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x(l−1)
u ,∀v ∈ N (u)

}︂)︂ )︂
Gated Graph Sequence Neural Network (GGSNN) [1]:

AGG: mean, UPD : Gated Recurrent Unit (GRU) cell

GraphConv [2]:
AGG: sum, UPD : NN
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Monte Carlo simulations (2017)

Region: ≥ 6 jets, ≥ 4 b-tagged jets,
single lepton channel

Total number of events ≈ 190k
(60% training | 20% validation | 20% test)

tt̄+bb̄ ≈ 53k
tt̄H(bb̄) ≈ 100k
tt̄Z(bb̄) ≈ 33k
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1.) Monitored metric: true positive rate (TPR) → loss

2.) Extend vertex attributes by category flags = {0, 1}

⇒ Problem: not inherent in detected data (reconstruction-level)

⇒ Solution: e.g., a GNN-based preclassifier (NLP) → cf. Slide 29f
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3.) Modify the model architecture

global mean 
pooling

(a) GGSNN (Ntrainable param. ≈ 14k)

global mean 
pooling

(b) GGSNNseq (Ntrainable param. ≈ 18k)

+

global mean 
pooling

(c) GGSNNpara (Ntrainable param. ≈ 28k)
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GNNExplainer (GNNX) [3]
Designed for explaining GNNs

Training required
→ hyperparameters need to be selected

Explains the importance of:
Vertex attributes
Vertices
Vertex attributes per vertex
Edges/relational information
(but w/o considering edge attributes!)

Taylor coefficient analysis (TCA) [4]
More versatile → applicable to GNNs or DNNs

Deterministic

Explains the importance of:
Vertex attributes and their relations

1Further details on GNNX and TCA can be found, e.g., in the presentation in the ML meeting: https://indico.cern.ch/event/1175373/
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TCATCA

Both rankings of the b tag’s importance are reasonable from a physics perspective
In a further study: TCA’s explanations are clearly more reasonable (cf. Slide 39)

⇒ Explainable AI reveals: GNNs behave as expected → GNNs are indeed reliable ✔
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GNN DNN

input size (Nobjects in an event)

flexible fixed → affects data handling

permutation invariance

✔ ✗ → affects data handling

parameter sharing

✔ ✗ → affects degrees of freedom (DOF)
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GNN and DNN Properties



conditions realizable comments

a) same loss function ✔ BINARY CROSS-ENTROPY

b) same optimizer ✔ ADAM

c) same activation function ✔ RELU, SIGMOID

d) same feature space ✗ since no differentiation between vertex,
edge and graph attributes for DNNs

e) same ninput ✗ due to d) and fixed input size of the DNNs

f) same nhidden ✔

g) same noutput ✔

h) same Ntrainable param. (= DOF) ✔ because of e)

⇒ Comparison A: compare models with same nhidden or
⇒ Comparison B: compare models with same Ntrainable param., cf. Slide 49ff
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Idea: compare models with same nhidden ∈ Nhidden:
NHL = {1, 2},Nhidden = {13, 26, 39}nHL∈NHL

Deploy models that are as basic as possible:
DNN: fully-connected feed-forward neural network
GNN: GraphConv

Enhance comparability by training GNNs with
different graph connectivity schemes

Number of compared models:
120 (GNNs) + 96 (DNNs) = 216
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CMS Simulation Work in Progress

Edge weight = 0 / prohibit message passing
→ Rather random estimators

Using physically non-meaningful or
physically motivated edge weights
→ Improves model performance
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⇒ Beneficial to train edges with physically
non-meaningful weights

⇒ Edge weight = Minv seems to be the best choice
for tt̄+X event classification
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Feasibility Study

Event classifier theoretically improves by about 27 %
overall

⇒ About 76 % better than a random estimator
⇒ GNNs are generally suitable for tt̄+X event

classification ✔

Benchmarking Equivalent GNNs and DNNs

GNN DNN

model performance
training stability

/

DOF
data preprocessing effort

⇒ Beneficial to prefer GNNs to DNNs ✔

⇒ Outlook: non-CMS paper currently prepared

Reliability Study

The features identified as important by GNNX and TCA
are reasonable from a physics point of view

⇒ GNNs are reliable/trustworthy ✔

Outlook: develop a multi-task network?

