/CATEGORICAL CROSS-ENTROPY
number of repetitions	10

Different Edge Weights and Model Architectures

28/20 January 09, 2023 Yee-Ying Cung: Feasibility and Reliability Studies of GNNs for Multivariate ti+X Event Classification

Preclassification of Category Flags

With a GNN-based preclassifier (NLP), an overall improvement of about 10% is still achievable

- Modeling of the dependency of the event classifier on the preclassification shows (cf. Slide 31ff):
 - Optimizing the preclassifier's TPR just by $\approx 0.17\,\% \rightarrow 2\,\%$ better event classifier
 - But: a further optimization of the preclassifier's TPR by ≈ 6% would be required for improving the performance of the event classifier by another 2%

Preclassification of Category Flags

 True positive rate achieved with the GNN-based preclassifier + the joint b tag/p_T approach

category	TPR (%)
AddB	70.88
HadTopB	65.61
HadTopQ	79.04
LepTopB	52.26
Unknown	62.24
Lepton/Missing	100.00

Modeling can be simplified to only modeling the additional b jet assignment correctly

AddB-LTB modeling:

Idea:

- AddB flag ↔ LTB flag
 - $\mathbf{x}_{i} = (\cdots \quad \text{AddB} = 1 \quad \cdots \quad \text{LTB} = 0 \quad \cdots)^{\mathsf{T}} \\ \leftrightarrow (\cdots \quad \text{AddB} = 0 \quad \cdots \quad \text{LTB} = 1 \quad \cdots)^{\mathsf{T}}$
- The preclassifier confuses these categories the most
- Only 1 LepTopB jet but 2 AddB jets in each event → AddB jet to manipulate is randomly chosen

AddB-X modeling:

- AddB flag \leftrightarrow any other category flag
- Category flag with which it is manipulated in an event is chosen on the basis of the normalized preclassifier's *class specific* confusion rate (CR), 1/2 and 0/2 rates

class	$\langle CR_{HadTopB} \rangle$	$\langle CR_{LepTopB} \rangle$	$\langle CR_{HadTopQ} \rangle$	$\langle {\rm CR}_{{\rm Unknown}} \rangle$	$\langle CR_{Lepton} \rangle \ \langle CR_{Missing} \rangle$	1/2 rate	0/2 rate
tīH(bb)	36.89 ± 0.19	51.23 ± 0.19	8.49 ± 0.08	3.397 ± 0.033	0.0 ± 0.0	89 ± 10	11 ± 10
tī̄Z(bb̄)	32.58 ± 0.14	52.97 ± 0.16	10.84 ± 0.12	3.608 ± 0.033	0.0 ± 0.0	88 ± 11	12 ± 11
tī+bb	34.12 ± 0.12	48.88 ± 0.13	10.52 ± 0.08	6.48 ± 0.05	0.0 ± 0.0	84 ± 11	16 ± 11

Manipulate the category flags of an increasingly larger fraction of the events in the data set

Dependency of the Event Classifier on the Preclassification

Properties of the Manipulated Data Sets

	function of manipulated superto	fraction of manipulated objects in the categories					
modeling strategy	fraction of manipulated events	AddB	HadTopB	LepTopB	HadTopQ	Unknown	Lepton/Missing
	10	5.00	0.0	10.00	0.0	0.0	0.0
	20	10.00	0.0	20.00	0.0	0.0	0.0
	30	15.00	0.0	30.00	0.0	0.0	0.0
	40	20.00	0.0	40.00	0.0	0.0	0.0
	50	25.00	0.0	50.00	0.0	0.0	0.0
A00B-LIB	60	30.00	0.0	60.00	0.0	0.0	0.0
	70	35.00	0.0	70.00	0.0	0.0	0.0
	80	40.00	0.0	80.00	0.0	0.0	0.0
	90	45.00	0.0	90.00	0.0	0.0	0.0
	100	50.00	0.0	100.0	0.0	0.0	0.0
	10	5.60	4.10	5.62	0.61	0.34	0.0
	20	11.21	8.17	11.31	1.21	0.66	0.0
	30	16.80	12.24	16.97	1.79	1.00	0.0
	40	22.45	16.44	22.63	2.38	1.34	0.0
	50	28.07	20.62	28.19	2.98	1.70	0.0
AUUD-X	60	33.69	24.74	33.85	3.58	2.03	0.0
	70	39.32	28.97	39.41	4.18	2.39	0.0
	80	44.91	33.14	45.00	4.76	2.71	0.0
	90	50.53	37.31	50.60	5.35	3.07	0.0
	100	56.13	41.49	56.18	5.94	3.40	0.0

Reliability Study

GNNExplainer

Taylor Coefficient Analysis

Idea: perform a Taylor expansion on the model function Φ at the expansion points $z \in \mathbb{R}^m$

$$T_{\Phi}(x_{1},...,x_{m}) = \sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{m}=0}^{\infty} \left(\frac{\partial^{n_{1}+\dots+n_{m}} \Phi(z_{1},...,z_{m})}{\partial x_{1}^{n_{1}}\cdots \partial x_{m}^{n_{m}}} \right) \frac{(x_{1}-z_{1})^{n_{1}}\cdots (x_{m}-z_{m})^{n_{m}}}{n_{1}!\cdots n_{m}!}$$
$$= \underbrace{\Phi(z_{1},...,z_{m})}_{\equiv t_{0}} + \sum_{j=1}^{m} \underbrace{\frac{\partial \Phi(z_{1},...,z_{m})}{\partial x_{j}}}_{\equiv t_{x_{j}}}(x_{j}-z_{j}) + \frac{1}{2!} \sum_{j=1}^{m} \sum_{k=1}^{m} \underbrace{\frac{\partial^{2}\Phi(z_{1},...,z_{m})}{\partial x_{j}\partial x_{k}}}_{\equiv t_{x_{j}x_{k}}}(x_{j}-z_{j})(x_{k}-z_{k}) + \dots$$