Simultaneously trained on additional b jet assignment
and tt̄+X event classification

Advantage: end-to-end model
→ easier to be retrained, optimized and distributed
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Distribution of Input Variables



Feasibility Study
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a) If the trained model is a random estimator (ROC-AUC = 0.5) or

b) ROC-AUC ∉ mean ROC-AUC ±1.5 · 𝜎pre
ROC-AUC and Δ𝜎 = 𝜎

pre
ROC-AUC − 𝜎
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ROC-AUC > 0.0025
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(area = 0.8757 ± 0.0010 | + (75.14 ± 0.20) %)

Baseline

Left: Histogramm of the standard deviation difference pre- and post-removal of models with ROC-AUC values beyond the
range of mean ROC-AUC ±1.5 · 𝜎pre

ROC-AUC. Middle: Exemplary ROC curve of a trained model fulfilling criterion b). Right:
Exemplary ROC curve of a trained model fulfilling criterion b), which is not desired, if Δ𝜎 > 0.0025 would be omitted.
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Outlier Criteria



hyperparameter setting

ninput/nhidden 24
nHL 18
noutput (of readout) 1 (binary), 3 (multiclass)
bias true
aggregation functions mean
global pooling method mean
maximum number of epochs 200

EARLY-STOPPING
Δepoch = 15, ΔTPR = 0.01 or
Δepoch = 15, Δloss = 0.001

mini-batch size 200
optimizer ADAM (𝛾 = 0.01)
activation function (in output layer) SIGMOID (binary), SOFTMAX (multiclass)
loss function BINARY/CATEGORICAL CROSS-ENTROPY

number of repetitions 10
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Training Information
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Different Edge Weights and Model Architectures



With a GNN-based preclassifier (NLP), an overall improvement of about 10 % is still achievable

NLP

data

data

? ?
?

?
??

?

?

AddB flags category flags

class labelGLP+

Modeling of the dependency of the event classifier on the preclassification shows (cf. Slide 31ff):
Optimizing the preclassifier’s TPR just by ≈ 0.17 % → 2 % better event classifier
But: a further optimization of the preclassifier’s TPR by ≈ 6 % would be required for improving the performance
of the event classifier by another 2 %
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Preclassification of Category Flags
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True positive rate achieved with the GNN-based
preclassifier + the joint b tag/pT approach

category TPR (%)

AddB 70.88
HadTopB 65.61
HadTopQ 79.04
LepTopB 52.26
Unknown 62.24
Lepton/Missing 100.00
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Preclassification of Category Flags



Idea:
Manipulate the category flags of an increasingly larger fraction of the events in the data set
Modeling can be simplified to only modeling the additional b jet assignment correctly

AddB-LTB modeling:
AddB flag ↔ LTB flag

xi =
(︁
· · · AddB = 1 · · · LTB = 0 · · ·

)︁⊺
↔

(︁
· · · AddB = 0 · · · LTB = 1 · · ·

)︁⊺
The preclassifier confuses these categories the most
Only 1 LepTopB jet but 2 AddB jets in each event
→ AddB jet to manipulate is randomly chosen

AddB-X modeling:
AddB flag ↔ any other category flag
Category flag with which it is manipulated in an
event is chosen on the basis of the normalized
preclassifier’s class specific confusion rate (CR),
1/2 and 0/2 rates

class ⟨CRHadTopB ⟩ ⟨CRLepTopB ⟩ ⟨CRHadTopQ ⟩ ⟨CRUnknown ⟩
⟨CRLepton ⟩ 1/2 rate 0/2 rate⟨CRMissing ⟩

tt̄H(bb̄) 36.89±0.19 51.23±0.19 8.49±0.08 3.397±0.033 0.0±0.0 89±10 11±10
tt̄Z(bb̄) 32.58±0.14 52.97±0.16 10.84±0.12 3.608±0.033 0.0±0.0 88±11 12±11
tt̄+bb̄ 34.12±0.12 48.88±0.13 10.52±0.08 6.48±0.05 0.0±0.0 84±11 16±11
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Dependency of the Event Classifier on the Preclassification
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(a) AddB-LTB modeling
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(b) AddB-X modeling
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Dependency of the Event Classifier on the Preclassification



modeling strategy fraction of manipulated events
fraction of manipulated objects in the categories