 \Rightarrow The Taylor coefficients $t_{\alpha}, \alpha \in \{x_i, x_j x_k, ...\}$ are a measure of the importance of the corresponding features

GNNExplainer

GNNX vs. TCA - Feature Importance

Evolution of the Feature Importance in AddB-LTB Modeling

Second-Order TCA

GNNs vs. DNNs

Training Information

hyperparameter	GNN	DNN		
n _{input} (feature set)	13 (extended*)	102 (default) 221 (extended)		
		374 (default*)		
		493 (extended*)		
N _{HL}	{1,2}			
Nhidden	{13, 26, 39} <i>n</i> ⊢L∈ <i>N</i> ⊢L			
n _{output} (of readout)		1		
bias	true			
aggregation functions	sum			
global pooling method	mean			
maximum number of epochs	200			
EARLY-STOPPING	$\Delta epochs = 15, \Delta loss = 0.001$			
mini-batch size	200			
optimizer	Adam ($\gamma = 0.01$)			
activation function (in hidden layers)	RELU			
activation function (in output layer)	SIGMOID			
loss function	BINARY CROSS-ENTROPY			
number of repetitions	10			

Training Duration

Note that these values are only of diminished expressive power and should rather be seen as a rough trend since the utilized hardware was not solely used for processing the trainings.

Convergence Speed and Degrees of Freedom

model A	model B (baseline)	$\left< \Delta \text{speed} \right>$ (%)	$\langle \Delta \textit{N}_{ ext{trainable param.}} \rangle$ (%)
sGNN _{1HL}	DNN _{1HL}	-20.1 ± 3.3	-94.33
tGNN _{1HL}	DNN _{1HL}	26 ± 13	-88.47
sGNN _{2HL}	DNN _{2HL}	4.1 ± 2.5	-84.49
tGNN _{2HL}	DNN _{2HL}	31 ± 4	-68.36

Best Models

	GNN		DNN	
edge weight	<i>M</i> _{inv}	<i>M</i> _{inv}	<i>M</i> _{inv}	<i>M</i> inv
<i>n</i> hidden	(39)	(26, 26)	(13)	(13, 26)
Ntrainable param.	1093	2107	6436	6813
N ^{eff} trainable param.	—	—	2405	2782
mean ROC-AUC	0.87441 ± 0.00051	0.87860 ± 0.00035	0.86676 ± 0.00050	0.87198 ± 0.00044
identifier	GNN _{1HL}	GNN [*] _{2HL}	DNN [*] _{1HL}	DNN [*] _{2HL}
Best Models

CMS Simulation Work in Progress

- Performance of the best GNNs and DNNs are comparable
- Biggest difference in convergence speed and N_{trainable param.}
- Convergence speed appears to be rather independent of N_{trainable param}.

TCA - Best GNNs

Reasonable:

- Most important category flag: AddB
- Most important kinematic feature: p_T

• Least important feature: ϕ

Surprising: any category flag is more important than any kinematic features

TCA - Best DNNs²

 2 493 input features \rightarrow 493 Taylor coefficients \rightarrow considered "global" features instead and only considered non-padded features

Analysis Strategy - Comparison B

- Idea: compare models with similar number of DOF
 - 1.) How well do DNNs perform if their number of DOF is restricted to the number of DOF of GNN^{*}_{2HL}?
 - $N_{\text{HL}} = \{1, \ldots, 4\}$
 - $N_{\text{hidden}} = \{5, 6, \dots, 50\}^{n_{\text{HL}} \in N_{\text{HL}}}$
 - For each HL: consider only the model(s) that are closest to N^{GNN}_{2HL}_{trainable param.} = 2107
 - 2.) How well do GNNs perform if their number of DOF is expanded to the number of DOF of DNN^{*}_{2HL}?
 - $N_{\text{HL}} = \{1, \dots, 4\}$

•
$$N_{\text{hidden}} = \{2, 4, \dots, 12\}^{n_{\text{HL}} \in N_{\text{HL}}}$$

• For each HL: consider only the model(s) that are closest to $N_{\text{trainable param.}}^{\text{DNN}_{2\text{HL}}^*} = 6813, N_{\text{trainable param.}}^{\text{eff,DNN}_{2\text{HL}}^*} = 2782$

Bonus: Can DNNs outperform GNN^{*}_{2HL} if only the number of DOF is tuned?

- N_{HL} = 3
- $N_{\text{hidden}} = \{6, 13, 26\}^{n_{\text{HL}} \in N_{\text{HL}}}$
- ⇒ Empirically motivated: rather increase number of hidden layers instead of number of hidden nodes

Number of compared models: 27+26+18 = 71

1.) DNNs with a Restricted Number of DOF

2.) GNNs with an Expanded Number of DOF

Bonus: Can DNNs Outperform GNN^{*}_{2HL}?

Institute of Experimental Particle Physics

Results - Comparison B

Question 1.)

- Many trainings contain outliers → rather not stable training?
- The majority of the models are only
 - slightly worse than DNN^{*}_{2HI} and
 - around 1 % worse than GNN^{*}_{2HL} in the best case

Question 2.)

- Only some expanded GNNs perform better than GNN^{*}_{2HI}
- The best expanded GNN improves the previous best performance by (0.14 ± 0.06) %

Bonus: Can DNNs outperform the GNN^{*}_{2H1} if only the number of DOF is tuned? → No!

- Having more HLs does not seem to be beneficial
 - \leftrightarrow (probably) regularization methods required for models with more HLs
- DNNs still perform at least (-0.75 ± 0.10) % worse than GNN^{*}_{2HI}