AddB HadTopB LepTopB HadTopQ Unknown Lepton/Missing

AddB-LTB

10 5.00 0.0 10.00 0.0 0.0 0.0
20 10.00 0.0 20.00 0.0 0.0 0.0
30 15.00 0.0 30.00 0.0 0.0 0.0
40 20.00 0.0 40.00 0.0 0.0 0.0
50 25.00 0.0 50.00 0.0 0.0 0.0
60 30.00 0.0 60.00 0.0 0.0 0.0
70 35.00 0.0 70.00 0.0 0.0 0.0
80 40.00 0.0 80.00 0.0 0.0 0.0
90 45.00 0.0 90.00 0.0 0.0 0.0
100 50.00 0.0 100.0 0.0 0.0 0.0

AddB-X

10 5.60 4.10 5.62 0.61 0.34 0.0
20 11.21 8.17 11.31 1.21 0.66 0.0
30 16.80 12.24 16.97 1.79 1.00 0.0
40 22.45 16.44 22.63 2.38 1.34 0.0
50 28.07 20.62 28.19 2.98 1.70 0.0
60 33.69 24.74 33.85 3.58 2.03 0.0
70 39.32 28.97 39.41 4.18 2.39 0.0
80 44.91 33.14 45.00 4.76 2.71 0.0
90 50.53 37.31 50.60 5.35 3.07 0.0
100 56.13 41.49 56.18 5.94 3.40 0.0
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Properties of the Manipulated Data Sets



Reliability Study
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m features 
n vertices

m features 
or or

(a) (b) (c)

GNNX
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GNNExplainer



Idea: perform a Taylor expansion on the model function Φ at the expansion points z ∈ Rm

TΦ (x1, . . . , xm) =
∞∑︂

n1=0

· · ·
∞∑︂

nm=0

(︄
𝜕n1+···+nmΦ(z1, . . . , zm)

𝜕xn1
1 · · · 𝜕xnm

m

)︄
(x1 − z1)n1 · · · (xm − zm)nm

n1! · · · nm!

= Φ(z1, . . . , zm)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
≡ t0

+
m∑︂

j=1

𝜕Φ(z1, . . . , zm)
𝜕xj⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
≡ txj

(xj − zj ) +
1
2!

m∑︂
j=1

m∑︂
k=1

𝜕2Φ(z1, . . . , zm)
𝜕xj 𝜕xk⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
≡ txj xk

(xj − zj ) (xk − zk ) + . . .

⇒ The Taylor coefficients t𝛼 , 𝛼 ∈ {xj , xjxk , . . . } are a measure of the importance of the corresponding features
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Taylor Coefficient Analysis
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NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 1.71 (=̂ 50.0 %)
∆rmax = 3.00 (LepTopB)

Generator-level vs. NLP-class-level:
〈∆r〉 = 1.14 (=̂ 66.67 %)
∆rmax = 3.00 (HadToB, Lepton)
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NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 0.62 (=̂ 90.48 %)
∆rmax = 2.00 (M , E)

Generator-level vs. NLP-class-level:
〈∆r〉 = 0.62 (=̂ 90.48 %)
∆rmax = 1.00
(pT, φ, η, M , E, b tag, HTQ, Unk)
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GNNExplainer
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NLP-class-level

GNNX:

Generator-level vs. NLP-score-level:
〈∆r〉 = 1.85 (=̂ 71.43 %)
∆rmax = 7.00 (HTQ)

Generator-level vs. NLP-class-level:
〈∆r〉 = 1.38 (=̂ 78.57 %)
∆rmax = 4.00 (MET)
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NLP-class-level

TCA:

Generator-level vs. NLP-score-level:
〈∆r〉 = 1.85 (=̂ 71.43 %)
∆rmax = 5.00 (HTQ)

Generator-level vs. NLP-class-level:
〈∆r〉 = 2.0 (=̂ 69.05 %)
∆rmax = 4.00 (pT, b tag)
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GNNX vs. TCA - Feature Importance
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Evolution of the Feature Importance in AddB-LTB Modeling
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0.456 0.068 0.206 0.236 0.203 0.158 1.644 0.397 0.185 0.158 0.249 0.449 0.378

0.394 0.064 0.187 0.193 0.174 0.15 1.461 0.364 0.169 0.249 0.199 0.606 0.475

0.79 0.117 0.329 0.442 0.345 0.277 3.082 0.746 0.309 0.449 0.606 0.804 1.081

0.654 0.097 0.269 0.343 0.283 0.224 2.346 0.582 0.263 0.378 0.475 1.081 0.377
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(b) NLP-score-level GNN
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0.274 0.065 0.196 0.227 0.11 0.219 0.384 0.217 0.246 0.217 0.162 0.219 0.232

0.065 0.01 0.04 0.035 0.022 0.044 0.081 0.041 0.045 0.042 0.036 0.047 0.046

0.196 0.04 0.051 0.071 0.045 0.09 0.16 0.085 0.097 0.084 0.074 0.102 0.096

0.227 0.035 0.071 0.074 0.058 0.113 0.206 0.111 0.12 0.114 0.088 0.118 0.122

0.11 0.022 0.045 0.058 0.02 0.063 0.115 0.06 0.067 0.06 0.05 0.068 0.07

0.219 0.044 0.09 0.113 0.063 0.085 0.245 0.129 0.145 0.126 0.106 0.149 0.145

0.384 0.081 0.16 0.206 0.115 0.245 0.247 0.22 0.255 0.205 0.168 0.253 0.232

0.217 0.041 0.085 0.111 0.06 0.129 0.22 0.099 0.174 0.146 0.116 0.16 0.162

0.246 0.045 0.097 0.12 0.067 0.145 0.255 0.174 0.132 0.166 0.134 0.186 0.186

0.217 0.042 0.084 0.114 0.06 0.126 0.205 0.146 0.166 0.087 0.109 0.153 0.15

0.162 0.036 0.074 0.088 0.05 0.106 0.168 0.116 0.134 0.109 0.054 0.123 0.117

0.219 0.047 0.102 0.118 0.068 0.149 0.253 0.16 0.186 0.153 0.123 0.138 0.218

0.232 0.046 0.096 0.122 0.07 0.145 0.232 0.162 0.186 0.15 0.117 0.218 0.112
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(c) NLP-class-level GNN
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Second-Order TCA



GNNs vs. DNNs
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hyperparameter GNN DNN

ninput (feature set) 13 (extended∗)

102 (default)
221 (extended)
374 (default∗)
493 (extended∗)

NHL {1, 2}
Nhidden {13, 26, 39}nHL∈NHL

noutput (of readout) 1
bias true
aggregation functions sum
global pooling method mean
maximum number of epochs 200
EARLY-STOPPING Δepochs = 15, Δloss = 0.001
mini-batch size 200
optimizer ADAM (𝛾 = 0.01)
activation function (in hidden layers) RELU
activation function (in output layer) SIGMOID

loss function BINARY CROSS-ENTROPY

number of repetitions 10
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Training Information
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Mean of DNNs: (25.4 ± 0.5) min

Mean of GNNs: (19.5 ± 0.5) min

DNNs

GNNs

Note that these values are only of diminished expressive power and should rather be seen as a rough trend since the
utilized hardware was not solely used for processing the trainings.
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Training Duration



model A model B (baseline) ⟨Δspeed⟩ (%) ⟨ΔNtrainable param.⟩ (%)

sGNN1HL DNN1HL −20.1±3.3 −94.33
tGNN1HL DNN1HL 26±13 −88.47
sGNN2HL DNN2HL 4.1±2.5 −84.49
tGNN2HL DNN2HL 31±4 −68.36
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Convergence Speed and Degrees of Freedom



GNN DNN

edge weight Minv Minv Minv Minv

nhidden (39) (26, 26) (13) (13, 26)
Ntrainable param. 1093 2107 6436 6813
Neff

trainable param. — — 2405 2782
mean ROC-AUC 0.87441 ± 0.00051 0.87860 ± 0.00035 0.86676 ± 0.00050 0.87198 ± 0.00044
identifier GNN∗

1HL GNN∗
2HL DNN∗

1HL DNN∗
2HL
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Best Models



Mean convergence speed

Mean test loss/
Generalization

Mean ROC-AUCNtrainable param.

N eff
trainable param.

0.015

0.02

0.024

0.028

0.418
0.432

0.446
0.46

0.842

0.863

0.883

0.9032261.41

3484.47

4707.53

5930.59

1414.9
1791.45

2168.0
2544.55
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GNN∗1HL

GNN∗2HL

DNN∗1HL

DNN∗2HL

Performance of the best GNNs and
DNNs are comparable

Biggest difference in convergence
speed and Ntrainable param.

Convergence speed appears to be
rather independent of Ntrainable param.
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Best Models
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GNN∗1HL
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GNN∗2HLGNN∗2HL

Reasonable:
Most important category flag: AddB
Most important kinematic feature: pT
Least important feature: 𝜙

Surprising: any category flag is more
important than any kinematic features
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TCA - Best GNNs
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DNN∗1HL

0.004 0.100 0.195 0.291 0.387
〈txj〉

Minv

η
pT

M
b tag

AddB
HTQ

E
`

MET
LTB
HTB
Unk
φ

F
ea

tu
re

CMS Simulation Work in Progress

DNN∗2HLDNN∗2HL

Surprising: all category flags are
ranked in the lower half
→ Possibly because of redundancy
→ Already encoded in input vector due

to lack of permutation invariance

Least important feature: 𝜙

Most important feature: Minv

→ Encoded in graph structure
→ DNN also learned to look at that

2493 input features → 493 Taylor coefficients → considered “global” features instead and only considered non-padded features
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TCA - Best DNNs2



Idea: compare models with similar number of DOF
1.) How well do DNNs perform if their number of DOF is restricted to the number of DOF of GNN∗

2HL?
NHL = {1, . . . , 4}
Nhidden = {5, 6, . . . , 50}nHL∈NHL

For each HL: consider only the model(s) that are closest to N
GNN∗

2HL
trainable param. = 2107

2.) How well do GNNs perform if their number of DOF is expanded to the number of DOF of DNN∗
2HL?

NHL = {1, . . . , 4}
Nhidden = {2, 4, . . . , 12}nHL∈NHL

For each HL: consider only the model(s) that are closest to N
DNN∗

2HL
trainable param. = 6813, N

eff ,DNN∗
2HL

trainable param. = 2782

Bonus: Can DNNs outperform GNN∗
2HL if only the number of DOF is tuned?

NHL = 3
Nhidden = {6, 13, 26}nHL∈NHL

⇒ Empirically motivated: rather increase number of hidden layers instead of number of hidden nodes

Number of compared models: 27+26+18 = 71
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Analysis Strategy - Comparison B
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1.) DNNs with a Restricted Number of DOF
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2.) GNNs with an Expanded Number of DOF
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Bonus: Can DNNs Outperform GNN∗
2HL?



Question 1.)
Many trainings contain outliers → rather not stable training?
The majority of the models are only

slightly worse than DNN∗
2HL and

around 1 % worse than GNN∗
2HL in the best case

Question 2.)
Only some expanded GNNs perform better than GNN∗

2HL
The best expanded GNN improves the previous best performance by (0.14 ± 0.06)%

Bonus: Can DNNs outperform the GNN∗
2HL if only the number of DOF is tuned? → No!

Having more HLs does not seem to be beneficial
↔ (probably) regularization methods required for models with more HLs
DNNs still perform at least (−0.75 ± 0.10)% worse than GNN∗

2HL
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Results - Comparison B
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